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Preface 

The purpose of this book is to introduce procedures for the analysis of signals 
and for the solution of inverse problems in engineering and science. The literature 
on these subjects seldom combines both; however, signal processing and sys- 
tem analysis are intimately interconnected in all real applications. Furthermore, 
many mathematical techniques are common to both signal processing and inverse 
problem solving. 

Signals and inverse problems are captured in discrete form. The discrete rep- 
resentation is compatible with current instrumentation and computer technology, 
and brings both signal processing and inverse problem solving to the same math- 
ematical framework of arrays. 

Publications on signal processing and inverse problem solving tend to be 
mathematically involved. This is an introductory book. Its depth and breadth 
reflect our wish to present clearly and concisely the essential concepts that 
underlie the most useful procedures readers can implement to address their 
needs. 

Equations and algorithms are introduced in a conceptual manner, often fol- 
lowing logical rather than formal mathematical derivations. The mathematically 
minded or the computer programmer will readily identify analytical derivations or 
computer-efficient implementations. Our intent is to highlight the intuitive nature 
of procedures and to emphasize the physical interpretation of all solutions. 

The information presented in the text is reviewed in parallel formats. The 
numerous figures are designed to facilitate the understanding of main concepts. 
Step-by-step implementation procedures outline computation algorithms. Exarn- 
ples and solved problems demonstrate the application of those procedures. Finally, 
the summary at the end of each chapter highlights the most important ideas and 
concepts. 

Problem solving in engineering and science is hands-on. As you read each 
chapter, consider specific problems of your interest. Identify or simulate typical 
signals, implement equations and algorithms, study their potential and limitations, 
search the web for similar implementations, explore creative applications . . . , 
and have fun! 
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Brief Comments 
on Notation 

The notation selected in this text is intended to facilitate the interpretation of 
operations and the encoding of procedures in mathematical software. A brief 
review of the notation follows: 

Letter: 
Single-underlined letter: 
Double-underlined letter: 

Capital letter: 

Bar over capital letter: 
Indices (sequence of data 

points in an array): 
Indexed letters: 
Imaginary component: 

Magnitude: 
Additional information: 

Point-by-point operations: 

"time": 

- 
X 
i, k 

u, v 
xi or z ~ , ~  
a + j-b 

scalar 
one-dimensional array or vector 
two-dimensional array or matrix 

a capital letter is used to represent a 
quantity in the frequency domain, 
which is complex in most cases; it 
could be a scalar or an array 
complex conjugate of X 
indices in the time domain 
indices in the frequency domain 
a specific value within arrays 21 or z - 
j2 = -1 indicates the imaginary 
component 
Jm Pythagorean length 
superscripts in angular brackets are 
used to provide additional information 
on the quantity 
point-by-point product; the operation 
is defined between specific elements 
in the arrays 
the term "time" designates the 
independent variable, such as time, 
space, or any other independent 
parameter 
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Introduction 

This chapter begins with a brief discussion of signals, systems, and the types 
of problems encountered in engineering and science. Then, selected applications 
are described to begin exploring the potential of signal processing and inverse 
problem solving. Exercises at the end of the chapter invite the reader to extend 
this preview to other areas of interest, and to gather simple hardware components 
to obtain discrete signals in different applications. 

1.1 SIGNALS, SYSTEMS, AND PROBLEMS 

Listen. . . . Touch. . . . See. . . ! Our senses detect signals that convey important 
information we use for survival. We hear the variation of pressure with time, our 
fingers feel the spatial variation of surface roughness, and we see the time-varying 
spatial distribution of color. Clearly, each signal is the variation of a parameter 
with respect to one or more independent variables. 

We take these stimuli (input signals) and respond accordingly (output signal). 
Therefore, each of us is a system that transforms an input signal into an output 
signal. In fact, our response to a given stimulus reveals important information 
about us. Likewise, a time-varying wind load (input signal) acts on a building 
(system) causing it to oscillate (output signal), and these oscillations can be used 
to infer the mechanical characteristics of the building. 

A system may transform the input energy into another form of energy. For 
example, metals dilate (mechanical output) when heated (thermal input). Most 
transducers are energy-transforming systems: accelerometers produce an electrical 
output from a mechanical input, and photovoltaic cells convert light energy into 
electrical energy. 

The input signal, the output signal or the system characteristics may be 
unknown. Our level of knowledge pennits classifying problems in engineering 

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta 
8 2005 John Wiley & Sons, Ltd 



INTRODUCTION 

Table 1.1 Forward and inverse problems in engineering and science 

PROBLEMS IN ENGINEERING AND SCIENCE 

System 

Forward Problems Inverse Problems 

System designa Convolution System identzjkation Deconvolution 

Input: Known Input: Known Input: Known Input: Unknown 
System: To be designed System: Known System: Unknown System: Known 
Output: Predefined Output: Unknown Output: Known Output: Known 

Classical training Chapters 3-7 Chapters 8-1 1 

a The system is designed to satisfy performance criteria: controlled output for estimated input. 

and science, as shown in Table 1.1. Typically, engineers are trained to solve 
forward problems. Emphasis has been placed on the design of systems to satisfy 
predefined performance criteria, based on an estimated design load. Typical exam- 
ples include the design of a reactor or a transportation system. The other form of 
forward problems is estimating the response of a system of known characteristics 
given a known input. This second class of forward problems is a convolution of 
the input with the characteristic system response, such as computing the signal 
coming out of an amplifier, the flood discharge after a rainfall, or numerical 
simulations in general. 

A wide range of scientific problems - by definition - and many engineering 
tasks are inverse problems whereby the output is known, but either the input or 
the system characteristics are unknown (Table 1.1). In system identijication the 
input and output signals are known, and the task is to determine the characteristics 
of the system. For example, a bone specimen is loaded and its deformation is 
measured to determine material properties such as Young's modulus and Poisson 
ratio. The other type of inverse problems involves the determination of the input 
signal knowing the system characteristics and the output signal. This is called 
deconvolution, as opposed to the forward problem of convolution. In all measure- 
ments, the true signature is computed by deconvolution with the characteristics of 
the transducer: the earthquake signature is obtained by deconvolving the recorded 
signal from the characteristics of the seismograph. Inferring the speed of a vehicle 
before collision is another example of deconvolution in the context of forensic 
engineering. 
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Many inverse problems are complex and involve partial knowledge of the 
system and signals. Hence, it may not be possible to identify a unique solution. 
For example, we are still puzzled by multiple plausible hypotheses related to the 
extinction of dinosaurs, the catastrophic failure of Teton dam, and the initiation 
of various deadly diseases. Even extensive scrutiny may not render enough infor- 
mation to falsify hypotheses, particularly when information may have been lost 
in the event itself. 

1.2 SIGNALS AND SIGNAL PROCESSING - 
APPLICATION EXAMPLES 

Signal processing is an integral part of a wide range of devices used in all areas 
of science and technology. The following examples introduce common concepts 
in signal processing within the contexts of our own daily experiences and lead 
us towards the development of devices and procedures that can have important 
practical impact. Cases include active and passive systems. Other examples are 
listed in Table 1.2. 

1.2.1 Nondestructive Tesfing by Echolocation (Active) 

Echolocation consists of emitting a sound and detecting the reflected signal. The 
time difference between sound emission and echo detection is proportional to 
the distance to the reflecting surface. Differences between the frequency content 
in the reflected signal with respect to the emitted signal are used to discern 
characteristics of the object such as its size. 

Bats and dolphins are able to use echolocation to enhance their ability to 
comprehend their surroundings. (People have some echolocation capability, but 
it is less developed because of our refined vision.) The sound made by bats varies 
among species. Some bats emit a sine sweep signal or chirp like the one shown 
in Figure 1.1. This input signal has two important advantages: first, it leads to 
improved accuracy in travel time determination, and second, it permits assessing 
the size of the potential prey (Chapters 3-7). 

The same technique is used in nondestructive evaluation methods, from medical 
diagnosis to geophysical prospecting for resource identification (Figure 1.2a; 
see suggested exercises at the end of this chapter). While the input signal can 
resemble the signal emitted by bats, the frequency content is selected to optimize 
the trade-off between penetration depth and resolution (Figure 1.2b). 



4 INTRODUCTION 

Table 1.2 Examples of signals 

Time and spatial variations in one dimension ( ID)  
Acoustics: sonar signals; echolocation by bats and dolphins 
Electrical engineering: signal emitted by a transmission antenna 
Chemistry - material science: temperature history in a chemical reaction 
Finance: the stock market historical record 
Medicine: electrocardiogram and electroencephalogram 

Two-dimensional ( 20 )  spatial variations 
Agricultural engineering: vegetation, evaporation and infiltration in a watershed 
Geography - climatology: surface temperature and pressure maps; GIs maps 
Socioeconomics: world distribution of population density and income 
Mechanics - tribology: surface roughness; contact pressure distribution 
Physics: AFM image of a polymer surface 
Traffic engineering: accident rate at intersections across the city 

Three-dimensional ( 3 0 )  volumetn'c variations 
Physics: porous network in a particulate medium 
Fluid mechanics: flow-velocity profile around airplane wing 
Geotechnology: pore fluid pressure underneath a dam 
Biology: CO, distribution in a bioreactor 

Note: 
The graphical representation of a signal can be simplified if a plane or axis of symmetry is identified. 
For example, the 4D variation of subsurface temperature in space and time can be captured as a 2D 
signal in depth-time coordinates if the subsurface is horizontally homogeneous. 

4 

0 0.0002 0.0004 0.0006 0.0008 0.001 

Time [s] 

Figure 1.1 A sine sweep signal. The frequency increases with time 

7.2.2 Lisfening and Understanding Emissions (Passive) 

Many signals are generated without our direct or explicit involvement. In most 
cases, "passive" signals are unwanted and treated as noise. However, passive sig- 
nals when carefully analyzed may provide valuable information about the system. 
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Signal 
generator Geophones 

n I I I I 

crY3  
Small 
target 

Direct arrival From small target From large target 

Figure 1.2 The frequency sweep signal is used in geophysical and nondestructive appli- 
cations. Low frequencies are not reflected by small objects, whereas large objects reflect 
both low and high frequencies 

A stethoscope used by a trained physician to listen to the passive emissions 
generated by the heart and the lungs remains a valuable diagnostic technique 
200 years after its development. Forensic investigators can analyze the sound track 
recorded when a gun was fired, extract time delays and intensities corresponding 
to the various sound reflections and constrain the location of the sniper. Likewise, 
there is information encoded in earthquakes, in changes exhibited by bacterial 
communities, in economic indicators, and in the distribution of air pollution above 
a city. We just need to observe and learn how to decode the message. 

1.2.3 Feedback and Self-calibration 

Organisms are particularly adept at accommodating to changes. Likewise, adap- 
tive systems are engineered to attain optimal vibration control of airplane wings 
or to minimize traffic congestion by means of intelligent traffic signals. 
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Natural or computerized adaptivenearning systems include feedback, and when 
the feedback loop is interrupted, adaptation stops. For example, deaf individuals 
(the adaptive system in this example) can learn to speak only when alternative 
feedback is provided to counteract their inability to hear themselves or others. 
Imagine a visual feedback device that permits trainer and trainee to speak into 
a microphone and displays their signals on the screen of an oscilloscope as a 
variation of sound pressure versus time: this is the time domain representation 
(Chapters 3 and 4). This device may also analyze their signals and show the 
amount of energy in different frequencies: this is the frequency domain repre- 
sentation (Chapters 5 and 6). Figure 1.3 presents simple sounds in the time and 
frequency domains. The trainee's goal is to learn how to emit sounds that match 
the time domain traces, using frequency domain information to identify needed 
emphasis on either high-pitch notes or low-pitch sounds. 

1.2.4 Digital Image Processing 

We seldom pause to assess the extent of our natural abilities to process signals. 
However, when researchers in -cial intelligence began studying vision, they 
were confronted with a highly sophisticated process. Only the fact that we do see 
stopped researchers from concluding that vision as we know it is impossible. 

The advent of digital photography has opened important possibilities for a wide 
range of techniques that were not envisioned a generation ago. A digital image 
is a matrix of numbers. For example, the pixel value pij  at location (i, j) in a 
black-and-white image is a number in a matrix (Figure 1.4). The resolution of 
digital images is selected to optimize application needs and storage considerations. 
Resolution is restricted by the pixel size in the computer screen - the grain size 
in conventional photographic prints is much smaller. 

Captured images are displayed on a screen, processed, analyzed, and stored. 
Image processing includes operations such as smoothing and contrasting, edge 
detection, and recoloring. Image analysis and data extraction can range from 
measuring areas and perimeters of objects to the more advanced task of pattern 
recognition. Digital image analyzers are complementary components to a wide 
range of devices, such as microscopes, tomographers, and video cameras. These 
systems are increasingly being used in engineering and science, from materials 
research to automated quality control in manufacturing processes. 

1.2.5 Signals and Noise 

Noise is an unwanted signal superimposed on the signal of interest. Eventually, 
the signal of interest may become indistinguishable when the signal-to-noise ratio 
is low; yet its presence may still have important consequences on the system 
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Figure 1 3  Simple sounds in the time and frequency domains 
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Image Pixel values Piaj 

Figure 1.4 A gray scale image and the stored matrix of pixel values 

response. For example, it is difficult to recognize the small waves caused by an 
earthquake in Chile as they propagate across the Pacific Ocean; however, they 
can produce devastating tsunamis when they reach Hawaii or Japan. 

The first goal in every data collection exercise must be to reduce the level of 
noise that affects measurements. Sometimes, simple "tricks" in the design of the 
experiment can render major improvements in signal-to-noise ratio. For instance, a 
work bench made of a massive marble slab sitting on rubber pads can be designed 
to low-pass filter the mechanical noise in buildings, whereas grounded aluminum 
foil wrapped around experimental devices and instrumentation is an effective filter 
of electromagnetic noise. Once the signal is stored, a number of postprocessing 
techniques are available to separate signal from noise (Chapters 4-6). 

7.3 INVERSE PROBLEMS - APPLICATION EXAMPLES 

The goal of inverse problem solving is to infer the unknown input or the unknown 
system characteristics (Table 1.1). Instances of deconvolution and system identi- 
fication are described next. Other examples in engineering and science are listed 
in Table 1.3. 

Many research and application tasks require proper assessment of surface topog- 
raphy, including the following: research on crystal growth, scanning probe 
microscopy, study of friction, quality assessment of paints and coatings, light 
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Table 13 Examples of inverse problems 

System identijication 
Constitutive modeling: material properties from experimental data 
Experimental research: transducers' frequency response from calibration data 
Medicine and NDT: tomographic imaging 
Earth science: earth's mantle structure from earthquake data 
Astronomy: origin of the universe from rate of expansion and redshift 
Structural engineering: bridge condition from deformation during load testing 

Deconvolution 
Experimental research: variable true time history from the measured time series 
Geophysics: detection of gravity anomaly from surface measurements 
Forensic engineering: gunman location from sound recordings in newscasts 
Environmental monitoring: source characterization from remote measurements 

scattering control, rock joints and the stability of rock masses. Measured 1D or 
2D surface profiles are analyzed to identify spatial scales or wavelengths that are 
important to the problem under consideration (see Chapters 5 and 7). 

Consider the case of tire-pavement interaction: the short wavelength rough- 
ness is important for friction and hydroplaning, whereas long wavelength com- 
ponents affect riding comfort. Furthermore, surface topography also denounces 
pavement distress; therefore, optimal pavement management benefits from fre- 
quent pavement profilometry that can be effectively implemented by mounting 
an accelerometer on the axis of a wheel riding on the pavement. The measured 
acceleration vs. distance signal is the response of the wheel-accelerometer system 
to the input surface topography. Therefore, the surface topography is obtained 
by deconvolving the characteristic response of the wheel-accelerometer system 
from the measured signal. 

1.3.2 Model Calibration (System identification) 

The analysis of systems always takes place within the framework of assumed 
models. Hence, biomechanicians interpret the stress-strain response of bio- 
logical tissue from the perspective of elasto-visco-plastic constitutive models; 
physicists analyze the electronic polarization of molecules assuming a single 
degree of freedom system; and structural engineers probe the seismic response 
of water tanks using an inverted pendulum model. Each model has associated 
model parameters, such as the mass, damping, and spring constant in vibrating 
systems. 

Model calibration is an inverse problem. It consists of identifying the model 
parameters that minimize the difference between the observed system response 
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and the model response for the same input. A poor match suggests either an 
inappropriate model and/or measurement errors. Once calibrated, models are used 
to represent the system in subsequent analyses. 

1.3.3 Tomographic Imaging (System Identification) 

Great advances in noninvasive imaging technology have revolutionized medical 
diagnosis in the twentieth century. Current imaging systems include computerized 
axial tomography (CAT) scan, positron emission tomography (PET) scan, and 
magnetic resonance imaging (MRI). In these techniques, boundaly measurements 
obtained with transducers placed on the periphery of the body are mathematically 
processed to compute internal local values of material parameters. For example, 
boundary measurements of total X-ray absorption across the chest are "inverted" 
to determine the attenuation at different points within the body, and these local 
values are displayed on a screen using a selected color palette; the resulting 
picture is the tomographic image. By contrast, the classical X-ray plate collapses 
the 3D body onto a 2D image that displays the cumulative absorption in the body 
along each ray path. Similar tomographic techniques are used to explore materials 
from the micron scale to the planet scale! 

1.4 HISTORY - DISCRETE MATHEMATICAL 
REPRESENTATION 

The fields of signal processing and inverse problem solving are relatively young. 
While the needed mathematical tools were available before the twentieth century, 
several decisive developments in the last 100 years stimulated revolutions in 
discrete data processing, in particular (Table 1.4): consumer electronics (1920s), 
digital processing (1940s), computers (1960s), and single-chip digital signal pro- 
cessors (1980s). 

The scope of this book is restricted to the analysis of discrete signals and 
to the solution of inverse problems that are expressed in discrete form. Con- 
sequently, classical definitions in continuous form are restated in discrete form 
(e.g. impulse - Chapter 3), operations that integrate the product of two functions 
become matrix multiplications (e.g. cross-correlation - Chapter 4), and integrals 
are replaced by summations (e.g. Fourier transform - Chapter 5). While the anal- 
ysis of discrete data can be more intuitive than the mathematics of continuous 
functions, peculiar effects arise in discrete data analysis and must be carefully 
understood to avoid misinterpretations. 
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Table 1.4 Brief history of discrete signals and inverse problem solving 

Year 

1300 

Event 

The philosopher and theologian W. Ockham states the rule of parsimony: 
"Plurality should not be assumed without necessity." 

The main themes are thermodynamics, mechanics, hydrodynamics, acoustics, 
and electromagnetics; their solution requires new mathematical tools and con- 
cepts. J. B. J. Fourier (1768-1830) uses the representation of a function as a 
series of sinusoids to solve heat flow problems. J. M. C. Duhamel(1797-1872) 
uses convolution to solve the problem of heat conduction with time-varying 
boundary conditions. V. Volterra (1860-1940) investigates on integral equa- 
tions. Analog recorders are invented at the end of the century 

I. Fredholm introduces the concept of generalized inverse for an integral 
operator (1903). Generalized inverses for differential operators are implied in 
D. Hilbert's discussion of generalized Green's functions (1904) 

E. H. Moore presents the generalized inverse of matrices (1920). The field of 
consumer electronics starts with the sale of radios and electronic phonographs. 
Sound is added to motion pictures 

Car radios and portable radios become common 
N. Wiener develops statistical methods for linear filters and prediction. Cor- 
relation techniques develop to recover weak signals in the presence of noise. 
The Singleton's digital correlator rapidly performs storage, multiplication, and 
integration by a binary digital process (1949) 

The transistor is invented by J. Bardeen, W. Brattain, and W. Shockley (1947- 
48 - Nobel Prize in 1956). Sony brings it to mass production and develops 
pocket-size transistor radio. R. Penrose shows that the Moore's inverse is the 
unique matrix satisfying four matrix equations (1955). Shannon theorizes that 
a message can be encoded and transmitted in "bits" (1956) 
Computers emerge and there is a rapid growth in the new field of digital signal 
processing. Integrated circuits lead to new technology. The development of 
signal processing starts having a strong impact in consumer electronics related 
to voice, music and images. J. Tukey and J. Cooley introduce the fast Fourier 
transform algorithm (1965) 

Microprocessors are developed (1971) and the size of computers decreases to a 
chip. Consumer electronics begin their transition to digital. A. M. Cormack and 
G. Hounsfield receive the Nobel prize in 1979 for computerized tomography 

CD players are introduced in 1982. Record players vanish from the market in 
less than a decade. Texas Instrument brings single-chip digital signal processor 
into mass production. Commercial cellular phone service starts 
Very few analog consumer electronics remain in the market. There is a rapid 
growth in digital memory and storage capabilities 
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7.5 SUMMARY 

Signal characterization, decoding, and interpretation are important components 
of engineering and science tasks. 

There are forward problems (system design and response computation) and 
inverse problems (system identification and input estimation). 

The fields of discrete signal processing and inverse problem solving are rel- 
atively new. Their growth has been intimately associated with revolutions in 
computer technology and digital electronics. 

Today, discrete signal processing and inverse problem-solving techniques 
impact all aspects of daily life, with countless examples in engineering and 
science. 

What about the future? Just, imagine. . . ! 

SOLVED PROBLEMS 

P1.l Ocean tides are caused by changes in the gravitational field due to the rota- 
tion of the Earth and its relative position with respect to the Moon and the 
Sun. A typical data set is presented in Figure 1.1 (For more information and 

k 
28 days 

cl 
Full Moon New Moon Full Moon 

in 1/22 216 
0.9 

0.8 

0.7 - 0.6 E - 0.5 
2 
M 0.4 .- 
2 0.3 
8 0.2 
3 0.1 

0 

-0.1 

-0.2 
lllI2004 1/6/UX)4 1/11/2004 1/16/U)04 1/21/2004 1/26/2004 1/31/2004 2/5/2004 2/10/2004 2/15/2004 

Date 

Figure P1.l Tide levels at the Honolulu Harbor from January 1 to February 15, 2004. 
The sampling interval is one hour 
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data, visit NOAA's Center for Operational Oceanographic Products and 
Services on the Internet.) Determine the main periodicities in the record 
and identify the underlying physical phenomena that cause them. 
Solution: The beat function observed in Figure P1.l is the result of con- 
current events with three different periods. The one-day period is caused 
by the daily rotation of the Earth and the gravitational pull of the Moon 
on ocean waters. The 14-day period is related to the alignment of the Sun 
and the Moon, causing maximum high tides and minimum low tides for 
the New Moon and the opposite for the Full Moon. The 28-day period 
is caused by the completion of the Moon cycle. The different periods are 
shown in Figure PI. 1. 

P1.2 Many have attempted to identify trends in the stock market in order to 
improve trading decisions. Consider extrapolating simple polynomial fit- 
tings to the New York Stock Exchange (NYSE) weekly closing values. Fit 
polynomials order 5 and 10 to data from January 1990 until June 2003 
(Figure 1.2). Then, extrapolate to predict stock market trends until June 
2004. Compare predictions against observed values. Conclude about the 
potential use of this technique to become a successful stockbroker. 
Solution: The polynomial trends are fitted by minimizing the square error 
and are superimposed on Figure P1.2. While polynomials fit past data well, 
the prediction of future trading is poor. Regression methods are analyzed 
in Chapters 8 and 9. 

10 th order 
polynomial 

I 

4 I 
0 100 200 300 400 500 600 700 800 

Number of weeks after January Is', 1990 

Figure P1.2 Evolution of the NYSE weekly closing values (data downloaded from URL: 
http://yahoo.com/finance) 
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ADDITIONAL PROBLEMS 

P1.3 Identify important signals in your field of interest. Briefly describe their 
characteristics. 

PI .4 Identify and describe inverse problems in your field of interest. 

