Innovations, Challenges, and Future Opportunities

J. Carlos Santamarina
Georgia Institute of Technology
electromagnetic waves
Maxwell’s Equations

Gauss' Law of Electricity
\[\int_{\text{surf}} \varepsilon E \cdot ds = \int_{\text{vol}} \rho^\text{free}_v \, dv \]
\[\nabla \cdot E = \frac{1}{\varepsilon} \rho^\text{free}_v \]

Gauss' Law of Magnetism
\[\int_{\text{surf}} H \cdot ds = 0 \]
\[\nabla \cdot H = 0 \]

Faraday's Law of Induction
\[\int_{\text{loop}} E \cdot dl = -\frac{d}{dt} \int_{\text{surf}} \mu H \cdot ds \]
\[\nabla \times E = -\mu \frac{dH}{dt} \]

Ampere-Maxwell's Law
\[\int_{\text{loop}} H \cdot dl = \int_{\text{surf}} J \cdot ds + \frac{d}{dt} \int_{\text{surf}} \varepsilon E \cdot ds \]
\[\nabla \times H = \sigma E + \varepsilon \frac{dE}{dt} \]
Wave Equation

\[\nabla^2 E = \mu^* \sigma \frac{\partial E}{\partial t} + \mu^* \varepsilon^* \frac{\partial^2 E}{\partial t^2} \]

Solution:
\[E_y = E_0 e^{-\alpha \lambda} e^{j(\omega t - \kappa x)} = E_0 e^{j(\omega t - \gamma^* x)} \]

Then
\[\gamma^* = \alpha + j \kappa = \sqrt{jo \sigma \mu^* - \omega^2 \varepsilon^* \mu^*} \]

Faraday:
\[H_z = -j \frac{\gamma^*}{\mu \omega} E_y \]
Phase Velocity

\[V_{ph} = \frac{\omega}{\text{Im} \ (\gamma^*)} = \frac{\omega}{\text{Im} \left(\sqrt{j\omega \sigma \mu^* - \omega^2 \varepsilon^* \mu^*} \right)} \]

non-ferromagnetic / dielectric
\[\mu^* = \mu_0 \quad \varepsilon^* = \varepsilon' \quad \sigma = 0 \]

\[V_{ph} = \frac{c_0}{\sqrt{\varepsilon'/\varepsilon_0}} \]

Attenuation

\[\alpha = \text{Re} \ (\gamma^*) = \text{Re} \left(\sqrt{j\omega \sigma \mu^* - \omega^2 \varepsilon^* \mu^*} \right) \]

non-ferromagnetic
\[\mu^* = \mu_0 \quad \varepsilon^* = \varepsilon' + j\varepsilon'' \quad \sigma \]

\[\alpha = \frac{\omega \sqrt{\varepsilon'/\varepsilon_0}}{c_0} \sqrt{\frac{1}{2} \left(\sqrt{1 + \tan^2 \delta} - 1 \right)} \]
Skin depth

\[S_d = \frac{1}{\alpha} = \frac{1}{\text{Re}(\gamma^*)} \]

Impedance

\[z^* = \frac{E_y}{H_z} = j \frac{\omega}{\gamma^*} \mu^* \]

Reflection and Transmission

\[R^* = \frac{1 - (z_1^*/z_2^*)}{1 + (z_1^*/z_2^*)} \]
\[T^* = \frac{2}{1 + (z_1^*/z_2^*)} \]
Electromagnetic Parameters

Conductivity \(\sigma \)

Permittivity \(\varepsilon^* = \varepsilon' - j \varepsilon'' \)

Permeability \(\mu = \mu' - j \mu'' \)

Effective conductivity
\[
\sigma_{\text{eff}} = \varepsilon' \omega \mu_r'' + (\sigma + \varepsilon'' \omega) \mu_r'
\]
details and references in
Santamarina, Klein and Fam
Soils and Waves – J. Wiley

electromagnetic properties
Conductivity - Electrolytes

![Graph showing conductivity vs. concentration for NaOH, NaCl, and CaCl₂](image-url)
Bulk and Surface Conduction

\[\sigma_{\text{soil}} = n \sigma_{\text{el}} + (1 - n) 2 \rho_p \lambda_{\text{ddl}} S_a \]

\[\sigma_{\text{soil}} = \alpha n^\beta \sigma_{\text{el}} \] (Archie)
Conductivity: Archie?

\[
\sigma_{\text{soil}} = n \sigma_{\text{el}} + (1 - n) 2 \rho_g \lambda S_a
\]
Conductivity - Summary

Controlled by \((1-n) 2\rho \lambda S_s\)

\[\sigma_{\text{el}} = \sigma_{\text{soil}}\]

Controlled by \(n\sigma_{\text{el}}\)
Polarization – Single phase

Direction of Applied Field

<table>
<thead>
<tr>
<th>Electronic (resonance)</th>
<th>Ionic (resonance)</th>
<th>Orientational (relaxation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 10^{-16} s (Ultraviolet)</td>
<td>t = 10^{-13} s (Infrared)</td>
<td>t = 9×10^{-12} s (Microwave – water)</td>
</tr>
</tbody>
</table>
Two-phase media - Spatial polarization

- (no relaxation)
- Maxwell relaxation
- Wagner relaxation
- Semi-permeable membrane
Double layer effects

Direction of Applied Field

Stern layer
- (Infrared)

Bound water (relaxation)
- (Radio frequency)

Double layer (deionized)

Double layer (electrolyte)

Double layer - Normal

Particle interactions
- (surface conduction)
Water-Ion Interaction

\[f = 1.3 \text{ GHz} \]