P1.5 Digital image processing. Identify an application of digital image process- 
ing in your area of interest, list the information to be extracted from the 
image, required resolution and image size. Then, visit a video camera shop 
and a computer store to learn about the hardware. Verify system compat- 
ibility. Study specifications to determine the speed of digitization, which 
is critical for some real-time applications. Recognize the trade-off between 
object size and resolution; as a general guideline, the smallest object must be 
at least -3x3 pixels in size. Then, download public domain digital image 
processing sofiare available at multiple sites on the Internet, test their 
capabilities with simulated images, and study the underlying mathematical 
procedures. 

P1.6 Nondestructive testing: acoustic source. A versatile source for wave prop- 
agation studies in the sound range (20Hz to 20lcHz frequency range) can 
be built connecting the sound output from your computer through an audio 
power amplifier into an old speaker cone. Visit your local computer and 
electronic stores and review specifications. Then design the system and 
estimate its cost. 

P1.7 Analog-to-digital conversion: storage. Consider a sensing transducer (pho- 
tosensor, accelerometer, thermocouple, linear variable differential trans- 
ducer, or piezocrystal) that provides an analog output. Design a system that 
digitizes and stores the signal. Search for available components, read cat- 
alogs of electronic suppliers, and carefully review specifications. Describe 
the meaning of each of the following terms: sampling frequency per channel, 
memory per channel, stacking capabilities, internal noise, preamplification 
capabilities, and input impedance. Note: A digital storage oscilloscope is the 
most versatile device to prototype a monitoring system; most units include a 
computer interface to download the discrete time series for postprocessing. 

P1.8 Step response: thermal difision. Make a cylindrical specimen out of gelatin 
(length-to-diameter ratio -2). Insert one thermometer at the center of the 
cylinder and place a second thermometer adjacent to the cylinder. Place the 
setup inside a refrigerator and keep overnight to homogenize the specimen 
at a low temperature. The following morning, remove the setup and expose 
to room temperature. Take temperature readings every five minutes until 
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the temperature in both thermometers equals the room temperature. Use the 
signals gathered with the two thermometers to determine the "thermal 
properties" of gelatin given the imposed step-like thermal change. 

P1.9 Music. Design a musical instrument to produce a 2kHz frequency sound 
(e.g. wind, percussion, string). Understand the underlying physical pro- 
cesses and develop an analytical model to predict the resonant frequency 
of the instrument. Use the audio capabilities in your computer to digitize 
the signal and corroborate the frequency content. What is the shape of the 
signal? How can you alter the frequency? Whistle to match the frequency 
of sound emitted by the instrument; verify the frequency match using the 
same monitoring system. 
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Mathematical 
Concepts 

The discrete mathematical representation of signals and transformations lends 
itself to transparent storage and processing in the form of matrices and arrays. 
Additional mathematical tools required for the efficient analysis of discrete signals 
and inverse problems include complex numbers and exponentials. A convenient 
review of definitions and salient properties invoked in subsequent chapters is 
presented next. 

2.1 COMPLEX NUMBERS AND EXPONENTIAL 
FUNCTIONS 

Sinusoidal signals are among the most frequently used functions in signal pro- 
cessing, system analysis, and transformations. Although the manipulation of 
sinusoidals is often cumbersome, operations can be efficiently implemented with 
complex numbers and exponential functions. 

2.1.1 Complex Numbers 

The amplitude of the response is not sufficient to characterize a system. For 
example, if you shake a car with a sinusoidal varying force x(t) = cos(o . t), 
the car vibration y(t) will be a sinusoidal, with the same frequency o ,  and some 
amplitude "A". But the peaks of the input and the output time histories will not 
occur at the same time. In other words, there will be a phase angle cp and the 
response will be y(t) = A .  cos(w . t - cp). 

- -- 

Discrete Signals and Inverse Problems 1. C. Santamarina and D. Fratta 
0 2005 John Wiley & Sons, Ltd 
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The shifted sinusoid y(t) is equivalent to the sum of a cosine (in-phase) and 
a sine (90" out-of-phase). The amplitude of each of these two components is 
determined using trigonometric identities: 

= [A. cos(cp)] . cos(w. t) + [A . sin(cp)] - sin(w. t) - - 
a b 

(2.1) 

Therefore, the amplitudes of the cosine and sine components are (Figure 2.1) 

Complex numbers facilitate the mathematical representation and solution of 
this type of problem. In complex number notation, the signal y(t) is represented 
as a construct that captures the two values, a and b: 

Y = a + j . b corresponds to frequency w (2.4) 

Imaginary 
(out of phase) 

- 
Equations: Y = a + j . b Y=a-j.b 

I Y I =  Jal+b' j=m-'(9 

Figure 2.1 Complex numbers. The graphical representation of a complex number is a 
vector in a complex plane with a real in-phase component and an imaginary out-of-phase 
component. A complex number and its conjugate have the same magnitude but opposite 
phase 
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where the imaginary unit is j2 = -1. The numbers a and b are known as the real 
and imaginary parts of the complex number (yet, both are very real numbers!). 
The amplitude A and the phase cp of the original sinusoid y(t) are recovered as 

This graphical representation of a complex number is shown in Figure 2.1, where 
both rectangular (a + jb) and polar coordinates (A, 9) are indicated. 

The complex conjugate Y of the complex number Y is defined as follows: 

Figure 2.1 also shows the representation of a complex conjugate in the complex 
plane. The amplitude of the complex conjugate is the same as the amplitude of 
the original complex number, but the phase angle cp has opposite sign. 

Mathematical operations with complex numbers are implemented by treating 
them as binomials: 

addition (a+j.b)+(c+j.d)=(a+c)+j.(b+d) (2.8) 

multiplication (a+j.b).(c+j.d)=(a.c-b.d)+j.(a.d+b-c) (2.9) 

The trick required to compute the division of two complex numbers is to leave a 
real quantity in the denominator. This is achieved by multiplying the numerator 
and the denominator by the complex conjugate of the denominator: 

( a+ j . b )  - ( a+ j .b ) - ( c - j . d )  ( a . c+b .d )+ j - ( - a .d+b .c )  
division - - 

(c+j .d)  - (c+j .d) . (c - j .d )  c2 + d2 

(2.10) 
Operations with complex numbers satisfy the commutative, associative, and dis- 
tributive rules. 

2.1.2 Exponential Functions 

The exponential function is defined by 



20 MATHEMATICAL CONCEPTS 

where "a" is a constant. A special exponential function is the Napierian expo- 
nential where a = e = 2.718.. . . The exponent x may be complex. Common 
operations with exponential functions include 

multiplication ex - eY = ex+Y (2.12) 

ex 

division - - -  ex-^ (2.13) 
e Y 

power (ex)Y = ex.Y (2.14) 

d (eU) du 
derivative - -e" 

dx dx 

integral /($)e"-du=e"+cte 

The importance of exponential functions is partially alluded to in these expres- 
sions. First, they convert multiplication into addition (Equations 2.12 and 2.13). 
Second, the derivative of an exponential function is the function itself times a fac- 
tor (Equation 2.15); therefore, exponential functions are solutions of differential 
equations of the form dy/dx = y, such as the motion of harmonic oscillators. 

In addition, complex exponentials are linked to trigonometric functions, as 
captured in Euler's identities, 

ej'? = cos (cp) + j . sin (cp) 

e-"? = cos (cp) - j . sin (9) 

Thus, the following equalities hold (Equations 2.1-2.6): 

Y = a + j - b  

= lY 1 . [COS (cp) + j sin (cp)] (2.19) 

= IYI . eJ'? 

where a = IYI. cos(cp) and b = IYI cos(cp). From Euler's identity, and for any 
integer k, 

and trigonometric periodicity in exponential form becomes 
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Given: the complex number X and operator H, 

X = a + j . b = 1x1 . [cos(a) + j . sin(a)] = 1x1 . d." klbk hdk H = c + j . d = IHI. [cos(P) + j . sin@)] = IHI .eiP 
Compute: Y = X . H 
1)  Procedure with complex numbers: a c 

Y =X.H=(a+j.b).(c+j.d)=(a.c-b.d)+j.(a.d+b.c) 

J X . H I = J ~ ~ . C Z + V . ~ ~ + ~ ~ . ~ Z + ~ ~ . C ~  magnitude 

phase 

2)  Procedure i i  polar not&ion with magnitude and phase: 
X . H = 1x1 - [cos(a) + j . sin(a)] . \HI . [cos(p) + j - sin(P)] 
X . H = 1x1 . IHI . [cos(a) + j . sin(a)]. [cos(p) + j + sin@)] 
X. H = 1x1 . IH) . [cos(a + P)] + j - sin(a + P)] 

3) Procedure with exponential functions: 
X . H = 1x1 . IHI . &("+P) 

Figure 2.2 Multiplication of two complex quantities 

2.1.3 Example 

The addition and multiplication of two quantities, each with its own magnitude 
and phase, are common operations in signal processing and system analysis. 
The rectangular representation is more convenient for addition (Equation 2.8) 
whereas the exponential notation facilitates multiplication (Equation 2.12). The 
multiplication of two complex quantities is demonstrated in Figure 2.2 using 
complex, polar, and exponential forms. Note the efficient implementation using 
exponentials. 

2.2 MATRIX ALGEBRA 

A matrix is an arrangement of numbers in columns and rows. A review of 
fundamental matrix operations follows. 

2.2.1 Definitions and Fundamental OperartSons 

The following notation is used to designate the matrix a by its elements: - 
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where the index i refers to the row number and varies from 1 to M, and k indicates 
column number and varies from 1 to N, where M and N are integers. Sometimes 
it is more convenient to vary i from 0 to M - 1, and k from 0 to N - 1. For 
example, this is the case when the first entry refers to zero time or zero frequency. 
A matrix g is - 

square if M = N 

real when all its elements are real numbers 

complex if one or more of its elements are complex numbers 

nonnegative if all a,,k 3 0 

positive if all a,,, > 0 

Negative and nonpositive matrices are similarly defined. 
The trace of a square matrix is the sum of the elements in the main diagonal, 

a,,i. The identity matrix 1 is a square matrix where all its elements are zeros, 
except for the elements in the main diagonal, which are ones: I,*, = 1.0 if i = k, 
else I,,, = 0. Typical operations with matrices include the following: 

addition : c = a + b  - - -  Ci,k = %,k + bi.k (2.23) 

subtraction : d = a - b  4 . k  = 3 , k  - bi,k (2.24) - - -  
scalar multiplication : g=cx.g - - ei,k = ' %,k 

(2.25) 

matrix multiplication : f = g . b  - - -  fi,k = C $,p . bp,k 
(2.26) 

P 

Note that matrix multiplication is a summation of binary products; this type of 
expression is frequently encountered in signal processing (Chapter 4). 

The transpose gT of the matrix g is obtained by switching columns and rows: - - 

in g is equal to a,,, in aT 
- (2.27) 

A square matrix a is symmetric if it is identical to its transpose (aT = a or 
a,,, = akVi). The m a c e s  bT - .d - and @.aT) - - are square and symmetric for-any 
matrix a. 

The Hermitian adjoint gH of a matrix is the transpose of the complex conjugates 
of the individual elements. For example, if an element in g is a,,, = b + j . c, the 
corresponding element in the Hermitian adjoint is akSi = b - j  - c. A square matrix 
is Hermitian if it is identical to its Hermitian adjoint; the real symmetric matrix 
is a special case. 



MATRIX ALGEBRA 23 

The matrix g-I is the inverse of the square matrix g if and only if - - 

A matrix is said to be orthogonal if gT E a-'; then - - 

Finally, a matrix is called unitary if the Hermitian adjoint is equal to the inverse, 
aH = - - 

The determinant of the square matrix a denoted as 131 is the number whose - 
computation can be defined in recursive fGrm as 

where the minor is the submatrix obtained by suppressing row i and column k. The - 
determinant of a single element is the value of the element itself. If the determinant 
of the matrix is zero, the matrix is singular and noninvertible. Conversely, if 
la1 # 0 the matrix is invertible. - 

The following relations hold: 
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A row in a matrix is linearly independent if it cannot be computed as a linear 
combination of the other rows. The same applies to the columns in the matrix. 
The rank of a matrix r[aJ is the number of linearly independent rows or columns 
in g. If r b ]  = S, then there is a square submatrix size S x S whose determinant is - - 
nonzero. 

2.2.2 Matrices as Transformations 

So far, matrices have been described as isolated rectangular arrays of real or 
complex numbers. Consider now the matrix a as an operator that transforms an - 
"input" vector II into an "output" vector y 

Computationally, the transformation y = g.x is a linear combination of the - 
columns of g according to the entries in E. 

If matrix NxN is noninvertible, there will be vectors 5 that are normal to 
the columns-of g and map to y = a .  x = Q; those vectors are the subspace of 5 
called the null space (Figure 2.3).0n the other hand, not all the space of y is 
reachable from x; the range of is the subset of the space of y reachable by 
the transformation (Equation 2.3q. The fact that g is noninvertible indicates that 
some of the columns in g are linearly dependent, and they will not contribute 
to the dimensionality of-the range. Hence, the dimension of the range is the 
rank r w :  - 

It follows from these definitions that the sum of the dimensions of the null 
space and the range is N: 

dim(nul1 space) + dim(range) = N (2.40) 

If g is invertible, y = a . 5  = Q only if 5 = Q, and the dimension of the null 
space is zero. For asimple visualization of these concepts, consider the transfor- 
mation matrix = [(I,  0, O ) ,  (0, 1, O), (0,0, O)], with rank r M  = 2. All vectors 
x = (0,O, x,) map to y = a .  4 = (0,0,0); therefore, they are the null space of 
the transformation. 0; theother hand, only vectors y - = (y,, y,, 0) are reachable 
by the transformation; this is the range. 
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Space of all vectors& Space of all vecrors 2 

transformation 

Figure 2.3 Definition of null space and range of a transformation 3 [N x N]. The dimen- 
sion of the range is equal to the rank of a. The dimension of the range plus the dimension - 
of the null space is equal to N 

The transformation matrix q is positive definite if - 

for all nonzero vectors x. If xT . x 2 0 then g is positive semidefinite. Typically, 
the matrix 2 is positive definitewhen the elements along the main diagonal of 3 - 
are positiveand when they are also the largest elements in the matrix. 

2.2.3 Eigenvalues and Eigenvectors 

If a is a square matrix, and y is obtained either as matrix multiplication a 3 or - 
as scalar multiplication Ax, 
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then x is an eigenvector of a and A is its corresponding eigenvalue. The eigen- 
values of a are obtained by solving the polynomial - 

where I is the identity matrix. For each eigenvalue A,, the corresponding eigen- 
vector &, is computed by replacing A, in Equation 2.42, 

where Q is an array of zeros. The eigenvectors corresponding to distinct eigen- 
values of a Hermitian or symmetric matrix are orthogonal vectors; that is, the dot 
product is equal to zero. The eigenvalues of a Hermitian or symmetric matrix 
are real. The eigenvalues of a symmetric, positive-definite matrix are real and 
positive A, > 0, and the matrix is invertible. Last, for any given matrix g [M x N], 
the eigenvalues of (aT.&) and (ggT) are nonnegative and their nonzero values - - -- 
are equal. 

2.2.4 Matrix Decomposition 

The solution of systems of equations, including matrix inversion, can be more 
effectively implemented by decomposing the matrix into factors. 

Eigen Decomposition 

A invertible square matrix g with distinct eigenvalues can be expressed as the 
multiplication of three matrices 

where the columns of X are the eigenvectors of g, and 4 is a diagonal matrix 
that contains the eigenyalues of a. The order of-the eigenvectors in matrix X 
must be the same as the order ofthe eigenvalues in matrix 11. The inverse of; - - 
is (Equation 2.3 1) 
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The elements in the diagonal matrix are the inverse of the eigenvalues l lAi .  - 
If g is symmetric, then &-' = sT. - - - 

Singular Value Decomposition (SVD) 

Any real matrix a [MxN] with M >_ N, and rank r 5 N, can be expressed as - 

where 

U [M x MI Orthogonal matrix - - 
Its columns are eigenvectors of g gT (in order as in A) - 
Vectors u, . . . u, span the range of - 

A [M x N] Diagonal matrix A,,, = 0 for i # k - - 
Values = hi are the singular values in descending order 
Ai are the nonnegative square root of eigenvalues of a .  aT - - 
o r g T - g  
sin-@% values A, > . . . A, > 0 and singular values 

... =hN=O 

V [N x N] Orthogonal matrix - - 
Its columns are eigenvectors of gT - g (in same order as A in AJ - 
The null space of 3 is spanned by vectors v,,, . . . v, - 

For a real, the resulting three matrices are also real. The SVD is generalized to 
complex matrices using the Hermitian instead of the transpose. The method is 
equally applicable when the size of the matrix is M < N, with proper changes in 
indexes. 

Other Decompositions 

Two efficient algorithms are used to solve systems of equations that involve 
square matrices g [N x N]. The LU decomposition converts g into the multiplica- 
tion of a lower t&mgular matrix L (Lij = 0 if i < j) and an upper triangular matrix 
U - - (UiJ = 0 if i > j), such that g =I, - u. Furthermore, if the matrix is symmetric - - 
and positive defmite, the cho6sky decomposition results in g = fl. IJ, where U - - -  - 
is upper triangular. 
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2.3 DERIVATIVES - CONSTRAINED OPTIM/ZATION 

A linear function of multiple variables f = a, . x, +a, . x, + . . . can be expressed 
in matrix form as 

(Note that for a family of functions f,...f,, the array g becomes matrix g.) - 
Likewise, the partial derivatives aflax, are organized into an array 

The following set of equations facilitates the derivation of explicit solutions in 
optimization problems that are captured in matrix form (Chapter 9): 

T f = g  - &  
a f 
- = a (as shown above) - (2.50) ax 

In each case, the function is written in explicit form, partial derivatives are 
computed, and the result is once again expressed in matrix form. 

Given M-measurements yi that depend on N-parameters x,, the partial deriva- 
tive ayi/axk indicates the sensitivity of the i-th measurement to the k-th parameter. 
The Jacobian matrix is the arrangement of the M x N partial derivatives in matrix 
form. The Jacobian matrix is useful to identify extrema and to guide optimization 
algorithms. 

The extremum of a function is tested for minimum or maximum with the 
Hessian matrix & formed with the second derivatives of f(d: - 
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The function has a minimum if & is positive definite. 
The extremum of a func t ionf  N-variables f (x, , . . . , x,) = 0 subject to 

V-constraints + (x,, . . . , x,) = 0 can be obtained using Lagrange multipliers A. 
First, a new objective function r is formed, 

that involves N + V unknowns (x,, . . . , x,, A,, . . . A,). These unknowns are 
found by solving the following system of N + V simultaneous equations: 

2.4 SUMMARY 

The analysis of signals and systems makes extensive use of sinusoidal functions. 
The mathematical manipulation of sinusoids is effectively implemented with 
complex numbers and exponential functions. 

The representation of discrete signals and transformations involves arrays and 
matrices. The inversion of a transformation implies matrix inversion. A symmet- 
ric, positive-definite matrix is invertible. 
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SOLVED PROBLEMS 

P2.1 Given two complex numbers: A = 3 - 4j and B = 3 + 3j, compute: 

(a) Magnitude and phase of A: 

(b) Magnitude and phase of C = A + B: 

Im (C) cp=atan [Re - (c)] = a tan [:I = -0.165 rad = -9.46" 

(d) D = A . B and E = A/B using the exponentials: 

A=3-4j=)3-4j le  - - 5C-o.9z8j 

~j.atm(?) 
B=3+3j=13+3jle =4.2k0.7g5j 

D = A . B = (5e-0.928J) . (4.2k0.785~) = 21 .2e-0.142j 

A 5e-0.928j E=-=-- 1.18e-l.713j 
B 424e0.785j - 
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P2.2 Given the square matrix a, calculate b = a. gT, the determinant of a, the - 
inverse matrix a-' , a .  a-' >d the dec&&t of a-' . - - -  - 

Inverse: the matrix g is reduced by rows and the same operation is performed 
on the identity matfix I: - 

P2.3 Given matrix b, - show that l/lbl is equal to Ib-'l (Equation 2.37). - - 
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1 1  - Indeed, - - - = lb-'l 
-2 

P2.4 Determine the eigenvalues and eigenvectors of matrix 

Evaluation of eigenvalues A: 

-(-3)*J(-3)'-4.1.(-1) 3kJTj 
Solving for the roots : A = - - 

2 . 1  2 

A,  = 3.303 and A, = -0.303 

Eigenvectors associated with eigenvalue A, :  

Assuming that x,, , = 1 the eigenvector is 
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Eigenvectors associated with eigenvalue A,: 

Assuming that x,,, = 1 the eigenvector is 

ADDITIONAL PROBLEMS 

P2.5 Write the following matrix operations in the subindex format: 

c=aT.b_ - - -  

d=k. - g . b  +c C -) - 

P2.6 Demonstrate: 

(a) Operations with complex numbers satisfy commutative, associative, 
and distributive rules. 

(b) Equality (g. k)-l = b-' - . a1 - 
T 

(c) Equality (a - - b) - = bT - . gT 

a f 
(d) If'f=xT.x then - = 2 - 3  

ax 
a f 

(e) 1 f f = z T . g . x  - then -=2.g.xforgsymrnetric ax - - 
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P2.7 Compute: 

(a) Given complex numbers X =l + 3j and H = 2 - 7j, compute Y = H . X 
using complex numbers, polar notation and exponential notation. Verify 
that the three results are identical. 

(b) The determinant, eigenvectors, and eigenvalues of matrices A and B: 

(c) The determinant of A . B given 

(d) Thevalueof&= [ ( g ~ . a + A . R ' . . E ) - ' ] - a ' . . y  - - - - - - given 

Note: This operation is similar to the regularized least square solution 
(RLSS) of inverse problems (Chapter 9). 

P2.8 What is the determinant of a triangular matrix (lower or upper triangular)? 
What are its eigenvalues? Try 2 x 2, 3 x 3, and 4 x4 matrices. Conclude. 

P2.9 Singular value decomposition and image compression. Generate a 128 x 128 
pixel image showing a block amplitude 1.0 at the center of the image 
amplitude 0.0. This is done by creating a 128x 128 matrix a, assigning 
values a,,, = 0 for the background and a,,, = 1.0 wherever &e block is. 
Determine the singular value decomposition of the image and regenerate 
the image using the largest 8, 16, 32, 64, and 128 singular values. Repeat 
the exercise adding random noise to the image a. Draw conclusions. - 



Signals and Systems 

Signal processing and inverse problem solving are common tasks in engineer- 
ing and science applications (Chapter 1). This chapter focuses on the essential 
characteristics of signals and systems, highlights important implications of analog- 
to-digital conversion, describes elemental signals that are used to analyze all 
other signals, and redefines the superposition principle in the context of linear 
time-invariant systems. 

3.1 SIGNALS: TYPES AND CHARACTERISTICS 

A signal is information encoded as the variation of a parameter with respect to 
one or more independent variables (Section 1.1). Time or spatial coordinates are 
the most frequently used independent variables. Consider, for example, the spatial 
variation of annual precipitation in a region, or the daily fluctuations of the Dow 
Jones index in one year. 

The independent variable that represents either the temporal or spatial coordi- 
nate is herein called "time" and denoted by the letter t. Furthermore, the period 
of any event is denoted by the letter T, in spite of the fact that the event may take 
place in space with "spatial period" or wavelength A. In the same spirit, the Greek 
letter o is generically used to refer to angular frequency (o = 2.rr/T) in either 
time or space domains, even though the spatial frequency is the wavenumber 
K = 2n/h. 

3.7.1 Continuous and Discrete Signals 

A continuous signal is the ceaseless and uninterrupted observation of a param- 
eter in time or space. A discrete signal, on the other hand, is the intermittent 

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta 
O 2005 John Wiley & Sons. Ltd 
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observation of the parameter, that is, a sequence of values separated in time (or 
space). A mercury thermometer senses temperature continuously, yet the record- 
ing of temperature every five minutes produces a discrete signal that corresponds 
to the continuous variation of temperature in time. Likewise, the evaluation of 
brightness at different locations on a wall results in a matrix of values, leading to 
a digital image that corresponds to the uue continuous image. Figure 3.1 shows 
a continuous signal and its discrete counterpart. 