![Graph showing the relationship between ionic concentration and \(\kappa' \) for different ions (CaCl\(_2\), NaCl, LiCl, FeCl\(_3\), KCl).]
Permeability

iron fillings in kaolinite – $f = 10$ kHz

$\mu'_{\text{rel}} = 1 + 4 v_{\text{Fe}} + 7 v_{\text{Fe}}$

$\mu'_{\text{rel}} = 1 + 3 v_{\text{Fe}}$

Maxwell

Wagner

volume fraction of iron filings

μ'_{rel} vs volume fraction of iron filings
Permeability

\[\mu_{rel}^\pi \]

\[\mu_{rel}'' \]

frequency [Hz]

frequency [Hz]

(a) (b) (c) (d) (e) (f) (g)
All data by Dante Fratta (U. Wisconsin)

TDR measurements
The Cable

corresponds to \(2L_{\text{cable}}\)

\[\Delta t\]

the probe = complex end-reflector
signal changed sign at equipment
The Probe

corresponds to $2L_{\text{probe}}$

$f \sim 1 \text{ to } 3 \text{ GHz}$

dispersion

multiples
Short

where is zero-time?

composite reflection at top
open and short tip impedance
Short

where is zero-time?
composite reflection at top
open and short tip impedance
Boundaries: Normal Plate

does not see ahead of tip
Boundaries: Normal Plate

does not see ahead of tip
Boundaries: Parallel Plate

does not feel outside inter-rod?
Boundaries: Parallel Plate

H-field effect!
Permeability

Expect minor effect
Permeability

- 0.1% iron filings
- 5% iron filings
- 10% iron filings
- 15% iron filings
- 20% iron filings
- 25% iron filings

expect minor effect
Conductivity

- Dry sand
- Drained tap water
- Drained 0.2 M NaCl solution
- Tap water
- 0.2 M NaCl solution

Good assessment of conductivity
Conductivity

- Dry sand
- Tap water
- Drained tap water
- 0.2 M NaCl solution
- Drained 0.2 M NaCl solution

recall skin depth
may not see tip reflection
Heterogeneity – Layering
Varved Clay

X-Ray Photograph Needle probe measurements

Cho, Lee
Heterogeneity - Layering

In Air
disk at 29 cm - TIP
disk at 22.5 cm
disk at 15 cm
disk at 7.5 cm
disk at 0.0 cm - TOP
2 disks: 15 and 29 cm
2 disks: 7.5 and 22.5 cm
4 clay disks: 7.5, 15, 22.5, and 29 cm

Time / Δt

300 400 500 600 700 800

a clay seam may hide the rest
(very high mismatch in this case)
Heterogeneity in Water Content

more than one primary reflections
Insertion Effects

Undrained

Drained
Insertion: Volumetric Strain = f(void ratio)
Large vs. Small Particles

Gravel – $d_{50} = 20$ mm
Large vs. Small Particles

Gravel – $d_{50} = 20$ mm

higher local porosity in gravel

Brillouin LP filter?
Summary

NOT a simple scalar $f(\text{geometry, soil})$

Input

1st reflection

2nd reflection

3rd reflection

multiples
Summary

The connection to probe:

- sequence of electrical and geometrical changes
- response is a function of the soil itself
- when is time zero? what signal gets to the soil?

Compare the 2nd and 3rd reflections (if 3rd is not lost in noise)

Geometric dispersion + attenuation: signal widens

Ferromagnetism: expect small effect

Insertion effects and preferential packing (aggravated in coarse soils)

Complex signal: consider spatial variability

- multiple interpretations of multiples
- many unknowns \rightarrow inversion may be ill defined

Information conservation \rightarrow simple models (Ockham’s criterion)
process monitoring
Measurements
Sedimentation

- Suspension
- Soil

K. Klein
Pressure diffusion

(a)

(b)

\[\kappa' \]

\[\kappa''_{\text{eff}} \]

stress \([\text{kPa}]\)

local volumetric water content

DeLoo (Table 11.9)

1.3 GHz

0.20 GHz
Pressure diffusion

![Graph showing the relationship between time (in minutes) and shear wave velocity (in m/s) for different values of q (in kPa). The graph includes data points for q=305, 154, 76, 38, 19, and 0 kPa, with time ranging from 0.1 to 10,000 minutes and shear wave velocity ranging from 0 to 350 m/s.]
Cementation (bentonite-cement)

M. Fam
Cementation (sand-cement)

Conf. Press: 70 kPa
Conf. Press: 415 kPa

Constant confinement:
\(\sigma' = 415 \text{ kPa} \)
\(\sigma' = 70 \text{ kPa} \)

A. Fernandez
Gas hydrates

Kvenvolden and Lorenson, 2001
Real Permittivity (Kaolinite + THF + H₂O)

Temperature [°C]

Real permittivity k'

hydrate

ice

Time [min]

F. Francisca
Elastic waves

V_p evolution

V_s evolution

Temperature decrease

Temperature increase

Phase transf.

TS. Yun
Penetration-based Geophysical Systems

SV Source (Fernandez)

3D Geophone (Stokoe – UT)

Conductivity tip
Boundary measurements - Tomography
closing thoughts
Measurement $\kappa^* \sigma^* \mu^*$
TDR signature = input \ast (geometry AND spatially varying material)

Better measurement interpretation
Inversion: caution… follow Ockham’s criterion

Inherent: insertion volume change
Consider non-intrusive implementation

Complementary information
 Electromagnetic & elastic waves
 Small perturbation & large-strain penetration testing

Wave parameters: relevant to engineering
Laboratory and field
Wide range of geotechnical processes

Boundary measurements: invert for internal conditions
Thank You