A continuous sinusoid exists for all values of the continuous independent 
variable t 

x(t) = sin(w. t + 9 )  continous signal (3.1) 

Conversely, discrete signals are defined at discrete values ti. The sampling interval 
At is the separation between two contiguous discrete times. Then, the i-th time is 

ti = i - A t  discrete time (3.2) 

Each entry xi is a discrete value of the parameter x being monitored. The index i 
indicates the order or location of xi in the array of values. For example, the 
discrete signal obtained by sampling the continuous signal defined in Equation 3.1 
becomes 

xi =s in (o . i .A t+q)  discrete signal (3.3) 

where the subindex denotes the sequence of discrete data points in the array. 
Consider the case of water flowing through an irrigation channel. The flow rate 
is sampled every 18 hours, that is At = 18 h. The recorded discrete signal is: 

(a) Continwus (6) Discrete 

Figure 3.1 (a) A continuous signal; (b) a digital version of the signal obtained with a 
sampling interval At 

js245
Highlight
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Because the sampling interval is 18 h, daily peaks and valleys in demand may 
go undetected. And if detected by coincidence, they will bias the interpretation 
of measurements. 

Digital technology facilitates capturing, storing, and postprocessing signals in 
discrete form. Digital storage oscilloscopes store signals as arrays of individual 
voltage values that are equally spaced by a constant sampling interval At. Optical 
disks use a laser to "burn" digital information onto a flat substrate; the disk 
geometry permits fast access without having to wind long tapes. 

3.1.2 One-dimensional ( ID)  and Multidimensional Signals 

The dimension of a signal is the number of independent variables used to define 
it. When a stone falls on a quiet pond, the ripples define a three-dimensional 
(3D) signal where the surface displacement varies in the two dimensions of space 
and in time. Figure 3.2a shows the instantaneous position of the surface at a given 
time. This is a two-dimensional (2D) signal where displacement varies in space; 
it is stored as a 2D array or matrix. A slice of this instantaneous signal along the 
radial line A-A is the 1D signal shown in Figure 3.2b. In general, the time series 
produced by a single transducer is a 1D signal, e.g. accelerometers, strain gages, 
or photosensors. 

3.1.3 Even and Odd Signals 

The symmetry of signals with respect to the origin of the independent variable 
determines whether the signal is even or odd. An even signal satisfies 
(Figure 3.3a) 

xi = even signal (3.4) 

whereas in an odd signal (Figure 3.3b) 

xi = -x-~ odd signal (3-5) 
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Distance [m] 

Figure 3.2 Ripples in a pond - 2D and 1D signals: (a) instantaneous surface displace- 
ment; (b) water surface displacement along the plane A-A 

Figure 3.3 Signal symmetry: (a) even signal; (b) odd signal 

3.1.4 Periodic and Aperiodic Signals 
(and Transformations) 

A periodic signal is a repetitive sequence of values with a well-defined timescale 
or period T = p . At, so that 
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This general definition of periodicity applies as well to periodicity in space, in 
which the characteristic scale would be the wavelength A. However, as indi- 
cated earlier, "time" is the generic term used to name the independent variable. 
A periodic signal is shown in Figure 3.4a. An aperiodic signal is a one-of-a-kind 
variation of a parameter that does not repeat itself at least within the duration of 
the observation D (see Figure 3.4b). 

It is often convenient to consider an aperiodic signal as a periodic signal 
that repeats itself with periodicity D. In other words, even though there are 
no observations outside the interval 0 to D, it is assumed that the same signal 
repeats before t = 0 and after t = D, with a periodicity T = D (see Figure 3.4~). 

I-- 
I\ /\ 

I \  r, I \  r, 
\ I ,, f\ ,h P A r p  - I \  I , ; ( \  I ?  F 

- 3 L  \ L2'$ hb-' - 
V 2 m w  Too I I & ~'5m" So 

\ 1 \I 

Figure 3.4 Signal periodicity - transformation: (a) periodic signal; (b) aperiodic signal; 
(c) periodicity assumption in common transformations 
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The presumption of periodicity for aperiodic signals is tacitly made in many 
analyses (Chapter 5).  Its implications are important and often misleading. 

All signals can be decomposed into a sum of aperiodic or periodic components, 
or into a sum of even and odd components (Chapters 4 and 5). 

3.1.5 Stationary and Ergodic Signals 

A physical event can be captured in multiple time segments that form an ensemble 
of signals (Figure 3.5). Statistical parameters such as mean and variance can be 
computed for each record. In addition, ensemble statistics can be determined for 
the set of values formed by the k-th element in each signal. Signals are stationary 
if the ensemble statistics at two different times are the same (for example at 
times t, and t2 in Figure 3.5). The signal is ergodic if ensemble statistics are the 
same as the statistics for any record. Ergodic signals are stationary, but stationary 
signals need not be ergodic. 

Sampling a signal at discrete time intervals may cause profound effects that 
must be either avoided or accounted for. These implications are discussed in this 
section using numerical examples. 

Consider the periodic signal shown in Figure 3.6a. Figure 3.6b shows the 
signal digitized with a sampling interval T,/At = 25 (integer). Figure 3 . 6 ~  shows 
the same signal digitized with T,/At = 8.33 (noninteger). In the latter case, the 
original periodicity of the signal is lost, because there is no value of p for which 
x. I = x. I+P for all i (Equation 3.6). 

Time shift 6t and phase shift 8q  are related when a periodic continuous signal 
of period T is considered: 

6t - - - 6t " then 6rp=2n- 
T - 2n  T 

However, a time shift in the sampled signal results in another signal, still periodic, 
but with different entries in the array (see Figure 3.7 and notice the numerical 
values in the arrays). In discrete signals, the correspondence 6t o 6q is only 
satisfied when 6t = k . At, where k is an integer and At is the sampling interval. 

The most often discussed consequence of digitization is frequency aliasing by 
undersampling. (The semantic meaning refers to "alias" or pseudo.) The continuous 
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Ensemble of signals 
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I 
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I . . . 

Statistics of the 
ensemble of 

Figure 3.5 Ensemble of signals or "segments". A signal is stationary if the ensemble 
statistics at times t, and t, are equal. A signal is ergodic if the ensemble statistics at a 
given time are the same as the statistics of any segment 
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(a) 

4 C 

period To 

new period To 

Figure 3.6 Implications of digitization - effect of periodicity: (a) continuous signal; 
(b) signal digitized with sampling interval To/At = integer; (c) signal digitized with Sam- 
pling interval To/At # integer. Notice the position of points 

sinusoid of period To shown in Figure 3.8a is digitized in Figures 3.8b-d with 
different sampling intervals. When the sampling interval is greater or equal to half 
the period, At 2 q / 2  (Figure 3.8d), the signal is undersampled and its periodicity 
appears "aliased" into a signal of lower frequency content. 

Consider the following mental experiment. A white disk with a black radial 
line is turned clockwise at 600 rpm. A stroboscopic light is aimed at the disk and 
used to "sample" the position of the line: 

If the frequency of the light is 600 times per minute (it flashes at 10 Hz), the 
line appears still. For this reason, fluorescent lights must not be used when 
operating turning machinery. 

If it flashes slightly faster than 10 Hz, the next flash will illuminate the line 
slightly before the still position. Therefore, the disk will appear as if it were 
spinning counterclockwise, with some "negative frequency"; this accounts for 
what looks like wheels turning backwards in movies. 
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Figure 3.7 Implications of digitization - time shift. A time shift St = TI12 (owing to 
Sq = ~ / 6 )  in a discrete periodic signal sampled with At = T/8 leads to another discrete 
periodic signal. The periods of both signals are the same, but the elements in the arrays 
are different 

If the frequency is 20 Hz, the line will be seen twice in each cycle, on opposite 
sides, and both lines will appear still. 

It can be shown that the frequency of the continuous periodic signal is properly 
identified from the discrete signal if the sampling frequency f,,, exceeds the 
Nyquist frequency fny 

In practice, a minimum of -10 points per cycle is recommended. The high- 
est expected frequency should be considered when selecting the sampling rate. 
Analog antialiasing filters must be placed in series before digitization to remove 
frequency components higher than lI(2.At). Engineered devices such as oscillo- 
scopes and signal analyzers typically include antialiasing filters built-in; however, 
this may not be the case with simple An> boards. 
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Figure 3.8 Sampling interval and aliasing - numerical example: (a) continuous signal; 
(b) sampling interval At = T0/25; (c) sampling interval At = To/lO; (d) sampling interval 
At = T0/1.25. The original periodicity To is lost as the sampling interval exceeds the 
Nyquist criterion and the signal is aliased into a lower frequency sinusoid 



ELEMENTAL SIGNALS AND OTHER IMPORTANT SIGNALS 45 

It is not necessary to associate the concept of Nyquist frequency with periodic 
signals. In more general terms, the sampling theorem states that the sampling 
interval must be significantly smaller than the scale of interest. Consider the 
determination of the stress-strain curve for a steel specimen. If the sampling 
interval in strain A s  is too large, the initial yielding of the material is under- 
sampled, information is lost, and the wrong conclusion about the behavior of the 
material could be drawn. Fractal systems - such as surface roughness - lack a 
characteristic scale and the digital signal will continue gathering new information 
as the sampling interval decreases. 

The undersampled signal in Figure 3.8d is not random: it reflects the informa- 
tion in the continuous sinusoid in Figure 3.8a, but folded onto a new predictable 
frequency that is determined by the frequency of the sinusoid and the sampling 
frequency. This observation suggests that undersampling is an effective approach 
to capture, process, and store signals as long as the continuous signal does not 
contain information in the folded frequency. Hence, narrow bandwidth signals 
can be undersampled; for example, a 100 MHz center frequency communications 
signal may have a 5 MHz bandwidth (see problems at the end of this Chapter). 

3.3 ELEMENTAL SIGNALS AND OTHER 
IMPORTANT SIGNALS 

Several "elemental" signals play an essential role in the analysis of signals and 
systems in engineering and science applications. Their importance results from 
their simplicity, information content, or physical interaction with the systems 
under study. The definition of these elemental signals in discrete time follows. 

3.3.1 Impulse 

The impulse signal is defined at the origin of time i = 0 and it is the sudden 
change in the value of the signal from xi = 0 everywhere else to x, = 1 at i = 0: 

The graphical representation of an impulse in discrete form is shown in 
Figure 3.9a. The impulse can be shifted to any other location. However, in order 
to fulfill the mathematical expression that defines it, the shifted impulse must be 
denoted by the amount of shift. For example, an impulse at location i = 10 is 
defined as si-,,. When i = 10, the subindex becomes 10 - 10 = 0 and 6,  = 1 in 
agreement with the definition in Equation 3.9. 
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Figure 3.9 Elemental signals: (a) impulse; (b) step; (c) sinusoid; (d and e) exponential; 
(f') wavelet 

3.3.2 Sfep 

A step signal ui is the sudden change in value of the signal from a constant value 
of 0 to a constant value of 1. It is defined at time zero; therefore, 

The step signal in discrete time is shown in Figure 3.9b. Note that the step can 
also be obtained by accumulating the impulse signal from left to right: 
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Conversely, the impulse is obtained by differentiating the step in time, = 

ui - u ~ - ~ .  The step signal can also be shifted in time, following the same guidelines 
described above for the shifting of the impulse signal. 

3.3.3 Sinusoid 

A sinusoidal signal is defined by the trigonometric functions sine and cosine, 
as indicated in Equation 3.3, xi = A . sin (w ti + Q). For a signal with period 
T = N . At, the frequency is 

1 1 2.rr 
f = - = -  and o=2.r r . f=-  

T N-At N. At 
Then the argument of the sinusoid when samples are determined at discrete times 
ti = i . At becomes 

Finally, the expression of a sinusoid in discrete time is 

where Q is the phase angle. Whereas the step and impulse signals are nonperiodic, 
sinusoids are inherently periodic signals. A discrete time sinusoid is shown in 
Figure 3.9~. This could be the response of an undamped harmonic oscillator. 

3.3.4 Exponential 

The exponential function is one of the most important functions in mathematics 
and science. It is described as: 

X, = A . eb.i.At 
I (3.15) 

There are several important cases of exponential functions: 

If the parameter b is a real number, the resulting signal either increases b > 0, 
or decreases b < 0 with the independent variable (growth and decay processes). 

If the parameter b is imaginary, b = j o = j .2.rr/(N At), the exponential 
signal represents a sinusoid (from Euler's identities - Chapter 2): 

" [ ( )  ( Z i ) ]  (3.16) X , = A . ~ N ' = A .  cos -i +j-sin 

where "i" identifies the index or counter of the discrete signal, and "j" denotes 
the imaginary component of a complex number (j2 = - 1). 
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And, if the parameter b is complex, b = a + j . w, the resulting signal is a 
sinusoid with either increasing or decreasing amplitude, depending on the sign 
of the real component a: 

For example, Equation 3.17 is used to represent the response of a damped single 
degree of freedom oscillator. In the most general case A is also complex and 
permits changing the phase of sinusoids. Exponential signals are sketched in 
Figures 3.9d and e. 

3.3.5 Wavelets 

Wavelets are signals with relatively short duration. The "sinc" signal is defined as 

sin ( z i )  
x. = 

2Tr 

where the frequency content is determined by the parameter M. Another example 
is the Morlet wavelet defined as 

where the central frequency is w = v/At, the width of the wavelet is M.At, and 
v c IT. This wavelet is sketched in Figure 3.9f. 

3.3.6 Random Noise 

Random noise or white noise is not an "elemental signal" in the sense that it is 
not used to analyze or decompose other signals. Yet, it is a convenient signal in 
testing and simulation. Random noise is characterized by a sequence of values 
that are uncorrelated in any scale of the independent time variable: 

where a is the amplitude of the noise. There are different types of random noise. 
The amplitude distribution can be uniform or Gaussian, typically with zero mean. 
The energy distribution in frequency determines the "color" of noise: white noise 
carries equal energy in all frequency bins, while pink noise has equal energy in 
bins defined in "log-frequency". Pink noise is preferred for perception-related 
studies. 
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3.4 SIGNAL ANALYSlS WITH ELEMENTAL SIGNALS 

Complex signals may be decomposed or "anulyzed" into elemental signals. 
Conversely, the signal is synthesized by summing across an ensemble of scaled 
elemental signals. 

3.4.1 Signal Analysis with Impulses 

The most evident decomposition of a discrete signal is in terms of "scaled and 
shifted" impulses. For example, the step function ui defined in Equation 3.10 is 
obtained as (see Figure 3.10) 

where the i-th value of the step ui at discrete time ti is obtained as a sum across the 
ensemble of shifted impulses 8i-k, as sketched in Figure 3.10; this is a summation 
in "k". Note that there is a subtle yet important difference between this equation 

Figure 3.10 The step signal can be synthesized as a sum of shifted impulses 
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and Equation 3.1 1, where the step was obtained as a time accumulation along a 
single impulse; that is a summation in "i". 

Any discrete signal x can be represented in terms of scaled and shifted impulses. 
The amplitude of x at position i = k is x,. Then x, is used to scale the shifted 
impulse tii-,. For a discrete signal 12 with N entries, the summation involves N 
scaled and shifted impulses from i = 0 to N-1: 

This is the synthesis equation. The summation of binary products implied in 
Equation 3.22 is equivalent to matrix multiplication. Each shifted impulse is 
an array of O's, except for an entry of 1 at the time of the impulse. If these 
arrays are assembled into a matrix, each column represents a shifted impulse, and 
Equation 3.22 is written as 

Indeed, 21 = I - x, where I [NxN] is the identity matrix! While these expressions 
are self-evident, expressing a discrete signal in the form of Equations 3.22 or 
3.23 facilitates understanding the convolution operation in Chapter 4. 

The signal x could also be analyzed in terms of step functions placed at each 
discrete time 6 .  The amplitude of each step is equal to the change in the amplitude 
of the signal at that discrete time interval xi -xi-,. In this case, the synthesis 
equation is a summation of scaled and shifted steps, similar to Equation 3.22. 

3.4.2 Signal Analysis with Sinusoids 

Consider the square wave shown in Figure 3.1 1. It is readily synthesized as the 
sum of scaled and shifted impulses, as shown previously. But, it can also be 
decomposed into sinusoids, whereby the signal 5 is expressed as a sum of scaled 
sines and cosines: 

N- 1 

xi = x [a, . cos (mu - 6 )  + bu . sin (mu . ti)] 
u=o 

(3.24) 

= [a, . cos ( u g i )  + 4 . sin (u$i)] 
u=o 
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Figure 3.11 Analysis and synthesis of discrete signals. Any discrete signal can be rep- 
resented as a linear combination of elemental signals 
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The scaling factors a,, and b, indicate the participation of frequency w, in the 
signal x. Once again, this synthesis equation is a summation of products and is 
rewritten as matrix multiplication, but in this case, the columns are the discrete 
values of sinusoids at times ti. Each column corresponds to a different angu- 
lar frequency o,. The assembled matrix multiplies the vector that contains the 
corresponding scaling coefficients a,, and b,, 

Coefficients a,, and b, can be determined following standard least squares curve- 
fitting procedures (Chapters 5 and 9). 

3.4.3 Summary of Decomposition Methods - Domain 
of Analysis 

The decomposition of signals into elemental signals is the starting point for signal 
processing and system characterization. The choice of the elemental signal defines 
the type of "transformation" and affects subsequent operations (Figure 3.1 1): 

If the signal x is decomposed into scaled and shifted impulses (or steps), the 
analysis will take place in the time domain (Chapter 4).  

If the signal x is decomposed into scaled sinusoids of different frequency, 
subsequent operations will be conducted in the frequency domain. This is the 
Fourier transform of the signal (Chapter 5). 

Signals could also be decomposed in terms of other elemental signals: 

The wavelet transform consists of expressing signals as a summation of 
wavelets (Figure 3.1 1, Chapter 7). 

The Laplace transform consists of decomposing signals in terms of growing 
or decaying sinusoids (complex exponentials). 

The Walsh transform consists of analyzing signals in terms of elemental square 
signals made of 1 and - 1 values (see problems in Chapter 5). 
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Analysis and synthesis operations are linear combinations. Therefore, the same 
signal-processing operation can be implemented with any of these transformations 
as long as the operation preserves linearity. In particular, time domain operations 
are implemented in the frequency domain, and vice versa. Then, what domain 
should be preferred? Computation efficiency and ease of data interpretation will 
affect this decision. 

3.5 SYSTEMS: CHARACTERISTICS A N D  PROPERTIES 

A system transforms an input signal 5 into the output signal - y (Figure 3.12). 
Consider the following examples (see also Table 1.1): 

A rubber band stretches when a load is applied, a metal rod contracts when 
cooled, and the electrical current in a conductor increases when the applied 
voltage difference increases. 

A lamp swings after a house is shaken by a tremor. 

A sharp sound is reflected from various objects and the multiple reflections 
arrive at a microphone like distinct echoes, each with its own time delay, 
amplitude, and frequency content. 

Input 5 
t 

x = water head - 
C 

Figure 3.12 Definition of a system. Examples of systems with different degrees of 
complexity 

system h 

x = nutrients - 
c 

Output1 * 

Hydraulic 
turbine 

y = energy output - 

Bacteria 
y = reproduction 

k 
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Water flows into a reservoir with a certain chemical composition and leaves 
the reservoir with a different chemistry after a delay time. 

Voice is encoded by a cellular phone to be transmitted through the airwaves. 

These systems are characterized according to some salient aspects of the trans- 
formations they impose on the input signal, as described next. 

3.5.7 Causality 

A system satisfies causality if the response at time i = k is only because of input 
at time i 5 k. Causality is the fundamental hypothesis of science: the search for 
an explanation to a given event presumes the existence of a cause. A system that 
appears to violate causality must be reassessed to identify undetected inputs or 
improper system definition, or incorrect analysis. 

3.5.2 Linearity 

A system is linear when the output is proportional to the input. Consider two 
springs: one is the standard cylindrical spring with linear elastic force-deformation 
response, and the other is a conical spring with nonlinear elastic response 
(Figure 3.13). Loads F, and F2 cause deformations 6, and 6, in each spring. If 
the linear spring is loaded with a force F, = F, + F,, then the measured defor- 
mation is 6, = 6, + 6,. This is not the case in the conical spring as seen in the 
figure. Likewise, a k-fold load produces a k-fold deformation only in the linear 
spring. 

Figure 3.13 Linearity: (a) linear system; (b) nonlinear system 
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These two observations combine in the superposition principle: "sum of 
causes + sum of effects". Given two signals x"' and f2'  

if x<l> - causes - y"' 

and X'2' causes yG2' - (3.26) 

then a - x"' + b z'~' causes a . - y"' + b . - Y'~' 

Therefore, the linearity of a system is tested by verifying the superposition 
principle. "True linearity" is not a property of real systems, yet it is a valid 
hypothesis for small amplitude input signals or perturbations. Furthermore, it is 
often possible to identify an equivalent linear system that resembles the response 
of the nonlinear system for a certain input level. 

3.5.3 Time Invariance 

A system is time-invariant if its response to a given input does not vary with time, 
but only experiences a time shift equal to the input time shift. All systems evolve 
in time: electronic devices change their response while warming up, the response 
of a building varies as damage accumulates during an earthquake, materials 
age throughout the years, and the properties of the atmosphere experience daily 
and seasonal fluctuations. These examples suggest that systems encountered in 
engineering and science are inherently time-variant or "dynamic". However, the 
systems in these examples may be considered time-invariant for a very short, 
one-millisecond-long input. In other words, time invariance must be assessed in 
reference to the duration of signals and events of interest. Then, it is correct 
to assume that the atmosphere is "time-invariant" during the passage of a short 
laser signal that is used to remotely explore changes in chemical composition 
throughout the day. In general, phenomena with very different timescales are 
independently studied. 

3.5.4 Stability 

System stability implies "bounded input -+ bounded output". System stability is 
also apparent in the magnification of input uncertainty. The uncertainty in the 
initial location of the ball in Figure 3.14a is not relevant for the final location 
after it is freed; this is a stable system. By contrast, any uncertainty in the 
initial location will be magnified in the unstable system sketched in Figure 3.14b. 
Systems that manifest chaotic behavior are unstable, as in the case of a thin ruler 
that suddenly buckles when subjected to compressive loading at the ends. 
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Figure 3.14 Stability. (a) The output of a stable system diminishes the uncertainty of the 
input: the final position of the ball is not sensitive to the initial position. (b) An unstable 
system is characterized by the magnification of initial uncertainties: a small uncertainty in 
the initial position of the ball has an important effect on its final position 

A system is invertible if there is an inverse transformation that renders the input 
from the output (inverse problem) 

inverse 
system system 

if x + y  then y-5 - - 

An analog telephone system consists of a microphone, a transmission line, and the 
earpiece on the other end. The voice spoken into the microphone is encoded into 
the electromagnetic wave that is transmitted, and later converted back into sound 
at the other end. In this case, the speaker inverts the transformation imposed at 
the microphone, and although the inversion is not perfect, it is acceptable for 
communication purposes. Invertibility is the central theme in Chapters 8-1 1. 

3.5.6 Linear Time-invariant (LTI) Systems 

The analysis of a system is considerably simpler when it is linear and time- 
invariant. A salient characteristic of this type of system is that it preserves the 
statistics of the input signal onto the output signal. For example, if the input 
signal has Gaussian statistics, the output signal will also have Gaussian statistics. 
This important observation leads to a possible procedure to test whether a system 
is LTI: 

Input a signal with known statistics. The signal duration must be relevant to 
signals and events of interest. 

Measure the output signal and compute the statistics. 

Compare input and output statistics. 
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The superposition principle applicable to linear systems is now extended to LTI 
systems: "sum of time-shifted causes + sum of time-shifred effects". Deviations 
from linear time invariance and implications for signal processing and system 
analysis are discussed in Chapter 7. 

3.6 COMBINATION OF SYSTEMS 

Engineering tasks and scientific studies often involve systems with multiple com- 
ponents. These systems are analyzed into a sequence of interconnected subsystems 
(Figure 3.15). Consider the following two systems used to measure material 
properties: 

Sound velocity. The measurement system involves several subsystems in series: 
signal generator + cable + source transducer + coupler + specimen + 
coupler + receiving transducer + signal conditioner + cable + A/D converter 
and storage (a simpler system is sketched in Figure 3.16). 

Feedback loop 

(c) i,: 
Figure 3.15 Combination of systems: (a) systems in series; (b) systems in parallel; 
(c) system with feedback loop 
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Signal generator 
A 

Source transducer 

Figure 3.16 A measurement system is the combination of several subsystems. The 
response of peripheral must be removed from the total response to obtain the specimen 
properties 

Complex permittivity. The material is placed in a capacitor-type cell and the 
complex impedance is measured with an impedance analyzer. Stray capacitance 
and induction develop both in series as well as in parallel with the material, 
in addition to the resistance in series contributed by the connecting cables. 

In both cases, the effects of all peripheral subsystems must be removed from the 
measured signal to recover the sought material response. 

Many mechanical and electronic devices may also include feedback loops. 
Feedback in electromechanical systems is facilitated by the high speed of electrical 
signals and computer processors compared to the speed of mechanical events. 
For example, audio amplifiers include feedback to enhance fidelity, airplanes 
are equipped with computer-controlled stabilizers, and feedback is used to damp 
ringing effects in accelerometers and large amplitude oscillations in buildings. 

The global system response is obtained by combining the individual subsys- 
tems' response according to their intercomectivity. Let us consider the simplest 
case of linear springs, with transformation F = k - 8. The equivalent stiffness of 
M springs is 

G u i v = k ,  + k 2 + .  . . .+kM connected in parallel (3.28) 

and connected in series (3.29) 

The sequential order of the components does not affect the equivalent global 
response in each case. This is generalized to all LTI subsystems (Chapter 5). 



FURTHER READING 

3.7 SUMMARY 

Signals may be periodic or aperiodic, even or odd, one-dimensional or multi- 
dimensional, stationary-ergodic, or nonstationary. 

Signal digitization may alter the periodicity of the signal and cause information 
loss and aliasing of undersampled frequencies. The Nyquist criterion must be 
fulfilled during digitization of baseband signals with energy from DC to the 
maximum signal frequency. 

There are several elemental signals including steps, impulses, sinusoids, and 
exponentials. Other important signals include wavelets and random noise. 

Any discrete signal can be decomposed into a linear combination of elemental 
signals. 

The selection of the elemental signal determines the type of analysis and the 
domain of operation. The analysis of signals into scaled and shifted impulses 
leads to "time domain" operations, whereas the decomposition of signals into 
scaled sinusoids conduces to the "frequency domain". Equivalent linear signal 
processing operations can be defined in either domain. 

A system enforces a transformation on the input signal. Linear time-invariant 
(LTI) systems are the most tractable. The generalized superposition principle 
"sum of time-shifted causes -+ sum of time-shifted effects" applies to LTI 
systems. LTI systems preserve the statistics of the input signal in the output 
signal. 

Any real system consists of several subsystems connected in series or 
in parallel. The sequential order of LTI subsystems does not affect the 
global output. Subsystems may include a feedback loop to help control the 
response. 

The measurement of a system characteristics always involves other peripheral 
subsystems; their response must be removed from the measured values. 
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SOLVED PROBLEMS 

P3.1 Linear system. Assume a Gaussian distributed input signal xi =random. 
Show that the distribution of the input is preserved in the output when the 
system is linear but that it is not preserved when the system is nonlinear. 
Solution: Let us generate a vector 5 of N = 5 12 normal distributed random 
numbers and compute the responses y and z for a linear and a nonlin- 
ear transformation. In each case we verify the histogram and compute 
skewness s. 

xi = Gaussian random 

yi =2 + 3xi Linear 

~ O T  

Zi ' 3 + xi2 Nonlinear 

lo T 150 T 

The histograms corresponding to x and y approach Gaussian distributions; 
however, the histogram for z shows thatthe nonlinear transformation alters 
the Gaussian nature of the input. 



SOLVED PROBLEMS 61 

P3.2 Elemental signals. Define an impulse at location i = -15 and a step 
function at location i = - 15. Implement these definitions numerically and 
plot the signals. 

Solution: 

Impulse at location i=-15: 

~ i = 8 ~ + ~ ~  

Step at location i=-15: - -  T 

P3.3 Signal analysis and synthesis. Consider a periodic triangular time history 
x = (3 ,2 , l ,  0, - 1, -2, -3, -2, - 1, 0, l , 2 ,  - . . ). Approximate this array - 
as a sum of discrete time cosine signals yi = Sa, cos[u. (27F/N) . i], where 
N is the number of points N = 12, and u is an integer u 2 0. The goal is 
to determine the coefficients %, a,, +, . . that minimize the total square 
error E between the array & and the approximation y, where E is computed 
as E = Z(x, - yi)2. What is the residual E when-only the u = 1 cosine 
function is included, and when the f i t  four cosine functions are included? 
Solution: The single frequency cosine yi =a ,  .cos[(%.rr/N) . i ]  that fits 
the triangular signal closest is determined by iteratively fixing a, and 
computing the total error E. The value of a, that renders E minimum is 
the sought value: 
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The coefficient a, can now be determined using the same approach, and 
the procedure is repeated to obtain all other higher terms. The first four 
coefficients are a, = 0, a, = 2.48, a, = 0, and a, = 0.34. The triangular 
signal and the signal synthesized with these first four terms are: 

How many terms are needed in the summation to obtain E = O? 

P3.4 Stationary and ergodic signals. Form an ensemble of sinusoidals (four 
cycles in each segment) with additive zero-mean Gaussian noise. Verify 
stationary and ergodic criteria. 
Solution: The ensemble is formed with 512 random signals or "segments". 
Each signal is 512 points long. 

Time 2 

Segment 1 

Segment 2 

Segment 3 

Segment 4 

I I ;  1 '  

Histograms for selected ensemble values at selected times and segments: 
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Ensemble statistics vary in time and are not the same as segment statistics: 
the signal is nonstationary and nonergodic. 

ADDITIONAL PROBLEMS 

P3.5 Signals and systems. Identify stationary and nonstationary signals, linear 
and nonlinear systems, and time-varying and time-invariant systems in 
your area of interest. 

P3.6 Amplitude modulation. The multiplication of a sinusoidal signal with an 
exponential decaying signal yields a sinusoidal signal that decays with 
time (Figure 3.9e). What type of signal results from the multiplication 
of two sinusoidals of different frequencies? Plot the two signals and the 
product. 

P3.7 Signal digitization - undersampling. A sinusoid frequency f is undersam- 
pled with a sampling frequency f,, < f,,. Derive an expression for the 
frequency it folds into, as a function of the original frequency w and the 
sampling frequency f,,. Use numerical simulation to verify the equation 
for a single-frequency sinusoid. Then extend the study to explore under- 
sampling effects for a beat function composed of two signals. Vary the 
frequency gap between the two signals relative to the sampling frequency. 

P3.8 Photography. Explore the application of photography in your field of 
interest (engineering, science, sports, etc.): 

(a) Explore commercially available cameras and flashes. 

(b) What is the highest shutter speed and rewind rate? 

(c) What is the shortest flash duration and the highest repetition rate? 
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(d) What type of events can you study with these "sampling rates"? 

(e) Can you design your experiment to undersample? 

(f) Explore ways to use a stroboscopic light with your photographic sys- 
tem. 

P3.9 Signal analysis and synthesis. Repeat problem P3.3 by fitting a polynomial 
function instead of sinusoids. What order polynomial is needed? What is 
the total error when only the first four terms are included? 

P3.10 Stationary and ergodic signals. Use the audio system in your computer to 
gather multiple records (segments) of background noise in your working 
environment. Analyze the ensemble to determine whether stationary and 
ergodic conditions are satisfied. 

P3.11 Combination of systems. The electrical impedance Z = V/I of the three 
fundamental circuit elements R, C, and L are: 

Resistor R Z=R+jO 

Inductor L --IIIIILIIL Z=O+joL 

capacitor c ---(+ z = o - j l  
wC 

Complex Z values indicate a phase shift between current I and voltage V 
(Chapter 2). The inverse of the impedance is called the admittance Y. 
According to Equations 3.28 and 3.29, the equivalent impedance Z, of ele- 
ments in series in the sum of the impedances, and the equivalent admittance 
Y, of elements in parallel is the sum of their admittances. Given three ele- 
ments R = lo6 ohm, C = 2.5 - lo-'' farad, and L = lo3 henry, compute the 
equivalent impedance and plot admittance (amplitude and phase) versus 
frequency for (a) series and (b) parallel connection of the three elements. 

P3.12 Application: birds singing. Knowing that a single tune lasts about 2 s and 
that you can whistle at the same frequency as the birds (about 2 Wz), 
select the sampling frequency and buffer memory for a portable AD 
system. 



Time Domain 
Analyses of Signals 
and Systems 

Signal processing and system analysis operations are frequently encountered in 
most engineering and science applications. The fundamental signal processing 
operations are related to noise control to improve signal interpretation, and cross- 
correlation to identify similarities between signals. When a system is involved, 
data processing operations are developed to assess the system characteristics and 
to "convolve" a given input signal with the characteristic response of the system 
to compute the output signal. 

4.1 SIGNALS AND NOISE 

The presence of noise is one of the most pervasive difficulties in measurements. 
Given a signal amplitude Vs and noise amplitude V, (same units as Vs), the 
signal-to-noise ratio is SNR = V,/VN. In applications where SNR varies in a 
wide range, decibel notation is used: 

SNR = 3 or SNR[dB] = 20. log,,, 
VN 

(4.1) 

A value of SNR = 1 = 0 dB means that the amplitude of the signal V, is the 
same as the amplitude of noise VN and the signal is almost indistinguishable. 

The process of digitizing an analog signal adds noise. The analog-to-digital 
converter can resolve a limited number of discrete values related to the number 
of bits "n". For example, an n = 8 bit AID board can map an analog value to one 

Discrere Signals and Inverse Problems J. C. Santamarina and D. Fcatta 
8 2005 John Wiley & Sons, Ltd 
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of 28 = 256 discrete values; hence, the potential noise level is one step. In general, 
if the signal amplitude occupies the n-bits, then, Vs = 2" steps, V, = 1 step, and 
the signal-to-noise ratio associated with digitization is SNR = 2" = 6.02 ndB. 

The first and most important step to increase SNR is to design a proper exper- 
iment to minimize noise before signals are recorded. Consider the careful selec- 
tion of transducers, peripheral electronics and A D  converter; the proper control 
of boundary conditions, including grounding and shielding; vibration isolation and 
thermal noise reduction, which may require cooling circuitry to near absolute zero. 
Once recorded, versatile signal processing algorithms can be used to enhance the 
signal-to-noise ratio. Time domain signal processing algorithms are discussed next. 

4.1.1 Signal Detrending and Spike Removal 

There are some known and undesired signal components that can be removed 
prior to processing. Low-frequency noise can be removed by signal detrending in 
the time domain. This operation consists of least squares fitting a low-frequency 
function & to the noisy signal 5, and subtracting the trend from the measurements 
to obtain the detrended signal yi = xi - tr,. Selected functions typically include a 
constant value, a straight line, or a long period sinusoid. Guidelines and procedures 
to fit a trend to a signal by least squares are presented in Chapter 9. Figure 4.1 
shows examples of detrended signals. 

(c) 
Detrended signal without spikes 

Xi  

Figure 4.1 Detrending and spike removal: (a and b) signal riding on a low-frequency 
trend; (c) signal with spikes; (d) detrended signal without spikes 
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The signal mean value is known as the DC component or the static zero- 
frequency offset. The detrended signal without the DC offset is 

Spikes are impulses randomly distributed along the signal (Figure 4.1~). Spikes 
can be "clipped", or removed and replaced by locally compatible signal values. 
For example, given a signal x with spikes, the signal y without spikes can be 
obtained with the following algorithm that compares <he current value of x, 
with the previous despiked value yi-, : if Ixi - yi-l 1 < 'threshold' then yi = xi, 
otherwise yi = (xi-l + xi+,)/2, where the "threshold" value is selected to remove 
the spikes with minimal effect on the signal. Spike removal is demonstrated in 
Figure 4.1d. 

4.1.2 Stacking: Improving SNR and Resolution 

Signal stacking is an effective alternative to gather clear signals above the level 
of background noise. The operation consists of measuring the signal multiple 
times and averaging across the ensemble: the i-th element in the mean signal is 
the average of all the i-th elements in the measured signals. 

The underlying assumption is that noise has zero mean, so that averaging 
reduces the noise level in the mean signal and increases the SNR of the correlated 
component. Figure 4.2 shows a noisy signal that is simulated by adding random 
noise to a decaying periodic sinusoid. The fluctuation of the background noise is 
the same as the amplitude of the periodic signal (SNR = 1). The different frames 
show the effect of stacking for an increasing number of signals. 

The following two theorems from statistics help analyze the effects of stacking 
on signal-to-noise ratio for zero-mean noise: 

1. The i-th value of the mean signal is a good predictor of the true value 
X5true> 

1 .  

2. The mean value of averaged noise has Gaussian statistics, fluctuates around 
zero, and the standard deviation is proportional to the standard deviation of 

ocnoi~e> and decreases with the square root of the number of stacked 
signals M, u'"""' I&. 

Therefore, the signal-to-noise ratio SNR increases with m. 
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1 signal 
2 

2 signals 
2 

4 signals 

16 signals ' v ~ n y \ h v ~  o 256 512 
- 

32 signals 

Figure 4.2 Noise control by signal stacking in the time domain. The SNR increases as 
the number of stacked signals increases 

Avfiv~ufiw~-,/ ' -- 
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Number of Required Signals 
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a 

One can expect with a certain probability p that the average value x:"'~"' does 
not deviate from the true value more than a prefixed quantity "E", which is related 
to the standard deviation of mean noise IEl 5 c t~ ' "~ '~~ ' /& .  Furthermore, the 
error E should be a small part P of the mean signal amplitude I E I 5 P . x 'm"'. 
Combining these two expressions, the required number of signals M to be stacked 
can be estimated as 

The value of ol is a function of the probability p: 

probability p p = 80% p = 90% p = 95% p = 99% 
coefficient ol ct = 1.28 a = 1.65 ct = 1.96 ct = 2.58 



SIGNALS AND NOISE 69 

For example, consider a signal with an estimated mean peak amplitude x'""' = 
10 and a measured background noise standard deviation P"'"' = 2. If one 
expects with a 90% probability (a = 1.65) that the mean peak value of the stacked 
signal will deviate from the true value within 5% (P = 0.05), then the required 
number of signals in the ensemble is M = 44. (This analysis is revisited in the 
frequency domain, Chapter 6.) 

Improved Resolution and Dynamic Range 

The best resolution an n-bit A/D converter can attain is when the input signal 
is preamplified to the maximum input value in the converter without saturating 
it, so that the available 2" discrete values are utilized. Signal stacking enhances 
resolution and the dynamic range between the largest and smallest recorded value 
when noisy signals are recorded. This is readily demonstrated with the following 
AID conversion simulation: 

analog values x(t) < 0.5 are digitized into discrete values xi = 0, and 

analog values x(t) = 0.5 are digitized into discrete values xi = 1. 

Then, an incoming noiseless analog signal value x(t) = 0.6 is stored as x, = 1 
in all the individual signals in the ensemble. Therefore, the stacked mean signal 
value will be x:mem' = 1, and there is no advantage on resolution. However, when 
the incoming analog signal value is noisy, x(t) = 0.6 f noise, the digitized value 
will be xi = 1 in some cases and xi = 0 in others: 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1. . . 
The mean value in the stacked signal approaches x:~""' x 0.6 if the noise level 
is at least one digitizing step and a sufficient number of signals is stacked. 

Likewise, noiseless signal values smaller than one digitization step remain 
undetected and signal stacking does not enhance the dynamic range of the AID 
converter. Yet, noise adds to small signal amplitudes so that their values are 
registered with some probability, and the average value in the stacked signal 
asymptotically converges to the true value given adequate noise level and suffi- 
cient number of stacked signals. 

It follows from the previous discussion that there is some "most favorable 
noise level" for which one can attain optimal detectability and maximum dynamic 
range. The effect of noise on A/D conversion resembles the physical phenomenon 
of "stochastic resonance". 

Restrictions 

Signal stacking presumes that the signal can be repeated. This implies that the 
source must be identical, that the system must remain time-invariant from one 
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signal to the other, and that the triggering of the recording device can be synchro- 
nized with the signal to avoid random time shifting of successive signals. These 
are not readily attainable conditions in many situations. Consider, for example, a 
source of seismic signals for subsurface characterization consisting of a hammer 
and an aluminum plate resting on the ground. Successive hammer blows gradually 
sink the plate into the ground, change the stiffness of the soil beneath the plate, 
cause differences in triggering times (inertial switch response), and progressively 
change the frequency content in each signal. 

4.1.3 Moving Kernels 

Moving kernels are used to transform a signal into a signal y. For example, 
high-frequency noise can be reduced by running a moving average: the i-th value 
in the smoothed signal y is computed as an average of neighboring values around 
the i-th entry in the original noisy signal x. The m-coefficients used in computing 
the weighted average are stored in the "kernel" g = (K,, K,, . . . , K,). Typically, 
the kernel is symmetric, m is an odd number, and the sum of all weights equals 
X K ~  = 1. Mathematically, the smoothed signal - y is obtained as 

The noisy signal in Figure 4.3a is smoothed using the kernels in Figures 4.3b 
and c (m = 11 elements). Smoothing pennits enhancing signals obtained from 
one-of-a-kind events or that contain coherent high-frequency noise where stacking 
cannot be applied. 

Kernel length m and the weights K, determine the effect of moving kernels. The 
study of frequency domain operations in Chapter 5 facilitates kernel designing 
(see also related discussion in Chapter 9 in the context of regularization). In the 
meantime, a few guiding criteria follow . 

Kernel Length 

Very short kernels remove only very high-frequency noise. On the other hand, 
very long kernels may remove frequency components that are relevant to the 
signal. Thus, the effective kernel time span, m.At, should be shorter than the 
shortest relevant period in the signal T; as a practical guideline, keep m 5 
Tl(10-At). Noise components in the same frequency as the signal of interest 
cannot be filtered with moving kernels, yet the signal-to-noise ratio can still be 
improved by stacking. 
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(a) Noisy signal: 
12 

(b) Central kernel: 

Figure 4 3  Noise control by moving average in the time domain: (a) noisy signal; 
(b and c) signal obtained after running the moving average kernels shown 

Kernel Values 

Physical criteria may guide kernel selection. For example, a kernel could be 
designed to set the second derivative equal to zero if the signal corresponds to 
a physical process modeled by a zero Laplacian, such as steady-state conduc- 
tion phenomena. Expressing the second derivative in finite differences, a zero 
Laplacian becomes 

Then, the smoothed value of the signal at location i is computed as 

and the corresponding kernel for one-dimensional signals is 
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Moving kernels can be used to perform other discrete operations. For example, 
it follows from Equation 4.5 that the kernel K = (1, -2, 1) is a "second-order 
differentiator". Then, when signal x is processed with this moving kernel, the 
resulting signal y is the discrete second derivative of x. - 

Adaptive filters 

If the noisy signal x is nonstationary, the kernel length and weights may be 
adapted to the time-varying characteristics of the signal, whether the signal has 
been stored or it is streaming in real time, such as in adaptive feedback control. 
In this case, the kernel to be applied to the current entry xi depends on xi and 
the prior m-values of the signal: xi, xi-,, . . . xi-,. A simple adaptation strategy 
consists of selecting the kernel length m"' at location i as a function of the signal 
variance around xi. Other strategies assume zero-mean Gaussian noise and locally 
fit a presumed smooth signal behavior to the measured signal by minimizing 
the square error; this is a form of inverse problem (see also ARMA models - 
Chapters 7 and 8). In general, adaptive filtering is a nonlinear operation. 

Kernels for Two-dimensional Signals 

The concept of moving kernels is readily extended to two-dimensional sig- 
nals, such as digital images. For example, the Laplacian in finite differences is 
expressed in terms of the values corresponding to the pixels above xi,,+,, below 
xi,,-, , to the left xi-,,, and to the right xi+,,, of the current pixel xi,,: 

where i and k are the position indices in the two normal directions, and the 
sampling interval or pixel size is equal in both directions. Then, the Laplacian- 
smoothing kernel becomes 

1 
Laplacian smoothing - 

4' 

Other kernels for 2D signals are summarized in Figure 4.4. The smoothed pixel 
value yi,, is obtained as a weighted average of pixel values in the original noisy 
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i-th row 

p r ~ ~ s ~ ~ d  im/n k-th column 

i-th row 

Smoothing Vertical smoothing Vemmc(ll edge detection 

16 15 

Laplacion smoofhing H o r i ~ o n r ~ l  smoothing Hon'zontnl edge defection 

Figure 4.4 Filtering 2D signals in the time domain. Conceptual algorithm for convolu- 
tional 2D filters and typical 2D filters and typical 2D kernels 

image around xi,, according to the coefficients in the 2D kernel tc, and the - 
operation is repeated for all i and k positions. 

Values on Boundaries? 

When the moving kernel approaches the signal boundaries, it requires values that 
are outside the signal. There are several alternatives to overcome this difficulty: 
external values are disregarded in the weighted average, special boundary kernels 
are defined, or imaginary signal values are assumed outside the boundary follow- 
ing symmetric or antisymmetric criteria, depending on physical considerations 
(see related discussion in Chapter 9 under regularization). 

4.1.4 Nonlinear Signal Enhancement 

A weighted average is a linear operation; therefore, signal processing with moving 
kernels is a linear operation, except when the kernel varies, such as in adaptive 
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filtering. There are other nonlinear operators frequently used in noise control. 
The following common procedures are reviewed in the context of digital image 
processing: 

Median smoothing. For each (i, k) position of the analysis window, sort pixel 
values within the window, and select the median as the (i, k) value in the 
filtered image. 

Selective smoothing. For each (i, k) position of the analysis window, con- 
sider "neighbors" those pixels that have similar value to the central pixel 
"c", that is when ((xi-x,)l/x, is less than some threshold "t". Then, compute 
the weighted average, taking into consideration only the accepted neighbors. 
Selective smoothing is capable of removing noise without blurring contrast. 

Thresholding and recoloring. Compute and display the histogram of pixel val- 
ues to guide the selection of a threshold value. Then, repaint the image by 
assigning the same color to pixel values above the threshold and another color 
to pixels with values below the threshold. Thresholding is a powerful trick 
to enhance the visual display of a homogeneous parameter with an anoma- 
lous region. The underlying assumption is that cells with similar pixel values 
correspond either to the background or to the anomaly. 

These operations are nonlinear. When nonlinear procedures are part of a sequence 
of signal processing operations, the final result will depend on the order in which 
they are implemented. Linear and nonlinear filter effects are demonstrated in 
Figure 4.5. 

4.7.5 Recommendations on Data Gathering 

The best approach to noise control is to improve the data at the lowest possible 
level. Start with a proper experimental design: 

Carefully design the experimental procedure to attain the best raw data. 
Explore various testing methodologies and select the most robust procedure 
you can implement within the available facilities. Whenever possible and rele- 
vant, select variable ranges where the phenomenon has a clear response distin- 
guishable from random response. Explore different excitations and boundary 
conditions. For example, a material with low-strain dynamic stiffness and 
damping can be characterized using pulse propagation, resonance, logarithmic 
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Original image Smoothing Laplacian smoothing 

Vertical edge detection Horizontal edge detection Thresholding 

Figure 4.5 Examples of digital image processing 0 MIT. Printed with permission 

decrement, and quasi-static hysteric behavior; each of these techniques presents 
advantages and limitations. 

Select the transducers that are best fitted to sense the parameter under 
study. For example: if the intent is to monitor low-frequency oscillations, avoid 
accelerometers because their response is proportional to the displacement mul- 
tiplied by w2; therefore, high-frequency noise will be magnified in the signal. 

Match the impedance between the transducer and the medium. Improper 
impedance matching reduces the detected signal amplitude and aggravates poor 
signal-to-noise situations. 

Increase signal level whenever possible, but avoid amplitude-related effects 
such as unwanted nonlinearities. 

Noise level. Reduce the noise level by isolating the system. Consider noise in 
all forms of energy: electromagnetic (shield and ground), mechanical (vibration 
isolation), thermal and chemical (environmental chamber), and biological (prior 
decontamination). 

Use quality peripheral electronics and match electrical impedances. 

The Implementation Procedure 4.1 summarizes the techniques for noise control 
in the time domain. 
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Implementation Procedure 4.1 Noise control in the time domain 

First and most important 

Attempt to reduce noise before measurements are obtained. 

Consider proper grounding and shielding (including the use of coaxial and 
twisted cables), careful selection of transducers and electronics, enhanced 
vibration isolation, adequate control of boundary conditions, enhanced qual- 
ity of connections. 

Stacking 

Measure the background noise and determine its statistics. 

Estimate the number M of signals to be stacked (Equation 4.3). The error 
in the stacked measurement decreases with the square root of the number 
of stacked signals M. 

Detrend individual signals and remove spikes. 

Arrange the M stored signals in matrix form xi,, where the index i relates 
to the discrete time and k is the label of each record. 

Compute the average signal 

Moving average 

Select a kernel. Define its length m (and odd number) and weights K,. Recall 
that if T is the shortest relevant period in the signal, then m 5 Tl(10.At). 

Convolve the kernel K, with the signal xi: 

When using this equation, the sum of all weights in a smoothing kernel 
must equal XK,=~.  

Kernels must be redefined at the boundaries of the arrays, where i-p<O or 
i + p>N-1 (where the array x contains N elements 0 .  . . N-1). Physical 
principles must be taken into consideration (see Chapter 9). 
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Example 

Signal enhancement by noise control underlies all measurement and signal 
processing tasks. The effectiveness of stacking and moving average is demon- 
strated in Figures 4.2 and 4.3. 

Note: Noise control with frequency domain operations is presented in 
Chapter 6. That discussion will facilitate the design of filtering kernels. 

4.2 CROSS- AND AUTOCORRELATION: IDENTIFYING 
SIMILA RITIES 

Cross-correlation is a very robust signal processing operation that permits iden- 
tifying similarities between signals even in the presence of noise. How can a 
computer be trained to identify similarities between two arrays of discrete val- 
ues? Consider the two similar but time-shifted signals 3 and g in Figure 4.6. The 
cross-correlation operation gradually time-shifts the second signal g to the left. 
For each time shift k.At, the pair of values facing each other in the two arrays are 
multiplied xi,zi, and summed for all i-entries. This result is the cross-correlation 
between x and z for the k-shift: 

The process is repeated for different k-shifts, and cross-correlation values cc;"'"' 
are assembled in the array E'~."'. ' 

The cross-correlation between signals 3 and g in Figure 4.6 when the time 
shift is zero, i.e. k = 0, leads to the multiplication of nonzero 5 amplitudes with 
zero z amplitudes at low values of ti; the opposite happens at high values of ti. 
Therefore, the cross-correlation of x with g when k = 0 is equal to zero. As the 
signal g is shifted relative to 5, k > 0, the cross-correlation sum begins to show 
nonzero values. The best match is obtained when the signal 5 is sufficiently shifted 
to superimpose with signal z, and the cross-correlation reaches its maximum 
value. 

' The cross-correlation in continuous time is a function of the time shift 7: 
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Cross-correlation series: 
ccT"= Exi .  q + k  I 

Figure 4.6 Cross-correlation. The signal z shifts to the left as k increases. The peak in 
the cross-correlation sum takes place when k = 32 and the two signals are superimposed 

As the signal z is shifted past signal 5, values on the right end of 5 face 
empty sites. These sites are filled with "imaginary entries". If the two arrays have 
N entries each 5 = (x,,x, ,..x,-,) and g = (z,,z, ,..zN-, ), and cross-correlation is 
explored for the full length of the signals, the signal z will be tail-padded from 
i = N t o i = 2 N  - 1 sothatitcanbeshiftedpast~fromk=Otok=N-1.The 
imaginary entries can be either zeros (when signals have been detrended), values 
compatible with the signal trend, or the same "circular" signal z wrapped around 
so that z, = z,, zN+, = z,, etc. (This requires a detrended signal). The selected 
padding alternative must be compatible with the physical reality under study. 

For clarity, the computation of cross-correlation in the form of a spreadsheet 
is shown in Figure 4.7. Each column in the central block shows the shifted signal 
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Figure 4.7 Spreadsheet for the computation of cross-correlation 

z,+, for increasing values of k. The signal x remains unshifted in all columns. 
The sum of each column is equal to the cross-correlation of x and z for each 
shift k: the first column corresponds to zero shift, k = 0, the second column for a 
shift of one time interval, k = 1, etc. Implementation Procedure 4.2 presents the 
step-by-step computation of the cross-correlation between two signals. 

Implementation Procedure 4.2 Cross-correlation sum 

I 1. Arrange signals x and g in vector form. The length of array 5 is N. I 1 2. Tail-pack signal g so that it can be shifted along the N entries in signal x. I 
3. For a given k-shift in z, the k-th element of the cross-correlation sum is 

equal to 

4. Continue with next k until k = N - 1. 

5. The resulting array of N entries is the cross-correlation sum between signals 
x and g. - 
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If the signal z has reversed polarity, the peak of the cross-correlation is 
negative. A plot of the absolute value of the cross-correlation Ice'"," 1 often 
facilitates comparing the magnitude of positive and negative peaks. 

Examples 

Figures 4.6,4.8, and 4.9 show several numerical examples of cross-correlation. 

Note: The cross-correlation can be eficiently computed in the frequency 
domain (see Chapter 6). 

4.2.7 Examples and Observations 

Identifying Similarities 

The first signal & in Figure 4.8a is a single-frequency sinusoid whereas the second 
signal z consists of plus a high-frequency sinusoid. The cross-correlation is 
plotted on the right-hand side of Figure 4.8a. It was obtained by tail-duplicating 
signal z, given the periodicity of these signals. The cross-correlation of g and z 
depicts the lower-frequency component, which is common to both signals x and z. 
The effects of positive and negative high-frequency fluctuations in signal z cancel 
each other in the cross-correlation sum. 

Determining Travel Time 

Consider the nondestructive evaluation of some material of interest. In this par- 
ticular case, the intent is to measure the sound wave velocity to characterize the 
low-strain stiffness of the material. Sent and received noiseless signals are shown 
in Figure 4.8b. Visual observation indicates that the received signal is an atten- 
uated version of the input signal but shifted 64 time intervals; hence, the travel 
time across the specimen is 64.At. When the cross-correlation is computed, the 
peak in the cross-correlation takes place at k = 64. (Note: if the received signal 
z had opposite amplitude, the cross-correlation peak would be a negative value - - 
Figure 4.8c.) 

Identifying Replicas in Noisy Signals 

Cross-correlation is very robust with respect to noise. Figure 4.8d shows the same 
received signal z as Figure 4.8b but masked in noise. The cross-correlation of 
signal x with the noisy signal z is shown in Figure 4.8d. Once again, the peak 
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Input signals Cross-correlation 

Figure 4.8 Examples of cross-correlation: (a) identifying similarities; (b) detemining 
travel time; (c) effect of reverse polarization; (d) identifying replicas in noisy signals; 
(e) lossy and dispersive media 
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of the cross-correlation takes place at k = 64. The clarity of the cross-correlation 
peak in the noisy signal is surprising and most relevant to laboratory and field 
testing. Based on observations made in relation to Figure 4.8a, the effect of 
random fluctuations between the two signals tends to cancel each other in the 
cross-correlation sum. 

Biases: Lossy Media, Dispersive Media and Multiple Paths 

A wave experiences fairly complex transformations as it traverses a material. For 
example, different frequency components travel with different phase velocities 
and are subjected to different levels of attenuation. Consider the two signals shown 
in Figure 4.8e. The difference in the first arrival corresponds to k = 64. However, 
the cross-correlation reaches its maximum when the energy peaks in the two 
signals are aligned, k = 74 (group velocity). If the medium is not homogeneous, 
there will be more than one path for energy propagation (due to reflections and 
refractions). The maximum value of cross-correlation will correspond to the path 
that conducted most energy, not necessarily the shortest time path. 

These examples allows us to make the following observations: 

The cross-correlation procedure is able to identify replicas of a signal in other 
signals, even in the presence of significant background noise. 

The value of the shift k for the peak cross-correlation indicates the time delay 
between replicas, t'de'aY' = k'@' . At. Changes in frequency content between 
input x and output g require the reinterpretation of cross-correlation when 
determining time shift between signals. 

If the signal and its replica were of opposite polarity, for example zi = -xi, the 
largest value of g'"~"' would be negative. A positive peak value indicates that 
both signals have the same polarity. Polarity reversal can be equipment related 
such as the wiring of transducers, or it can be of physical nature and provide 
important information about the system, such as the reflection of sound from 
a free boundary versus a fixed boundary. 

Periodic components common to both signals 5 and 3 manifest in the cross- 
correlation g'"~"'. Therefore, cross-correlation can be used to assess the 
presence of selected frequency components. 

The cross-correlation of two infinitely long sinusoids of different frequency is 
null, cc;""' = 0 for all k. This is also the case for the cross-correlation of any 
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signal with zero-mean random noise. Cancellation is not complete when the 
number of points is small because there are not enough terms in the summation 
to attain statistical equilibrium. 

4.2.2 Autocorrelation 

Autocorrelation is the cross-correlation of a signal with i t ~ e l f . ~  

Autocorrelation pennits identifying internal timescales (or length scales) within 
a signal such as the repetitive appearance of a pattern or feature. These internal 
scales manifest as peaks in the autocorrelation array K"'. 

The highest autocorrelation value occurs for zero shift k = 0 and it is equal to 
a~, '~'  = Z$. The autocorrelation of a finite-length array of zero-mean Gaussian 
noise tends to zero everywhere else but at the origin, that is ac;"' = 0 for k>O. 

Example 

Consider a long steel rod excited with a short signal. An accelerometer is 
mounted at one end of the rod (Figure 4.9a). The excitation travels in the rod 
back and forth with velocity V,,. The signal detected with the accelerometer 
shows successive passes of the excitation signal, changing polarity each time, 
with a well-defined interval that corresponds to the travel time for twice the 
length L of the rod, t = 2'wd (Figure 4.9b). Successive repetitions of the 
signal have lower amplitude due to attenuation and become gradually masked 
in the background noise. The autocorrelation of this signal depicts the multiple 
reflections and the characteristic time of the process, in this case: k-At = 180At 
(Figure 4.9~).  The result is clear even in the presence of significant background 
noise. 

4.2.3 Digital Images - 2D Signals 

Correlation studies with digital images help identify the location(s) of a selected 
pattern g in an image 5 (cross-correlation) or discover repetitive internal scales in - - 

The definition of autocorrelation in continuous time is 
m 

ac<"> (T) = / r (t) - x ( t  + T) - dt. 
-m 
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+ Multiple reflections 
C- 

I Accelerometer 
Steel rod (V,) 

(a) 
L 

Figure 4.9 Autocorrelation: (a) experimental setup to detect multiple reflections in a 
steel rod, (b) a noisy signal with several reflections; (c) autocorrelation. The autocorrelation 
sum has the largest peak at k = 0, then a negative peak at k = 180, and a smaller positive 
peak at k = 360. Peaks point to the time when the signal "finds" itself 

a single image 21 (autocorrelation). In 2D correlation studies, one array is sequen- 
tially shifted relative to the other in both directions; therefore, the correlation 
arrays are two-dimensional in terms of the k and q shifts: 

A similar expression is written for autocorrelation g'"'. Two-dimensional cor- 
relation is a computationally intensive operation. 1nGany applications, the image 
z is a small image and it is shifted only within some predefined subregion of 5. - - - 
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4.2.4 Properties of the Cross-correlation 
and Autocorrelation 

The cross-correlation sum is not commutative. In fact, in terms of 1D signals, 

which means that it is the same to shift signal g to the left as to shift signal x to 
the right. A salient relationship between the cross-correlation and autocorrelation 
operators is 

( c c ~ ~ ~ ~ > ) ~  5 acg('> . acg(" for all k (4.12) 

4.3 THE IMPULSE RESPONSE - SYSTEM lDENTlFICATlON 

The impulse response h is the output signal generated by a linear time-invariant 
(LTI) system when the input signal is an impulse. By definition, the units of hi 
are [output/input]. The impulse response contains all needed information about 
the system. 

4.3.7 The Impulse Response of a Linear Oscillutor 

Let us develop these ideas within the context of a single degree of freedom (DoF) 
oscillator with mass m supported on a spring k and a dashpot c (Figure 4.10a). 
The single DoF system is an LTI system. This model can be used to simulate or 
analyze a wide range of dynamic systems, from ionic polarization at the molecular 
level (Figure 4.10b), to the response of experimental devices such as isolation 
tables and resonant instruments (Figure 4.10c), and the vibration of a trailer and 
the seismic response of buildings (Figure 4.10d). 

The equation of motion represents the dynamic balance of participating forces 
acting on the mass when subjected to forced vibrations x(t): 

where 

x is the time history of the input force, 
y is the time history of the displacement response, and 
dots on y denote fust and second derivatives (velocity and acceleration). 
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Input Resonator Output 
signal band Dass sienal 

Reduced - building 
displacement 

Active - Earthquake motion 

Figure 4.10 The equivalent single DoF oscillator is commonly used in the analysis 
of engineering and science systems: (a) damped linear oscillator; (b) ionic polarization 
in AC field; (c) electrical RCL amplifier; (d) seismic response of buildings with active 
dampers 

Imagine impacting the mass of the oscillator with an "impulse". The oscillator 
will be set in motion and the amplitude of the impulse response hi at discrete 
time ti = i . At will be (for underdamped systems, D < 1.0): 

e-D.o..i.At 

hi = At. . sin (on - m. i - a t )  (4.14) 
m . w n - 2 / I - D i  

where system damping D and natural frequency on are determined by the oscil- 
lator parameters m, k and c: 

C 
D= damping 

2 . m  

natural angular frequency (4.16) 

The natural period Tn is related to the angular frequency w, as T = 2m/on. 
Impulse responses h for single DoF systems with the same natural frequency but 
varying damping levels are shown in Figure 4.1 1. 
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Figure 4.11 Single DoF oscillator. Impulse response h for different values of the damp 
ing coefficient D. The sampling rate is selected so that TJAt = 12 

The units of the impulse response for the single DoF system are [outputlinput], 
that is [displacement/force]. This agrees with the units of the impulse response 
predicted in Equation 4.14: [time2/mass]. 

Note that the amplitude of the impulse response in discrete time h is not unique, 
but it is proportional to the selected sampling interval At (Equation 4.16 - for 
comparison, the impulse response in continuous time is presented in the footnote 
be lo^).^ The justification becomes apparent when the role of the impulse response 
in discrete time convolution is recognized in the next section. For now, let us 
just say that the impulse response will be repeated at every discrete time ti so 
that a smaller sampling interval At means more frequent repetitions of smaller hi 
values and the effects cancel out in the summation. Thus, convolution results will 
be independent of the selected At. (Note: At must satisfy the Nyquist criterion, 
Chapter 3.) 

The response of a single DoF system to an impulse in continuous time is 

The impulse response h(t) corresponds to an ideal impulse signal that lasts At+O and has infinite 
amplitude, yet its area is 1.  The function h(t) only depends on on and D. The units of h(t) are 
[output/(input. time)]. 
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4.3.2 Determination of the Impulse Response 

The impulse and impulse response are mathematical constructs, and they depart 
form physical reality and immediate experimental determination. Difficulties are 
overcome by measuring input and output signals, and processing them in the 
frequency domain (Chapter 6) or through formal deconvolution in the time domain 
(Chapters 8 and 9). Still, simple tests can be performed to gain insight into the 
characteristics of the system and the nature of its impulse response. 

The operational definition of an impulse-type excitation implies a signal with 
much shorter duration than any inherent timescale in the system under study. 
From the point of view of discrete signals, the duration of a physical impulse 
should be about the sampling interval At. Once these conditions are satisfied, the 
amplitude of the response must be related to the energy delivered to the system 
through the applied physical impulse. 

An alternative and often simpler approach is to use a step function 11 as input. 
The impulse 3 is the derivative of a step, 4 = q,, - q (Chapter 3). Therefore, 
system linearity implies that the impulse response h is the derivative of the step 
response sr, and hi = sri+, - sri. There may be some subtleties in this approach. 
For example, consider the implementation of this method with a single DoF 
oscillator; there are two possibilities: 

A positive step: bring a small mass m* onto contact with the oscillator mass 
m and release it at once. (Note: the mass m* should not be dropped!) The 
amplitude of the step is g . m*. 

A negative step: enforce a quasi-static deformation (a constant force is applied), 
then release the system at once. 

In both cases, the mass m will oscillate about the final position, gradually con- 
verging to it. The time-varying displacement normalized by the amplitude of 
the step is the step response g. Note that the effective mass of the oscillator is 
(m + m*) in the first case and (m) in the second case. Then, different damping 
values and resonant frequencies will be determined in these two tests accord- 
ing to Equations 4.15 and 4.16. Therefore, proper system identification requires 
analytical correction in the positive step approach. 

4.3.3 System Identification 

The impulse response completely characterizes the LTI system. If there is an 
adequate analytical model for the system under study, the measured impulse 
response h can be least squares fitted to determine the system parameters. This 
is the inverse problem. 
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Following the example of a single DoF oscillator, let us assume that the system 
under consideration resembles a single DoF. In this case, Equation 4.14 is fitted 
to the measured impulse response to determine m, on ,  and D. Some system 
characteristics can be identified with point estimators. For example, the decrement 
of peak amplitudes h ' e '  in the measured impulse response q can be used to 
compute the damping D: 

where h'peak' and hGneXt @' are two consecutive peaks (see Figure 4.1 1). If 
damping is low (D < 0.1), the time between consecutive peaks is the period T, 
of the single DoF system. Thus, the natural frequency on is 

4.4 CONVOLUTION: COMPUTING THE OUTPUT SIGNAL 

The system output signal y is a convolution between the input & and the sys- 
tem impulse response h. The mathematical expression for convolution logically 
follows from these observations: 

The impulse response h fully characterizes the LTI system. 

A signal & can be decomposed into scale and time-shifted impulses 
where the scaling factor at the discrete time i = k is the signal value xk 
(Chapter 3): 

The generalized superposition principle applies to causal LTI systems; there- 
fore, "the sum of scaled and time-shzfted impulses + the sum of equally scaled 
and time-shifted impulse responses". 

Then, the LTI system output y to an input g can be obtained by replacing the 
shifted impulse 6,-, by the shi7ted impulse response hi-, in Equation 4.19: 
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This is the convolution sum.4 A graphical demonstration is shown in Figure 4.12. 
The convolution operator is denoted with an asterisk 

If the input signal was decomposed into step signals, the convolution sum would 
be obtained following a similar procedure, starting from the equation of signal 
decomposition into steps, and replacing the step for the step response. 

Dimensional homogeneity in these equations is preserved because the input 
signal is decomposed in terms of values x, with dimensions of [input], whereas 
the shifted impulses are dimensionless. On the other hand, the discrete impulse 
response h carries the dimensions of the transformation [outputlinput]. Thus the 
output has dimensions of [output] and the dimensional homogeneity of Equations 
4.20 or 4.21 is satisfied. 

4.4.1 Properties of fhe Convolution Operator - 
Combination of Subsystems 

The convolution operator has several important properties (see exercises at the 
end of the chapter): 

commutative : - x * h = h * z  (4.22) 

associative : (x * h<'>) * h<2> = x * * h<2>) (4.23) . distributive : (z * h"') + (& * hc2')= x * + h<2') (4.24) 

The numbers shown as superscripts in angular brackets < > indicate two different 
impulse responses. The associative property can be used to compute the response 
of a system that consists of two subsystems in series with known impulse response: 
h<global> - h<l>  - - - * h'". On the other hand, if a system consists of two subsystems 
in parallel, the impulse response of the system can be computed from the impulse 
response of the individual subsystems as prescribed by the distributive law: 
h<global> = hcl> + 11<2>. 
- - These results can be generalized to systems with any 
combination of series and parallel subsystems. 

The convolution sum in continuous time is defined as 

m 

y ( t ) =  / x ( r ) - h ( t - ~ ) . d r  
-m 

This integral is also known as "Duhamel's integral" and it first appeared in the early 1800s. Note that 
the integration includes the timescale in dr whereas the summation in discrete time does not, which 
is in agreement with differences in units between h(t) and h discussed earlier. 
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Shifted and scaled impulses Shifted and scaled impulse responses 

4 - Input signal 

Xi 
A - 
Y " 

0 4 6 

-4- 
1 

xT=( l  3 -1 0 0 0) 

Convolution sum y = x * b : sum of 
scaled and shifted impulse response h 

Impulse response 

-4 
i 

hT=(O 2 -1 0 0 0) 

Figure 4.12 Graphical demonstration of the convolution sum 
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4.4.2 Computing the Convolution Sum 

The implementation of the convolution operation in discrete time is demonstrated 
in the form of a spreadsheet computation in Figure 4.13. Each row shows a scaled 
and time-shifted impulse response. For example, the row corresponding to k = 2 
shows the array for the impulse response (b, hl,  h,, h3, . . . ) shifted two places 
and scaled by x,. Entries in every column i are summed to compute the value of 
the output y, co~~esponding to discrete time ti = i . At. 

Convolution can be easily programmed in any algorithmic programming lan- 
guage (FORTRAN, C, Basic), with spreadsheets such as the one shown in 
Figure 4.13, or with mathematical software. Implementation Procedure 4.3 sum- 
marizes the algorithm for computation of the convolution sum and Figure 4.14 
presents an example of the system response as computed with the convolu- 
tion sum. 

Figure 4.13 Convolution. Computation spreadsheet 

Implementation Procedure 4.3 Convolution sum 

1. Determine the array that characterizes the system impulse response 4 = (b, 
h,, h,, . . . h,, . . . ) in discrete time ti = i . At. 

2. Digitize the input signal with the same sampling interval At to produce the 
array & = (%, xl, x,, . . . , xi, . . . ). The number of points in arrays 4 and 5 
does not need to be the same. 
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3. For a given value of i, perform the multiplications indicated in the following 
equation, and sum all values to obtain y,. The summation is in k. 

Yi = x x k  ' h - k  
k 

4. Repeat for next i, until the last element of the input signal x,-, is reached. 
The resulting array y - is the output obtained from the convolution of x and h. 

Example 

Consider a conveyor belt. The impulse response h of a support is determined 
with a sledgehammer (Figure 4.14a). The predicted time history x of the 
repetitive forcing input is shown in Figure 4.14b. The estimated response 
of the support is computed by the convolution operation - y = 5 * II, and it is 
shown in Figure 4.14~. 

Note: A more eficient convolution algorithm is presented in Chapter 6. 

(a) Impulse response h 

(b) Load history g 

Figure 4.14 Convolution example. The dynamic response at the support of a belt conveyer 
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4.4.3 Revisiting Moving Kernels and Cross-correlation 

Signal processing with moving kernels (Equation 4.4), cross-correlation (Equa- 
tion 4.8) and convolution (Equation 4.20) share similar mathematical expressions: 

moving kernel cross-correlation convolution 

Therefore, these three operations are classified as convolutions. The similarity 
between cross-correlation and convolution requires careful consideration. Com- 
pare the columns in the respective computation sheets (Figures 4.7 and 4.13). The 
two sheets are the same if: (1) both signals are of the same length N, (2) the signal 
x is tail-reversed in the cross-correlation operation, and (3) circularity applies so - 
that the signal h repeats before and after, or it "wraps around. In this case, 

The tail-reversed version of array x = [2,4,6,5,3,1] is rev(xJ = [2, l ,  3,5,6,4]. 
Note that the first element is x,, in both arrays. While convolution is commutative, 
cross-correlation is not (Equation 4.11, C C ~ ( ~ * ~ >  = CC:;") and this is properly 
accounted for by tail reversal in Equation 4.25. 

4.5 TlME DOMAIN OPERATIONS IN MATRIX FORM 

Convolution operations, including moving kernels and cross-correlation, are surn- 
mations of binaryproducts. This is analogous to matrix multiplication (Chapter 2). 

The binary products involved in the convolution operation can be reproduced 
in matrix form by creating a matrix h where each column is a shifted impulse 
response (Figure 4.15): the k-th column in matrix h is the array h shifted down 
k places. The signal & is an Nx 1 vector, and the co~volution operation in matrix 
form becomes 

Convolution is commutative; therefore, convolution in matrix form can be 
expressed in terms of the matrix 5 made of vertically shifted copies of the array 5, - 

The definition of convolution in the time domain does not require both arrays 
x and h to have the same number of elements; therefore, the matrix h may not - - 
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\ Each column in h is a shifted replica of impulse response h 

Figure 4.15 Convolution sum in matrix form. Matrix multiplication involves the sum- 
mation of binary products. These are the operations required to implement convolution 

be square. If the matrix in Equation 4.26 were invertible, the input 5 to a 
system could be inferred from the output y as 5 = 4-' . y. This is deconvolution. 
Likewise, if the matrix 5 in Equation 4.27 were invertible, the system impulse 
response h could be determined knowing the input and the output, h = 5-' - y. 
This is system ident$cation. These two inverse problems will be addressed 
Chapter 8. 

Although convolution operations in the time domain can be readily expressed 
in matrix form, higher computational efficiency is achieved when these operations 
are performed in the frequency domain. Time domain operations may still be 
of interest in some applications, such as deconvolution of data streams in real 
time. Furthermore, time domain operations avoid inherent assumptions made in 
the transformation to the frequency domain that lead to circular convolution 
(Chapters 5 and 6). 



96 TIME DOMAIN ANALYSES OF SIGNALS AND SYSTEMS 

4.6 SUMMARY 

The decomposition of signals into scaled and shifted impulses leads to the 
analysis of signals and systems in the time domain. 

The first and most advantageous strategy to control noise is a proper experi- 
mental design. 

Detrending techniques remove low-frequency noise. 

Signal stacking is a robust alternative to control noise effects during signal 
recording. Signal stacking leads to increased signal-to-noise ratio, resolution, 
and dynamic range. 

Moving kernels permit implemention of a wide range of signal processing 
procedures. In particular, moving kernels can be used to remove high-frequency 
noise in recorded one-of-a-kind signals. 

The similarity between two signals is assessed with cross-correlation. Cross- 
correlation is useful in discovering replicas of a signal in the presence of noise 
and in identifying selected frequency components. Stationary noise with zero 
mean cancels out in the cross-correlation sum. 

The impulse response h fully characterizes the LTI system. It is a mathe- 
matical construct and its direct experimental determination is inappropriate or 
inconvenient in most cases. 

The output signal y is the convolution of the input signal 5 with the system 
impulse responses 6. Operationally, convolution is the sum of shifted impulse 
responses h, scaled by the corresponding amplitude of the input signal. 

Signal processing with moving kernels and cross-correlation operations are 
convolutions. 

Convolution operations can be expressed in matrix form. 
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SOLVED PROBLEMS 

P4.1 Application: longitudinal wave propagation. A cylindrical aluminum rod is 
suspended by two strings. The rod is impacted at one end and signals are 
collected with an accelerometer mounted on the opposite end (see sketch: 
rod length L = 2.56 m). Captured signals record multiple reflections in the 
rod. Giving an ensemble of 20 signals: (a) detrend the data, (b) stack, and 
(c) calculate the travel time between reflections using the autocorrelation 
function. Calculate the wave velocity in the rod. 

To AID and storage 

Accelerometer 

Solution: Twenty signals are collected with a sampling rate of 500 kHz so 
that the sampling interval is At = 2 .  low6 s (data by J. Alvarellos and J. S. 
Lee - Georgia Tech). A segment of one record is shown next: 

Impact 

Detrend each signal. Calculate the DC component for each signal and 
subtract it Ziidetrend*z - - zi - DC. Repeat for all 20 records. 

f- 
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Signal stacking. Implement stacking to improve SNR. Note: given the high 
signal-to-noise ratio in the original signal, and the inherent noise cancellation in 
autocorrelation, stacking is not needed in this case. 

Stacked 
signal 0 500 1000 1500 2000 2500 3000 

f 

Autocorrelation. Calculate the autocorrelation using the stacked signal: 

100 

Auto- 
correlation 0 

The time difference between consecutive peaks is the travel time tt between 
reflections: 

The wave velocity in the aluminum rod is 

This is the longitudinal wave velocity in a rod (Note: it is lower than the P-wave 
velocity in an infiite body V, = 6400m/s). 
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P4.2 Convolution. Consider the following short signals and demonstrate the 
associative property of the convolution operator. 

Solution: 

The signals on the right-hand column verify (5 * y) * g = x*(y * g) .  - - 

ADDlTiONAL PROBLEMS 

P4.3 Noise control in the time domain. Noise control by stacking in time or 
in frequency domains is based on statistical principles related to the dis- 
tribution of the mean. (a) Prove by numerical simulation the relationship 
between the mean of the means and the population mean, and the standard 
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deviation of the sample means in relation to the population standard devi- 
ation. (b) Derive the equation to compute the number of signals required 
so that the mean at discrete time i is within predefined bounds, with 
probability p. 

P4.4 Noise control. Is smoothing with moving average a linear operation? Is 
median filtering a linear operation? (Hint: start with the definition of a 
linear system, Section 3.5.) 

P4.5 Stacking and resolution. Use numerical simulation to explore the effect 
of stacking on resolution and dynamic range for different noise levels. 
Discuss. 

P4.6 Impulse response. Demonstrate that if the input x is a step function, the 
derivative of the step response is the system impulse response. (Hint: 
link the concept of numerical derivative with the modified superposition 
principle for LTI systems.) 

P4.7 Convolution operator. Verify that convolution satisfies the distributive 
property (numerically or in close form). Does the demonstration require 
the assumption of linearity? 

P4.8 Convolution and cross-correlation operators. Given: x = [O, 1,0, -2,0, 
0,0,0] and h = [0, O,0, 10,10, 10,0,O], compute y = x * h and CC'",~' 
(no computer needed!) 

P4.9 Convolution and cross-correlation. Prepare a detailed flowchart for pro- 
gramming the convolution and cross-correlation operators. Program the 
two algorithms. Use simulated signals to compare results computed with 
the cross-correlation algorithm and using the convolution algorithm with 
tail reversal. Compute the autocorrelation of background noise. 

P4.10 Convolution in matrix form. Prove that convolution in matrix form can be 
implemented by writing either the impulse response or the input as the 
transformation matrix. In other words, show that Equations 4.26 and 4.27 
lead to the same result. 

P4.11 Convolution in matrix form. Write the matrix convolution operator h for 
an underdamped single DoF system excited by a transient at its base. Is 
the matrix invertible? 

P4.12 Application: optimal design of speed bumps. Consider a car as a single 
DoF system excited at its base, with damping D and resonant frequency o. 
Use this model to design speed bumps to promote cruising speeds lower 
than a preselected speed V,, . 
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P4.13 Application: pavement monitoring system. Utilize the concepts developed 
in Problem 4.13 to design a pavement monitoring system. The goal is to 
determine the pavement surface profile from acceleration records taken 
with a small wheel towed behind a car. Design an experimental proce- 
dure to calibrate the system and discuss possible nonlinearities related to 
wheel diameter and the geometry of surface features. Note that this is a 
deconvolution-type inverse problem! 
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Frequency Domain 
Analysis of Signals 
(Discrete Fourier 
Transform) 

Discrete time signals can be analyzed or decomposed into a series of sines and 
cosines. This representation is called the discrete Fourier transform (DFT) of 
the signal; it is reversible and no information is lost. The DFT underlies most 
signal processing strategies, facilitates the interpretation of signals, enhances the 
characterization of systems, and improves the efficiency of algorithms. However, 
there are several inherent assumptions and limitations in this transformation. 

Why are sines and cosines selected to analyze signals and systems? There 
are two reasons. First, sines and cosines are orthogonal functions and form a 
base for the analysis of signals, as discussed in this chapter. Second, sines and 
cosines are eigenfunctions for LTI systems; this will be the starting point for 
Chapter 6. 

5.1 ORTHOGONAL FUNCTIONS - FOURIER SERIES 

Two functions are orthogonal in the internal [a, b] if 

- - - -  

Discrete Signals and Inverse Problem J. C. Santamarina and D. Fratta 
8 2005 John Wiley & Sons, Ltd 
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where fu and f., are functions with real and imaginary components, f indicates 
complex conjugate of the function f, and c is any number different than zero. 

Given a sinusoid of circular frequency o = 2.rr/T, its u-th harmonic is another 
sinusoid with circular frequency o = u - (2.rr/T), where u is an integer. Harmonics 
fulfill the orthogonality property; therefore, the following relations hold: 

0 i f u # l  
/ c o s ( ~ t )  0 s  t d t =  I T  - i f u = l  
0 2 

[ s i n ( F t )  cos(u$t) . d t = o  for all u 

Invoking Euler's identities (Chapter 2), these equations show that complex expo- 
nential~ are orthogonal as well (see solved problem at the end of this Chapter): 

The integral equation used to determine the orthogonality of two functions is 
equivalent to the equation used to determine the value of cross-correlation for 
zero time shzj? (T = 0 in continuous time). Hence, orthogonality concepts support 
the utilization of cross-correlation to identify frequency similarity between two 
signals (Chapter 4). 

5.1. 1 Fourier Series 

The orthogonality of harmonics suggests that these functions form a base in the 
open interval [0, T[. Then, a continuous periodic function f(t) with period T 
can be expressed as a linear combination of sinusoids with frequencies that are 
multiples of the fundamental circular frequency 27r/T. The summation is known 
as Fourier series. The value at discrete time ti is 

fi = [a,, .cos (u$G) + b u .  sin (u$G)] 
u=-m 

(5.6) 

where the coefficients a, and bu are real. 
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5.1.2 An Intuitive Preview of the Fourier Transform 

Imagine N points in the x-t Cartesian coordinates x = [%, x,, x2, x3, . . . I .  
If a polynomial is least squares fitted through these points p(t) = a +  bx+ 
cx2+dx3 + . . . , we could call the set of coefficients p = [a, b, c, d, . . . ] the - 
"polynomial transform of x". 

Likewise, one can least squares fit the Fourier series (Equation 5.6) to the 
signal x. The set of coefficients X = [%, b,, a,, b,, a;?, b,, a,, b,. . . ] is called the 
Fourier transform of 25, which is herein denoted with a capital letter. The subset 
made of all a-coefficients is called the "real" part Re(XJ, whereas the subset of 
b-coefficients is called the "imaginary" part Im(XJ. Each subset plotted versus 
the frequency counter u provides important information about the signal 5: 

The u-th value in Re@) is the amplitude of the cosine with frequency u(2.rr/T) 
that is needed to form the signal x, 

The u-th value in Im@ is the amplitude of the sine with frequency u(2.rr/T) 
that is needed to form the signal x. 

where the fundamental period T as the length of the time window, so that the 
fundamental circular frequency is 2n/T. Figure 5.1 shows a collection of simple 
signals and the corresponding real and imaginary parts of their Fourier transform 
obtained by fitting the Fourier series to the signals. The signals are simple 
and Fourier transforms are identified by visual inspection and comparison with 
Equation 5.6. A few important observations follow: 

A constant signal, xi = constant for all i, has no oscillations; therefore, all 
terms for u > 0 are null: %>, = 0 and b,,, = 0. For u = 0, cos(0) = 1, and 
the first real coefficient a,, takes the value of the signal. On the other hand, 
sin(0) = 0, and any value for the first imaginary coefficient b, could be used; 
however, b, = 0 is typically assumed. For example, fitting the Fourier series 
to & = [7,7,7,7,7, . . . ] results in Re(X) = [7,0,0,0,0,.  . . ] and Im(X) = 
[O, 0,0,0,O, . . . I ,  as shown in Figure 5.la. 

The Fourier transform of a single frequency cosine signal is an impulse in 
Re(X), whereas the transform of a single frequency sine is an impulse in 
Im(X). For example, if a sine signal with amplitude 7 fits three times in the 
time window, then the Fourier transform obtained by fitting Equation 5.6 is 
an impulse corresponding to the third harmonic in the imaginary component, 
b, =7,  and Re(X) = [0,0,0,0,0,0, .  . . ]  and Im(X) = [0,0,0,7,0,0,.  . .] 
as shown in Figure 5.16. 

Because the Fourier series is a summation, superposition is implied, and the 
cases in Figure 5.ld and e are readily computed. 
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f(t) = 7 sin(3.2~ t) truncated 
10 

b" 

-10 

Figure 5.1 Simple signals and the corresponding real (cosine) and imaginary (sine) 
components of the fitted Fourier series. Note that the truncated sinusoid requires additional 
frequency components to synthesize the signal 



DISCRETE FOURIER ANALYSIS AND SYNTHESIS 107 

What is the Fourier transform of a signal duration T with a one-cycle sinusoid 
duration T/3, shown in Figure 5.lf? A good initial guess is to assume that b, 
will not be zero. Furthermore, there must be other nonzero real and imaginary 
components; otherwise, the sinusoid would be present throughout the duration 
of the signal. 

This intuitive preview suggests a robust interpretation of the Fourier transform: 
it is curve fitting the signal a series of cosines (real part) and sines (imaginary 
part). However, there are several subtleties. For example, note that the signal x 
exists from time zero to T, that is 0 5 ti < T. However, the sinusoids that are 
used to fit the signal exist from "the beginning of time till the end of time, all 
the time", that is -oo < t < +oo. The implications of discretization are explored 
in the next sections. 

5.2 DISCRETE FOURIER A N A  LYSlS A N D  SYNTHESIS 

There are four types of Fourier time-frequency transforms according to the 
continuous or discrete representation of the information in each domain: continuous- 
continuous, continuous-discrete, discrete-continuous, and discrete-discrete. Current 
engineering and science applications invariably involve discrete time and frequency 
representations. Consequently, only the case of discrete-discrete transformation is 
considered. 

There is an immediate and most relevant consequence of selecting discrete 
time and frequency representations: The discrete time and frequency Fourier 
transfom presumes periodic signals. In other words, any aperiodic signal 5 
with N points [x,,, . . . , x,-,] is automatically assumed periodic with fundamental 
period T = N At. A schematic representation is shown in Figure 5.2. 

5.2.1 Synthesis: The Fourier Series Rewritfen 

The Fourier series in Equation 5.6 is rewritten to accommodate the discrete nature 
of the signals in time and frequency domains, and the inherent periodicity associ- 
ated with the discrete representation. The sequence of changes is documented next. 

Change # 1 : Exponentials 

Sines and cosines are replaced for complex exponentials by means of Euler's 
identities with complex coefficients Xu (Chapter 2): 
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Assumed Original 
periodicity signal 

4 ................................. 4 .................... . .............. t 
;\\ xi ' \ --I \ - J  

\ 
r - - -  , r - - -  

I 
\ \ ,' 
\ / '  

, I 

\ J C \\J/ i 
T=N.At 

Figure 5.2 The discrete time and frequency Fourier transform assumes periodicity. 
Therefore, aperiodic signals are converted to periodic signals. The continuous line repre- 
sents the captured signal. The dotted lines are the presumed periodic repetition from time 
-00 to +w 

Change #2: Discrete Time 

The inherent periodicity of a discrete time signal x is T = N . At and discrete time 
time is ti = iAt. Then, Equation 5.7 becomes 
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Change #3: Nyquist Criterion 

The highest frequency that can be resolved from a discrete time signal is the 
Nyquist frequency 1/(2.At), as shown in Chapter 3. Therefore, the highest 
frequency of any harmonic to be included in the series is (1/T) = 1/(2 At). 
Replacing T = N At, the discrete time Fourier series need not extend beyond 
u,, = N/2. Keeping N summation terms, from -N/2 to (N/2) - 1, 

Change #4: Shift in Summation Limits 

The complex exponential does not change if either u or u + N  appear in the 
exponent because d2" = d2* = 1. Then the summation limits are shifted while 
keeping N-terms in the summation. In particular, Equation 5.9 can be written as 

where negative frequencies are avoided. The fact that the summation limit goes 
above N/2 does not imply that higher frequencies are extracted from the discrete 
signal. This is just a mathematical effect that will be discussed further in the text. 
An important conclusion from this analysis is that the Fourier series for discrete 
time periodic signals is finite. 

5.2.2 Analysis: Computing the Fourier Coefficients 

Fourier coefficients Xu can be obtained by least squares fitting the signal with 
the Fourier series in Equation 5.10: given the array x, identify each coefficient X, 
so that the total square error E between measured values xi and predicted values 
x ' ~ ~ '  is minimized, min[E = Z(xi - x ' ~ ~ ' ) ~ ] .  When the fitting is complete, 
the residual is E = 0. (There may be some numerical noise. See solved problems 
in Chapter 3.) 

A better alternative is to call upon the orthogonality property of harmonics to 
identify how much the signal x (N points sampled with an interval At) resem- 
bles a given sinusoid of frequency ou = u . ~ I T / ( N  . At). Following this line of 
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thought, the Fourier coefficients are computed as the zero-shift value of the 
cross-correlation: l 

Note that Equation 5.1 1 is a summation in the time index i, whereas Equation 5.10 
is a summation in the frequency index u. The Fourier coefficient Re(Xo) = C xi 
captures the static component of the signal (zero-offset or DC-offset) and the zero 
frequency imaginary coefficient is assumed Im(Xo) = 0. The array X formed 
with the complex Fourier coefficients Y, is the "discrete Fourier transform" or 
frequency domain representation of the discrete time signal x. The magnitude of 
the Fourier coefficient Xu relates to the magnitude of the sinusoid of frequency 
ou = u .27r/T that is contained in the signal with phase +, 

- 

IXu 1 = f i ~ e  (x:]' + [Im (xU)l2 amplitude (5.12) 

Im (xu) 9" = tan-' (-) 
Re (Xu) 

phase 

5.2.3 Selected Fourier Pair 

The analysis equation and its corresponding synthesis equation form a "Fourier 
pair". From Equations 5.10 and 5.11, 

N- l ..(u$i) 
x u = C x i . e  analysis equation: time + frequency (5.14) 

i=O 
1 N-1 j.(u%i) 

x i = -  c X u . e  synthesis equation: frequency -t time (5.15) 
N u=o 

The normalization factor 1/N is added in the synthesis equation to maintain energy 
content in time + frequency + time transformations. 

There are different Fourier pairs available in computer software and invoked 
in the literature. This Fourier pair is notably convenient in part owing to the 

' The Fourier transform and the Laplace transform in continuous time are: 
m m 

Fourier: X(w) = / i (t)  . e-j'ltdt Laplace: X(s) = 1 x(t) . e+'dt 
-m -m 

where s is the complex variable s = a + j . o. When o = 0, the Laplace transform becomes the Fourier 
transform. The z-transform is the discrete time equivalent of the Laplace transform. 
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parallelism between the analysis and the synthesis equations. (Other advantages 
will be identified in Chapter 6.) If the DFT is implemented with a given analysis 
equation, the inverse DFT (IDFT) must be computed with the corresponding 
synthesis equation in the pair. Table 5.1 summarizes the Fourier pair and related 
expressions. 

The DFT of a one-dimensional (ID) signal in time involves the frequency 
w = 2v/T and its harmonics. If the parameter being monitored varies along a 
spatial coordinate L ,  the wave number K = 2 n / X  is used instead. Analogous 
to signals in time, the maximum wavelength X that is captured in the discrete 
record depends on the sampling interval A t  and the number of points N so that 
X = N . At,  and the exponent u w . t in the complex exponential becomes 

Therefore, the formulation presented earlier is equally applicable to spatial vari- 
ables. 

Table 5.1 Summary: discrete Fourier transform pair and related expessions 

Analysis (from rime -+ to frequency) Synthesis (from frequency -+ to time) 

Static component: & = xi 
i 

Magnitude: IXu 1 = J [ R ~  + [Im (xu)]' 

Phase: cpu = tan-' - [::,'I 
N-1 N-l 

Parseval's identity: xi2 =i C I X U ~ ~  
i=O u=o 

The following expressions are worth highlighting: 
ti = i .  At T = N - A t  

1 
f =- max 2 . A t  

Note: 
The physical dimensions are the same in both domains. 
Summations in "u" can be reduced to (N/2)+1 terms by recalling the symmetry and periodicity 
properties. When the summation is extended from u = 0 to u = N - I the operation is called "double 
sided". When the summation is extended from u = 0 to N/2, the operation is called "single sided". 
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5.2.4 Computation - Example 

In 1965, J. Tukey and J. Cooley published an algorithm for the efficient imple- 
mentation of the DFT. This algorithm and other similar ones developed since are 
known as the "fast Fourier transform" (FFT). Maximum computational efficiency 
is attained when the signal length is a power of 2, N = 2', where r is an integer. 

Signal analysis and synthesis are demonstrated in Figure 5.3. The aperiodic 
tooth signal in Figure 5.3a is transformed to the frequency domain. (Recall 
that the discrete time and frequency representation presumes this signal repeats 
itself.) Both real and imaginary components are shown in Figures 5.3b and c. 
Observe that the static component is equal to Zx,. The synthesis of the signal is 
incrementally computed by adding increasingly more terms in the Fourier series. 
Figures 5.2d-k show the evolution of the synthesized signal. The last synthesized 
signal in Figure 5.2k is identical to the original signal x. 

5.3 CHARACTERISTICS OF THE DISCRETE 
FOURIER TRANSFORM 

The most important properties of the DFT are reviewed in this section. Exercises 
at the end of this chapter suggest the numerical verification of these properties. 

5.3.1 Linearity 

The Fourier transform is a sum of binary products, thus, it is distributive. There- 
fore, given two discrete time signals & and y, and their Fourier transforms X - 
and 1 

5.3.2 Symmetry 

The cosine is an even function cos(u0) = cos(-u0), whereas sine is odd 
sin(u0) = -sin(-&). Therefore, it follows from Euler's identities (Chapter 2) 
that the Fourier coefficient for the frequency index u is equal to the complex 
conjugate of the Fourier coefficient for -u 
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(a)  Original signal: 

(b) Foruier transform: 
407- 

Synthesized signal: - Real - -  - - ,  Imaginary 

0.5 (e) ;w 
(d) 0.0 --...__...--.- 

4.5 4.5 

-1.0 -1.0 

1.5 
48 terms 

0.0 

4.5 . . 
-1.0 

64 terms: Fully 
reconstructed signal 

0.5 

. . . . . . . . . 
-0.5 ... -0.5 

i 
-1 .o -1.0 

Figure 5.3 Analysis and synthesis: (a) original signal, N = 64; (b) and (c) analysis: real 
and imaginary components of the Dm; (d)-(k) synthesis: incremental reconstruction of 
the signal by adding an increasingly higher number of Fourier components 
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5.3.3 Periodicity 

As invoked earlier in relation to Equation 5.10, the complex exponential for 
frequency mu = (u + N) . (2.rr/N. At) has the same values at discrete times ti as 
an exponential with lower frequency wu = u(2n/N - At). Therefore, 

where k is an integer. Therefore, the discrete time andfrequency domain assump- 
tion inherently implies a periodic signal in time and in frequency, and the 
corresponding arrays in each domain repeat with periodicity: 

2n  2 7 ~  
T = N . At (in time domain) N - = - (in frequency domain) (5.20) 

T At 

Figure 5.4 presents a discrete signal & and its discrete transform X, and highlights 
the periodicities in time domain and frequency domains. 

5.3.4 Convergence - Number of Unknown Fourier 
Coemcien fs 

It would appear that there are N complex coefficients Xu; hence, 2 .  N unknowns. 
However, the periodicity - and symmetry properties of the Fourier transform guar- 
antee that Xu = XN_,, where the bar indicates complex conjugate. Furthermore, 
X, and XN/, are real. Then, the number of unknowns is reduced to N. Indeed, 
this must be the case: each value xi permits writing one equation like Equa- 
tion 5.15, and given that complex exponentials form a base, the number of 
unknown Fourier coefficients must be equal to the number of equations N. The 
following numerical example verifies these observations. Consider the time series 
x = [I, 0, 1, 1,0, 1, 1,2] with N = 8 elements. The DFT of x is obtained using - 
Equation 5.14: 

- 
Note that the array X fulfills the relation Xu = X,-,, and that X,, = 7 and 
XN/, = - 1 are real; therefore, there are only N unknowns. 

The fact that N values in the time domain are fitted with N Fourier coefficients 
in the frequency domain implies that there will be no convergence difficulties in 
the DFT of discrete time signals. (Convergence problems develop in continuous 
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Time domain: xi 2~ 

Frequency domain: 

I 

I 
11 

,',,j,l+J, 
I > '  4 u,. I 

-96 O r  N/2=32 64 \I 96 

Figure 5.4 The DFT presumes the signal is periodic both in the time and the frequency 
domains. Observe the symmetry properties of real and imaginary components. The time 
series 5 has a DC offset, thus Re(&) # 0. 

time signals around discontinuities. This is Gibb's phenomenon, and it manifests 
as ripples and overshoots near discontinuities.) In addition, the N information 
units available in the time domain are preserved in the frequency domain, as 
confirmed by the fact that = IDFT[DFT(xJ], indicating that there is no loss of 
information going from time to frequency and vice versa. 

5.3.5 One-sided and Two-sided Definitions 

The DFT was defined for the frequency index u that ranges from u = -N/2 to 
(N/2) - 1 or from u = 0 to u = N - 1. These are called two-sided definitions. - 
Yet, there is no need to duplicate computations when X,, = X,-,: one does not 
physically measure negative frequencies, and cannot resolve above the Nyquist 
frequency. Therefore, one-sided definitions are established between u = 0 and 
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u = N/2. Two-sided definitions are advantageous in analytical derivations. How- 
ever, one-sided definitions are computationally efficient. (See exercise at the end 
of this chapter.) To avoid confusion, derivations, computations, and examples in 
this text are obtained with two-sided definitions. 

5.3.6 Energy 

The energy in a signal 5 is the sum of the square of the amplitude of the signal 
at each point. Each Fourier coefficient Xu indicates the amplitude of the sinusoid 
of frequency mu = u - 2n/T that is contained in the signal. Therefore, the energy 
in the signal is also computed from the Fourier coefficients, as prescribed in 
Parseval's identity, 

The plot of IX,I2 versus frequency is the autospectral density of the signal, also 
known as power spectral density. (Spectral values in one-sided computations 
are twice those corresponding to the two-sided definition except for the zero- 
frequency term.) 

5.3.7 Time Shift 

Consider a wave train propagating along a rod. The signal is detected with two 
transducers. If the medium is not dispersive or lossy, and the coupling between 
the transducers and the rod are identical, then the only difference between the 
signal x detected at the first transducer and the signal y detected at the second 
transducer is the wave travel time between the two r . At. For a single 
frequency w sinusoid, 

if X i  = ej@iAt 

,d I = x. I-[ = e~@(i-r)A' - - xie-jw'At (5.22) 

then Yu = e 

For the given travel time, the higher the frequency signal, the higher the phase 
shift. When phase is measured, computed arctan values can only range between 
[ ~ / 2 ,  -.rr/2], and proper "phase unwrapping" is required (Chapter 6). 
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The derivative of a continuous time sinusoid x(t) = A - sin(w. t) is y(t) = w . A - 
cos(w. t). In words, the derivative of a sinusoid implies a linear scaling of the 
amplitude by the frequency and a -12 phase shift. The first derivative in discrete 
time y can be approximated by finite differences. The corresponding DFT is 
obtained by invoking the time shift property (Equation 5.22): 

-,(.$) 
Xi - Xiwl 1 - e  yi = - then Yu = xu (5.23) At At 

The magnitude of the coefficient that multiplies X,, increases with u. Thus, this 
result predicts the magnification of high-frequency components when a differen- 
tiation transformation is imposed. This is in agreement with observations in the 
time domain whereby the derivative of a signal is very sensitive to the presence 
of high-frequency noise. 

5.3.9 Duality 

The parallelism between the analysis and synthesis equations in a Fourier pair 
(Equations 5.14 and 5.15, Table 5.1) leads to the property of duality. Before pro- 
ceeding, notice that the exponents have the opposite sign in the Fourier pair; this 
means opposite phase: one is turning clockwise and the other counterclockwise, 
or in terms of time series, one is the tail-reverse version of the other. (For clarity, 
replace the exponentials for their trigonometric identities: a tail-reverse cosine is 
the same cosine; however, a tail-reversed sine becomes [-]sine, thus opposite 
phase.) 

Now, consider the signal 5 shown in Figure 5.5a. The DFT of signal 5 com- 
puted with Equation 5.14 is shown in Figures 5.5b and c. Then, the analysis 
Equation 5.14 is used again to compute a second DFT but this time of X, that 
is DFT[DFT@]. Figure 5 . 5 ~  shows that the result is the original signal but in 
reversed order and scaled by N. In mathematical terms, 

1 
(xo, xN-, . . . XI) = - . DFT [DFT (%, x,. . . xN-,)] 

N 

Duality is a useful concept in the interpretation of time and frequency domain 
operations and properties. 

5.3.10 Time and Frequency Resolution 

The time resolution is defined as the time interval between two consecutive 
discrete times; this is the sampling interval At =ti+, - 4. Likewise, frequency 
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Figure 5.5 The duality property of the DFT: (a) the original signal x; (b) its discrete 
Fourier transformed to the frequency domain X; (c) the forward (not inverse) discrete 
Fourier transformation of X sends the series back to the time domain, but the signal 
appears tail-reversed 

resolution is the frequency interval between two consecutive discrete frequencies 
Af = fu+l - fur where each frequency fu is the u-th harmonic of the first frequency 
fu = u . f, = u/(N. At). Then Af = f,,, - fu = (u + 1 - u)/(N. At): 

1 
Af=- 

1 
that is N = - 

N.At Af At 

This is known as the "uncertainty principle" in signal processing: when limited to 
N pieces of information, the resolution in frequency can only be improved at the 
expense of the resolution in time (see solved example at the end of this Chapter). 

5.3.1 1 Time and Frequency Scaling 

The length N of the array 21 can be reduced by decimation (removal of intermediate 
points) or increased by interpolation. Similar effects are obtained by varying the 
sampling interval At during AID conversion: down-sampling or up-sampling. In 
either case, the total time duration of the signal remains the same. Consider a 
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stationary continuous signal x(t) sampled with two different sampling rates At 
and a .At :  

The values zi and zk are equal at the same discrete time ti = &; therefore, i = k - a. 
Likewise, the values of Yu and a .  Z, are equal at the same discrete frequency 
wU = 0,; therefore, u = v/a. Thus, 

1 
if yk.a then - . Y 

a (f) 

DFT 

y u 

z, 

Discrete time 

ti = i - At 

& = k . ( a . A t )  

This result shows the inherent inverse relation between time and frequency. The 
factor l/a in the frequency domain reflects the selected Fourier pair. Down- 
sampling is restricted by the Nyquist frequency. 

5.4 COMPUTATION IN MATRIX FORM 

Signal 

Yi 

zk 

The summation of binary products in analysis and synthesis equations is equiv- 
alent to matrix multiplication, and the transformation X = DFTW implied in 
Equation 5.14 can be computed as: 

Discrete frequency 

2lT 
ou=u- 

N.At 

2lT 
0, = v  

M . a  .At 

~ = F . x  
- Time + Frequency 

[N, 11 [ K N I  [N, 11 

where each row in the Fourier transform matrix F  is the array of values that 
represents a complex exponential. In other words, 6 e  i-th element in the u-th row 
of F is - 

Note that u and i play the same roles in the exponent; therefore, the element FUei 
is equal to the element F,,, and the matrix is symmetric E~ = 1. 

Similarly, the implicit operations in matrix multiplica~on aEply to the synthe- 
sis equation or inverse Fourier transform. The elements in the inverse Fourier 
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matrix &IVJ have positive exponent, and the following equality holds (see 
Equation5.15): 

1 j u )  1 ( u )  1 - 
I ~ v F , ~  = -e - 

N 
- -e 

N = ~ F u , i  
where the bar indicates complex conjugate. (Note: this is in agreement with the 
duality property, where the conjugate implies reversal.) Therefore, the inverse 
Fourier transform is 

1 - 
x = - F . X Frequency + Time - N = -  (5.30) 

Matrix is the Hermitian adjoint of F (Chapter 2). It follows from Equations 5.27 - 
and 5.30 that &= 

Implementation Procedure 5.1 outlines the implementation of Fourier transform 
operations in matrix form. 

Implementation Procedure 5.1 Fourier analysis in matrix form 

1. Digitize the signal x(t) with a sampling interval At to generate the array 5 
[N x 11. 

2. Create the Fourier transformation matrix _F: - 

I for i and u that range between [O.  . . N - I]. The matrix is symmetric. I 
3. The DFT of the signal x is X = E .  x. - I 1 4. The magnitude and the phase of each frequency component are I 

Magnitude : [Xu I = J [ R ~  (xu)]' + [Im (xu)]' 

Phase : cpu 

1 2.rr 
for corresponding frequency: fu = u- or ou = u- 

N -At  N .  At 
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5. Conversely, given a signal in the frequency domain &, its IDFT is the time 
domain signal 3, 

1 - 
x = -F . X where = complex conjugate of Fu,i - N= - 

Note: The fast Fourier transform (FFT) is preferred for large signals. The FFT 
algorithm is included in all commercially available mathematical sofhvare 
and in public domain codes at numerous internet sites. 

5.5 TRUNCATION, LEAKAGE, AND WINDOWS 

Short duration transients can be adequately recorded from beginning to end. Some 
AID converters even permit pretriggering to gather the background signal prior to 
the transient. However, long-duration or ongoing signals are inevitably truncated 
and we only see a finite "window of the signal". 

The effects of truncation are studied with a numerical example in Figure 5.6. 
The sinusoid is truncated when six cycles are completed (Figure 5.6a). The 
autospectral density is shown in Figure 5.6b. Given that this is a single-frequency 
sinusoid, the autospectral density is an impulse at the frequency of the signal. 
Figure 5 . 6 ~  shows a similar signal truncated after 5.5 cycles. The autospectral 
density is shown in Figure 5.6d. In contrast to the previous case, energy has 
"leaked" into other frequencies. 

Leakage is the consequence of two inherent characteristics of the DFT. The 
first one is the unmatched harmonic effect whereby the sinusoid frequency f* in 
Figure 5 . 6 ~  is not a harmonic off,, = 1/(N- At); therefore, the DFT cannot pro- 
duce an impulse at f*. Instead, the DFT "curve-fits" the signal with harmonically 
related sinusoids at frequencies fu = u/(N. At). The second cause for leakage 
results from the presumed periodicity in the DFT: the signal in Figure 5 . 6 ~  is 
effectively considered the periodic signal in Figure 5.6e. The resulting sharp 
discontinuities at the end of the signal require higher-frequency components; in 
addition, the lack of complete cycles leads to a nonzero static component. 

The window imposed on the analog signal during AID conversion into a finite 
record is a sharp-edged off-on-off window and magnifies discontinuity effects. 
Leakage is reduced by "windowing the signal" with gradual window arrays w. 
The windowed signal x'"'"' is obtained multiplying the signal x with the window 
w point by point: - 
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Figure 5.6 Truncation and windowing: (a, b) the DFT of a single frequency sinusoid is 
an impulse if it completes an integer number of cycles in the duration of the signal T; 
(c, d) this signal has an incomplete number of cycles; its DFT is not an impulse and has a 
static component; (e) periodic assumption in the Dm, (f) signal in frame 'c' but windowed 
with smooth transition towards zero ends; (g) autospectrum of the windowed signal 
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The Hanning and Hamming windows are two common windowing functions: 

$+; -cos  -(i-M) 
E 

Hanning w = [ [P ] Ji-MI 5 - 2 (5.33) 
otherwise 

E 
Hamming wi = ( 

0 otherwise 

These windows are centered around i = M and have a time width E . At. In this 
format, the rectangular window becomes 

E 
Rectangular wi = 1 li-MIS- 

2 
0 otherwise 

Figure 5.6f shows the signal in Figure 5 . 6 ~  when the Hanning window is used. 
Finally, Figure 5.6g shows the autospectral density of the windowed signal. 

The energy available in the windowed signal is reduced by windowing. The 
ratio of the energy in the original signal 5 and the windowed signal xCW'"' can 
be computed in the time domain: 

5.6 PADDING 

A longer duration N - At signal renders a better frequency resolution Af = 
1/(N. At). Therefore, a frequently used technique to enhance the frequency reso- 
lution of a stored signal length N consists of "extending" the signal by appending 
values to a length M > N. This approach requires careful consideration. 

There are various "signal extension" strategies. Zero padding, the most common 
extension strategy, consists of appending zeros to the signal. Constant padding 
extends the signal by repeating the last value. Linear padding extends the signal 
while maintaining the first derivative at the end of the signal constant. Finally, 
periodic padding uses the same signature for padding. 
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20T Autospectrum 

F i r e  5.7 Time and frequency resolution: (a, b) original N = 16 signal and its auto 
spectrum; (c, d) zero-padded signal with N = 32 and its auto spectrum. Padding increases 
frequency resolution. The peak in the autospectral density of the original signal is absent 
because there is no corresponding harmonic. (Note: the time interval At is kept constant, 
the number of points N is doubled, and the frequency interval is halved.) 

Figure 5.7 presents an example of zero padding. The signal length is N = 16 and 
the DFT decomposes it into harmonics f, = u/(16At), while the padded signal 
is length M = 32 and the associated harmonics are f, = v/(32At). The sinusoid 
duration is 11 .At; thus, its main frequency is f* = l / ( l  1 . At). Therefore, the 
harmonic for v = 3 in the DFT of the padded signal is quite close to f*, but there 
is no harmonic in the DFT of the original signal near f*. 

The following observations follow from this example and related analyses: 

Signal extension is not intended to add information. Therefore, there is no new 
information in the frequency domain if the same information is available in 
the time domain. 

The real effect of padding is to create harmonic components that better ''tit" 
the signal. 

Zero and periodic padding may create discontinuities; plot the signal in the 
time domain to verify continuity. 
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The negative effects of padding are reduced when signals are properly 
detrended and windowed first. 

The signal length can be increased by adding zeros at the front of the signal; 
however, this implies a time shift in all frequencies, and a frequency-dependent 
phase shift, as predicted in Equation 5.22. 

Signal extension to attain a signal length N = 2' allows the use of more com- 
putationally efficient Fast Fourier transform algorithms. However, harmonics 
may be lost: for example, a sinusoid with period 450 - At in a signal length 
N = 900 has a harmonic at u = 2, but it has no harmonic when the signal is 
zero padded to M = 21° = 1024. 

When the main frequency in the signal under study is a known value f*, then 
record length N and sample interval At are selected so that f* is one the 
harmonics f,, = u/(NAt) in the discrete spectrum. 

The DFT presumes the signal is periodic with fundamental period T = 
N . At. Signal extension increases the fundamental period and prevents circular 
convolution effects in frequency domain computations (Chapter 6). 

The previous observations apply to deterministic signals. In the case of random 
signals, signal extension must preserve stationary conditions. 

Enhanced resolution with harmonics that better "fit" the signal lead to more 
accurate system identification (review Figure 5.7). Consider a low-damping single 
degree of freedom oscillator: the narrow resonant peak may be missed when the 
frequency resolution is low and no harmonic f, matches the resonant frequency. 
In this case, the inferred natural frequency and damping of the oscillator would 
be incorrect. 

5.7 PLOTS 

A signal in the time domain (time or space) is primarily plotted as xi versus 
time ti = i . At. However, there are several alternatives in the frequency domain 
to facilitate the interpretation of the information encoded in the signal. Consider 
the signal in Figure 5.8a, which shows the free vibration of an oscillator after 
being excited by a very short impulse-like input signal. Various plots of the DFT 
are shown in Figures 8b-h: 

Figure 5.8b shows the autospectral density versus the frequency index u. The 
first mode of vibration is clearly seen. When the autospectral density is plotted 
in log scale, other low-amplitude vibration modes are identified (Figure 5.8~). 
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Figure 58 Different plots of the DFT of a signal: (a) original signal 4 in time domain; 
(b, c) autospectral density - normal and log magnitudes; (d, e) real and imaginary com- 
ponents versus frequency index u; (f, g) amplitude and phase versus frequency index u; 
(h) imaginary versus real component (Cole-Cole plot); (i) amplitude versus phase. Fre- 
quency domain data are presented single-sided, for u = [O, N/2] 
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Figures 5.8d and e show the real Re(X,) and imaginary Im(&) components 
of the DFT versus the frequency index u. 

Figures 5.8f and g show the amplitude )&I and the phase cpu versus the 
frequency index u. 

Figure 5.8h shows the imaginary component Im(X,,) versus the real component 
Re(Xu). This is called the Cole-Cole plot, and it is used to identify materials 
that show relaxation behavior (e.g. response of a viscoelastic material); a 
relaxation defines a semicircle in these coordinates. 

Figure 5.8i shows a plot of amplitude versus phase. 

Any frequency is readily recovered from the frequency counter u as fu = u/(NAt). 
In particular, the frequency associated with the peak response is the oscillator 
resonant frequency. The oscillator damping is reflected in both time and frequency 
domains: low damping is denoted by multiple oscillations in the time domain 
(Figure 5.8) and a narrow peak in the frequency domain (Chapter 4). 

5.8 THE TWO-DIMENSIONAL DISCRETE FOURIER 
TRANSFORM 

A 2D signal x(p, q) captures the variation of a parameter in two dimensions p and 
q. During A/D conversion, the signal is digitized along a grid made of M discrete 
values in p and N discrete values in q. The discrete 2D signal is a matrix & 
where entry xi,, corresponds to location p = i - Ap and q = k . Aq. The 2D sign2 
may involve data gathered in any two independent dimensions, such as a digital 
picture or a sequence of time series obtained at different positions in space. 

The DFT X of 5 is also a matrix; each entry Xu,, corresponds to frequencies 
fu = u/(M - &) and fv = v/(N . Aq). The 2D Fourier transform pair is 

M-l N-1 
-j ,.z .,' ( ) .e-j(u.g.i) 

Xu,v = z [& '1.k . I 2D Analysis (5.37) 

1 N-1 j v  F k  . 
2D Synthesis (5.38) 

v=o I 
The 2D DFT can be computed with 1D algorithms in two steps. Fist, an interme- 
diate matrix is constructed where each row is the DFT of the corresponding - 
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row of x. The columns of the final 2D Fourier transform X are obtained by - 
computing the DFT of the corresponding columns in m. 

Analysis and synthesis operations can be e~~ressedinmatr ix form, in analogy 
to the case of 1D signals. In particular, if the discrete signal is square M = N, 
the 2D Fourier transform of x is - 

T 

from p q  to f,-f, 

where the second equality follows from F~ = F. The k-th element in the v-th row - - 
of F(N x N) is - 

Because - N . I = E - F  - -  (Equation 5.31), the synthesis equation in matrix 
form is 

from f,-f, to p-q 

Other concepts such as resolution, truncation and leakage, discussed in relation 
to 1D signals, apply to 2D signals as well. 

Examples of 2D DFT are presented in Figure 5.9 (see solved example at the 
end of this Chapter). The following observations can be made (analogous to the 
1D DlT Figure 5.1). The DFT of a uniform 2D signal has only the real DC 
component at u = 0, v = 0 (Figure 5.9a). The DFT of the linear combination of 2D 
signals is the linear combination of DFT of the individual signals (Figure 5.9b). 
A single frequency sinusoid becomes an impulse in the frequency domain in the 
same direction as the signal in the time domain (Figure 5 .9~) ;  if there is leakage, 
it manifests parallel to the u and v axes. 

5.9 PROCEDURE FOR SIGNAL RECORDING 

The most robust approach to signal processing is to improve the data at the 
lowest possible level (review Section 4.1.5). Start with a proper experimental 
design: explore various testing approaches, select the transducers that are best 
fitted to sense the needed parameter under study, match impedances, reduce 
noise by proper insulation (electromagnetic, mechanical, thermal, chemical, and 
biological) and use quality peripheral electronics. If the signal is still poor, then the 
option of signal stacking should be considered before analog filters are included 
in the circuitry. 
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Input 2D signal: x,,= I Imaginary component 

k 
U ". Ll; , , 

1L 

* 

h . . - .  
. . , . . X U  

I !a B u 1 0  4 u 
DCatu=Oandv=O 

(a) 

Input 2D agnal: Real component Imaginary component 

u =  10 (b) 

Rcal component 
, "l--c-pnent 

1- 

1 
0 1" = u u=? = U 

(C) 

Figure 5.9 The 2D-DFT: (a) constant-value signal: the only nonzero value in 2D-DFT is the 
DC component; (b) the signal = COS(~O$!~) + sin(4gi) has one peak in the real part and 
one peak in the imaginary components of the 2D-DFT-note the direction in each case relative 
to the image; (c) the 2D-DFT of the single frequency sinusoid x,,, = sin [ 4 5  (i + 0.5k)] is 
aligned in the same direction as the oscillations in the signal 

Once these recommendations have been taken into consideration, start planning 
the signal digitization and storage. Concepts discussed in this and the previous 
chapters permit outlining of common guidelines for signal recording that are appli- 
cable to most situations. When signal processing involves DFTs, data gathering 
must consider signal length, truncation and leakage, windowing, and frequency 
resolution. Guidelines are summarized in the Implementation Procedure 5.2. 
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Implementation Procedure 5.2 Recommended procedure for signal 
recording 

1. The signal must be improved at the lowest possible level, starting with a 
carefully designed experimental setup, adequate choice of electronics, and 
proper isolation of the system to reduce noise. 

2. It is advantageous to extend the recording duration T so that zero amplitude 
is recorded at the front and tail ends of the signal. This is possible in 
short-duration events. 

3. The sampling interval or time resolution At must be selected to prop- 
erly digitize the highest-frequency component of interest f,,, fulfilling 
the Nyquist criterion. It is recommended that At - l/(lO.fm) be used. 
If unwanted higher frequency components are expected, they should be 
removed with an analog filter before digitalization. Many AJD systems 
include antialiasing filters at the input to automatically remove frequency 
components that would be aliased otherwise. 

4. The total number of points to be recorded is estimated as N = T/At. If 
you know the main frequency in the signal under study f*, then combine 
record length N and sample interval At so that P is one of the harmonics 
f, = u/(NAt) in the discrete spectrum. 

5. Detrend and remove spikes in the signal before the signal is transformed. 

6. Window truncated signals to reduce leakage. Windowing and zero-offset 
corrections may be repeated. 

7. Extend the recorded signal to increase frequency resolution. Make sure 
that there is a harmonic in the padded signal that corresponds to the main 
component P in the signal under study. 

5.10 SUMMARY 

Harmonically related sinusoids and complex exponentials are orthogonal func- 
tions in the open interval [0, T[. Therefore, they form a base that can be used 
to express any other function as a linear combination. This is the foundation 
for the DIT. 

For a robust interpretation of the DFT of a signal length N, remember that: 
(1) the DIT is equivalent to fitting the signal with a series of cosines and sines 
and storing the amplitudes in the "real" and "imaginary" arrays, (2) the signal 
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is assumed periodic with period equal to the duration of the signal T = N . At, 
and (3) only harmonically related sinusoid frequencies f,, = u/(N At) are used. 

The DFT has a finite number of terms. In fact, there are N information units 
in a signal length N, both in the time domain and in the frequency domain. 
There are no convergence difficulties in the DFT of discrete time signals. 

The parallelism between analysis and synthesis relations in a Fourier pair leads 
to the duality of the DFT. 

Resolution in time is inversely proportional to resolution in frequency. Signal 
extension or padding decreases the frequency interval between consecutive 
harmonics. 

The truncation of ongoing signals produces leakage. Leakage effects are 
reduced by windowing signals with smooth boundary windows. 

The DFT can be applied to signals that vary along more than one independent 
variable, such as 2D images or data in space-time coordinates. 

The signal must be improved at the lowest possible level, starting with careful 
experimental setup, adequate choice of electronics, and proper isolation of the 
system under study to reduce noise. While planning analog-to-digital conver- 
sion, the experimenter must take into consideration the system under study and 
the mathematical implications of digitization and DFT operations. 
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SOLVED PROBLEMS 

P5.1 Fourier series. Demonstrate that: 
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Solution: Using Euler's identities 

T 

f (TI = / [cos ($ t) + j . sin ($ t ) ] [COS (u t ) - j . sin (u $ t) ] - dt 
0 

I cos($t) .cos(u$t) -j.cos($t) . ~ i n ( ~ $ t )  

f (T) = / 
0 

+j - sin ($ t) cos ( u g t )  + sin ($ t) sin (u$ t) 

Invoking Equation 5.4, the previous equation simplifies to 

T T 

,(T) =/ [cos ( F t )  ecos (u$t)] . d t + /  [sin ($t) .sin (u$t)] d t  
0 0 

And, from Equations 5.3 and 5.4: 

P5.2 Digitization. Given a sampling interval At = 10-3s and a record length 
T = 0.5s, compute: (a) frequency resolution, (b) frequency corresponding 
to the frequency counter u = 13, (c) the shortest time shift compatible with 
a phase shift A+ = T for the frequency component that corresponds to 
u = 10. 
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Solution: 

(a) The frequency resolution is Af = 4 = & = 2Hz 

(b) The frequency corresponding to u = 13 is f,3 = u . Af = f = 13 . 2  Hz = 
26 Hz 

u at (c) Phase and time shifts are related as - = - 
2Tr Tu 

A+ T The time shift is 6t = 2- = 0.025 s 
2Tr u 

P5.3 2D-Fourier transform. Create a 2D image x to represent ripples on a pond. 
Calculate the discrete Fourier transform ~ r ~ n a l ~ z e  the results. 
Solution: Definition of function x (Rx N elements where N = 64) - 

Distance from the center of the pond: 

Displacement function: 

juzi 
Discrete Fourier transform matrix: FuVi = e- N 

2D discrete Fourier transform: - X = F . x . F  - - - -  

Magnitude: I&,V 1 = xu." . z 
where the spatial indices i and k range from 0 to N - 1 and the frequency 
indices u and v range from 0 to N - 1. Time and frequency domain plots 
are presented next. Only one quadrant of the 2D-DFT is shown: 
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Interpretation: There are 15 ripples in both i and k directions along the 
center of the plot. That is the location of peak energy along the u and v axis. 

Explore this solution further. What happens if you shift the center of 
the ripples away from the center of the image? What is the 2D-DFT of a 
signal with elliptical ripples? 

ADDITIONAL PROBLEMS 

P5.4 Fourier series. Compute the fourth-order discrete Fourier series (u = 
0, 1,2,3,4) that best approximates an odd square wave. Repeat for an 
even square wave. Compare the coefficients for sine and cosine compo- 
nents in both cases. What can be concluded about the decomposition of 
even and odd signals? 

P5.5 Discrete Fourier transfonn pairs. There are various Fourier pairs besides 
the one presented in Table 5.1; for example: 

N- 1 N- 1 
Analysis: a,, = C xi . cos ( u g  i) and bu = 1 C xi . sin ( u g  i) 

i=0 i=0 
N- 1 

Synthesis: xi = C [a,, . cos (ugi )  + j bu - sin (ugi)]  
u=O 

Determine the relationship between this Fourier pair and the one presented 
in Table 5.1. Explicitly state the relationship between a,, and b,, and Xu. 

P5.6 Properties of the discrete Fourier transform. Demonstrate the following 
properties of the DFT of discrete periodic signals: linearity, periodicity, 
differentiation, Parseval's relation, time shift, and N - I = r.  F (matrix - - -  
operations). Is the magnification of high-frequency components linear with 
frequency in Equation 5.23? 

P5.7 Single-sided discrete Fourier transform. Use the properties of the DFT 
to show that the computation of the DFT can be reduced to coefficients 
u = 0 to u = N/2. Rewrite the synthesis equation to show this reduced 
summation limits. Corroborate your results using numerical simulation. 
Compare the autospectral density in both cases. 

P5.8 Discrete Fourier transform of a complex exponential. What is the DFT 
of a complex exponential? Consider both positive and negative expo- 
nents. Solve this problem both analytically and numerically. (Important: 
use double sided formulation, that is, from u = 0 to N - 1; this exercise 
is revisited in Chapter 7.) 
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P5.9 Padding. Generate a N = 300 points sinusoid xi = sin (8 - $ . i). Consider 
different padding criteria to extend the signal to N = 512 points and com- 
pute the DFT in each case. Analyze spectra in detail and draw conclusions. 

P5.10 Application: signal recording and preprocessing. Capture a set of signals 
within the context of your research interests. Follow the recommendations 
outlined in the Implementation Procedure 5.3. For each signal: 

Detrend the signal. 

Window the signal with a Hamming window (test different widths E). 

Compute the DFT and plot results in different forms to highlight the 
underlying physical process. 

Infer the characteristics of the system (e.g. damping and resonance if 
testing a single DoF system). 

Double the number of points by padding, compute the DFT and compare 
the spectra with the original signals. 

Repeat the exercise varying parameters such as sampling interval At, 
number of stored points N, and signal amplitude. 

P5:ll Application: sound and octave analysis. The octave of a signal frequency 
f is the first harmonic 2f. In "octave analysis", frequency is plotted in 
logarithmic scale. Therefore, the central frequency of each band increases 
logarithmically, and bins have constant log-frequency width; that is, the 
frequency width of each bin increases proportionally to the central fre- 
quency. Systems that operate with octave analysis include filters with 
upper-to-lower frequency ratio 2n, where n is either 1, 112, 116, or 1112. 
This type of analysis is preferred in studies of sound and hearing. Create a 
frequency sweep sinusoid x with frequency increasing linearly with time. 
Plot the signal. Compute X = Dm(@. and plot the magnitude versus 
linear and logarithmic frequency. Draw conclusions. 

P5.12 Application: Walsh series. A signal can be expressed as a sum of square 
signals with amplitude that ranges between +1 and -1. In particular, the 
Walsh series is orthogonal, normalized, and complete. Research the Walsh 
series and: 

1. Write the Walsh series in matrix form (length N = 16). 

2. Study the properties of the matrix. Is it invertible? 
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3. Apply the Walsh's decomposition to a sinusoidal signal, a stepped 
signal (e.g. transducer with digital output), and to a small digital image. 

4. Analyze your results and compare with Fourier approaches (see also 
the Hadamard transform). 



Frequency Domain 
Analysis of Systems 

The discrete Fourier transform brings a signal from the time domain to the 
frequency domain by fitting the discrete time signal with a finite series of harmon- 
ically related sinusoids (Chapter 5). This chapter shows that the system response y 
to an input signal x can be readily computed using frequency domain operation< 
The first question to be addressed is whether sinusoids offer any advantage in 
the study of systems. 

Because of the equivalence with convolution, cross-correlation and filtering 
are reviewed in this context. Procedures presented in this chapter presume that 
systems are linear time-invariant (LTI). Therefore, the generalized superposition 
principle applies. 

6.1 SINUSOIDS AND SYSTEMS - EIGENFUNCTIONS 

Consider a single degree of freedom (DoF) system. When this system is excited 
with an impulse, it responds with a characteristic signature known as the impulse 
response h. The impulse response has all the information needed to characterize 
the LTI system (Chapter 4). 

What is the response of an LTI system when it is excited with a single fre- 
quency sinusoidal forcing function? Consider the single DoF oscillator analyzed 
in Chapter 4. Deformation compatibility at the boundary is required to main- 
tain a linear response; therefore, the mass displacement will also be a sinusoidal 
function of the same frequency as the input force, and with some amplitude and 
phase (Figure 6.1; also Section 4.4). Euler's identities allow us to extend this 
observation to complex exponentials. This conclusion extends to all LTI systems 

Discrete Signals and Inverse Problem J. C. Santamarina and D. Fratta 
B 2005 John Wiley & Sons, Ltd 
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I 1 

Excifurion 
x, - 

- Load cell + 

-1 

1 
LVDT ---t 

Y, - 

Figure 6.1 A single DoF oscillator excited with a single-frequency sinusoidal forcing 
function - Amplitude and phase response 

and states that 

if x(t) = sinusoid or a complex exponential 

then y(t) = Hu - x(t) in an LTI system (6.1) 

where the complex number H, conveys amplitude and phase information corre- 
sponding to the excitation frequency o,. This situation resembles eigenvectors in 
matrix algebra: given the transformation y = g - &, a vector x is an eigenvector of 
a if the outcome y can be expressed as the of a scalar A times the vector - - 
x (Section 2.2.3),- - 

if x is an eigenvector 

then y = X .x - 
where A is the corresponding eigenvalue. In other words, the output y is like the 
input 5 but scaled by A, which may be a complex number. By analogy, sinusoids 
and complex exponentials are "eigenfunctions" for LTI systems, and H, are the 
corresponding eigenvalues. 

6.2 FREQUENCY RESPONSE 

A series of complex numbers H, can be determined by exciting the system at 
different frequencies o,. The array of Hu values is the system frequency response 
H. Implementation Procedure 6.1 outlines a possible experiment to determine the - 
frequency response H. 
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Implementation Procedure 6.1 Determination of the frequency response 
H - Sinusoidal sweep method - 

1. Connect a frequency-controlled sinusoidal output source to the system 
under consideration. 

2. Monitor the system response. Verify that transducers have an operating 
frequency compatible with the frequency range of interest. 

3. Tune the source to a circular frequency w,. Measure the time history of the 
source 5 and the response - y. Determine the amplitude of 5 and y, and compute - 

amplitude of - y at frequency w, 

IHu1 = amplitude of 5 at frequency a,, 

4. Measure the relative phase cp between 5 and - y (Figure 6.1): cp, 

5. Repeat for different circular frequencies w, = 2.rr - f,. 
6. Assemble the array H of complex numbers H,: 

H, = I~I~cos(cp,)+j~I~I~~in(cp,) 

7. Transducers and peripheral electronics transform the signal. Determine their 
frequency response through calibration with known specimens and correct 
the measured response H to determine the true system frequency response 
(see Implementation Procedures 6.5 and 6.6). 

Notes 

The proper assembly of the array JI requires that entries H, are obtained at 
equal frequency spacing Af for a total of Nl2 readings. Then, this assembly 
must be repeated with the tail reserve of its complex conjugate to obtain the 
double-sided form of JI. The complete array is used to evaluate the system 
response to an N-point input array that is captured with At = 1/(N - Af). 

The log-linear plot of the magnitude of H versus A, helps identify the 
presence of higher modes (see Figure 5.8b). 

This method is recommended when the SNR is very low. When the SNR is ade- 
quate, the use of broadband signals leads to more eficient determination of H; 
the required signal processing methods are presented later in Implementation 
Procedure 6.6. 
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6.2.1 Example: A Single Degree-of-freedom Oscillator 

The frequency response of simple systems can be mathematically computed in 
closed form. Consider once again the single DoF oscillator analyzed in Chapter 4 
(also Figure 6.1). The equation of motion is 

If the forcing function is a complex exponential, x(t) = F,, - ej.o,t, Equation 6.3 
can be written as 

where F,, is the amplitude of the forcing function. Because a complex exponential 
is an eigenfunction of the system, Equation 6.1 predicts the mass displacement 
y(t) to be 

y(t) = H(o) [F, . eJ.m.t] for excitation frequency o (6.5) 

This equation is substituted into Equation 6.4. After computing the derivatives, 
the following expression for H(w) is obtained: 

This is the oscillator frequency response H(o). The coefficient D is the 
damping ratio D = c/(2. m on),  and on is the oscillator natural frequency 
w, = Jk7m. Figure 6.2 shows the amplitude IH(w)l and the phase cp = 
tan-' {Im[H(w)]/Re[H(o)]) as a function of the excitation frequency. Results are 
presented in dimensionless form in terms of [H(o) - k] and ofon. 

6.2.2 Frequency Response and Impulse Response 

The frequency response of the single DoF system, Equation 6.6, is a func- 
tion of all the characteristics of the system. This can be generalized to all 
LTI systems: an LTI system is completely characterized by its frequency 
response a. 
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Figure 6.2 Frequency response of a single DoF system for different damping ratios: 
(a) dimensionless amplitude II-I,,I . k; (b) phase. Frequency is presented in dimensionless 
form ou/on 

A similar observation was made in the time domain about the impulse response 
11 (Section 4.3). Therefore, the impulse response and the frequency response have 
the same information content and must be mathematically related. Indeed, this is 
the case: for an LTI system, the frequency response H is the DFT of the impulse 
response h: 

Once again, the DFT preserves the information in the array (see also Section 5.1). 
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6.3 CONVOLUTION 

It has been shown that a signal can be expressed as a linear combination of 
harmonically related complex exponentials. In particular, the input signal x can 
be expressed as 

If x acts on an LTI system, each of the complex exponentials in the summation 
will cause a scaled and phase-shifted exponential in the response, as prescribed 
in Equation 6.1. Applying the superposition principle "sum of the causes + 
sum of the effects", the output y of the LTI system to the input signal x can be 
computed from Equation 6.8 b y  replacing the input sinusoids by their response 
(Equation 6.1): 

This time domain result yi is computed with frequency domain coefficients Xu 
and H, . Regrouping coefficients, 

This is the discrete Fourier synthesis equation for y. Hence, the coefficients in 
square brackets must be the u-th term of the Dm oTy, - 

where: 
Xu is the u-th element of the D lT  of the input signal A; 
H, is the u-th element of the frequency response H which is H = DFT(k); 
Y, is the u-th element of the D lT  of the output signal y; and 
wu = 2 ~ f ,  = u .2.rr/(N. At) is the frequency of the u-tKharmonic. 

Therefore, the convolution sum in the time domain y = h * 22 becomes a point- 
by-point multiplication in the frequency domain Y;= H, .Xu. An alternative 
demonstration is presented under solved problems at the end of this chapter. 

A signal has the same dimensions in both time and frequency domains. There- 
fore, the units of the frequency response H must be [units of output]/[units of 
input], according to Equation 6.11. For example, the units of H(w) in Equation 6.6 
for the single DoF oscillator are [units of deformation]/[units of force]. 
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6.3.7 Computation 

Because of the efficient computation of the DFT with fast Fourier transform algo- 
rithms, convolution and other operations in the time domain are often executed in 
the frequency domain. The computation of convolution in the frequency domain 
is outlined in Implementation Procedure 6.2. 

Implementation Procedure 6.2 Convolution in the frequency domain 

1. Determine the values H,, that define the system frequency response H for 
the harmonically related frequencies ou = u - 27r/(N - At). The frequency 
sweep method can be used, as described in Implementation Procedure 6.1. 
Note: alternative procedures are presented later in this Chapter. 

2. Compute the DFT of the input signal X = Dm(&). 

3. Obtain the output signal in the frequency domain 1 by multiplying point 
by point the two arrays in the frequency domain: 

Values Xu and H,, are complex numbers; consequently, the values Yu are 
complex numbers as well. 

4. Compute the response y in the time domain as y = IDFT(3. - - 

Example 

A numerical example is presented in Figure 6.3. The sawtoothed input x 
is convolved with the system impulse response h using frequency domain 
operations. 

Note: Some F'ourier pairs require the multiplication of the convolution by a 
normulizing factor, such as N era. The Fourier pair selected in this book 
is compatible with the approach outlined in this Implementation Procedure. 
To test the available DFT algorithm, implement the following computation 
with N = 8, 

define: h=(O,1,2,0,-1,0,0,0) andx=(1,0,0,0,0,0,0,0)  

compute : H = DFTW 
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X = Dm(&) - 

Y u = K . &  for all u 

y = IDFT(YJ - 
result - y=(O,1,2,0,-1,0,0,0) 

The computed y should be equal to h_. Otherwise, the computation of the 
convolution operator with frequency domain operations must be corrected for 
the proper normalization factor. 

A numerical example is shown in Figure 6.3. The sawtooth input signal x 
and the system impulse response h are known (Figures 6.3b, c). Convolution is 
computed in the frequency domain. The output signal - y is displayed in Figure 6.3d. 

6.3.2 Circularity 

The DFT presumes the signal is periodic, with period equal to the signal dura- 
tion T = N At (Section 5.3.3). This can produce misleading results when the 
convolution operation is implemented in the frequency domain. 

Consider a low-damping single DoF system. The "assumed periodic" input 
and the impulse response h are shown in Figures 6.4a and b; the known signals 
are indicated by continuous lines and the presumed signals are represented as 
dashed lines. The convolution computed in the frequency domain renders the 
output y shown in Figure 6 .4~ ;  the computed result is the continuous line. The tail 
on the Lft-hand side of the response y is caused by the "prior excitation" in the 
presumed periodic input signal x. Thiseffect is known as "circular convolution". 

The effects of circular convolution are minimized or cancelled when the signal 
length is extended by padding, M > N, so that the signal presumed period M-At 
increases (see Chapter 5). 

6.3.3 Convolution in Matrix Form 

The point-by-point operation Yu = H, .Xu can be captured in matrix form by 
assembling a diagonal matrix diagH whose entries in the main diagonal are 
diagH,, = Hu and other entries are zero (diagH,,, = 0 for u # v). Then, 
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(a) Time domain Frequency domain 
Input - x + DFT -3 - X 
Impulse response h -3DFT-1 - H 
Output l=h*& t I D F T t  Yu=H,,Xu 

Figure 6 3  Convolution in the frequency domain. The sawtooth input signal x and the 
impulse response of the system h are known. (a) Sequence of calculations; (b) input 
signal 5; (c) impulse response h; (d) output signal - y 

Expressing the DFT in matrix form: 1 = F .  y and 25 = F x (Section 5.4). Equa- - - - 
tion 6.1 1 becomes 

On the other hand, the inverse of F is F-' = (1/N) - E, where the entries in matrix - 
F are the complex conjugates oftheentries in F (Section 5.4). Premultiplying - - - 
both sides by F-', - 
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Presumed Signal Presumed 

Figure 6.4 Circularity. The example corresponds to a single DoF system with low 
damping. The continuous trace shows the signals used in the computations. The dashed 
lines represent the periodicity assumption of the DFT. (a) Input signal x; (b) impulse 
response h; (c) output signal y obtained by implementing the convolution of and h with 
frequency domain operations~The system "responds" before the input is applied! 

This equation must be equivalent to the matrix form of the convolution in the time 
domain, y = h .  5, where the columns in mamx h are shifted impulse responses h - 
(Section 4.5):~ence 
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Example-Verification 

Equation 6.15 is numerically verified in Figure 6.5. The different frames show 
(a) an impulse response vector h with N = 8 elements; (b) the DFT of h computed 
as H = F h; (c) the DFT matrix F; (d) the matrix h computed in the time domain 
where each column contains the i;hpulse response but shifted one time increment; 
and (e) the matrix h computed with Equation 6.15. This matrix shows the effect 
of circular convolution: the lower tails of the shifted impulse responses appear 
"wrapped" at the top of each column. 

6.4 CROSS-SPECTRA L AND AUTOSPECTRA L DENSITIES 

The cross-correlation operation was introduced in the time domain to identify 
similarities between two signals (Section 4.3). The similarity between the com- 
putational procedures for convolution and cross-correlation led to the conclusion 
that the cross-correlation g of x and z is equivalent to the convolution "*" of g 
with the tail-reversed x (see Section 4.4.3): 

CC<X'Z> - - - - z * rev (z) (6.16) 

Tail reversal is equivalent to measuring the phase in the opposite direction: a 
tail-reversed cosine is the same cosine; however, a tail-reverse sine is [-]sine. 
Therefore, if X = Dm(&), the conjugate of X is the DFT of rev(&). Applying the 
DFT to both sides of Equation 6.16, 

DFT ( ~ ' ~ 7 ~ ' )  = DFT [z * rev ( E ) ]  

CC?" = Z, {DFT [rev (&)I}, 
- cc,.x3z' = z, . xu 

Likewise the DFI: of the autocorrelation is &'"' = DFT(g'"') 

The cross-correlation and autocorrelation arrays in the frequency domain are 
called the cross-spectral and the autospectral densities, respectively. 
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-j(u%i) 
(c) The DFT matrix is computed as Fu,i = e 

(d) The impulses response matrix !! - 
in the time domain is 

(a) Consider the impulse response 1: 

(e) The h matrix computed as - 

I 

h =  

(b) Its Fourier transform is H=DFT(hJ 

circularity 
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Figure 6.5 Convolution as matrix multiplication. Circular convolution affects the matrix 
h computer with frequency domain operations. Compare frames d and e - upper triangle - 
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Cross-correlation is not commutative (Section 4.2.4). However, circularity in 
the frequency domain renders G'"."' = rev(c&"."). The computation of cross- 
and autocorrelations in the frequency domain is summarized in Implementation 
Procedure 6.3. A simple numerical example is presented in Figure 6.6. This 
algorithm is more efficient than the computation of correlations in the time domain 
because it involves fewer multiplications. Nevertheless, one must be aware of the 
periodicity assumption that underlines the DFT. 

Caution. The values of the spectra in one-sided computations are twice those 
corresponding to the two-sided definition. Two-sided definitions are used in 
this text. 

Implementation Procedure 6.3 Cross-correlation and autocorrelation 

1. Given 5, compute the DFT: & = DFTk). 

2. Given z, compute the DFT: Z = DFT(z). 

3. Determine the complex conjugate for each value = Re(X,,) - j Im(X,). 

4. Perform the following point-by-point multiplication: 

ccFz' = Z, . q 

5. Compute the inverse Fourier transform of CC'"'"' to determine the cross- 
correlation of & and z in the time domain 

cCCX'z' - - - l D F I ' ~ z ' )  

6.  The same procedure applies to autocorrelation Kc"', but z and Z should 
be replaced by 5 and X. 

Example 

Cross-correlation and autocorrelation are used to find similarities between and 
within signals (see Section 4.2). A numerical example of cross-correlation is 
presented in Figure 6.6. 

The computation of the cross-correlation in the frequency domain is 
afSected by the underlying assumption of periodicity in the DFT (circularity, 
Section 6.3.2). 
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(a) Time domain Frequency domain 
Input signal 1 5 +DFT* - X 
Input signal 2 z =+Dm=, z 

(x,z) - 
Cross-correlation - IDFT e CC, =Xu .Z, 

(X 2) - cc,' =Xu.& 

c c p . D = ~ z c c ~ ,  J("%" 
Nu 

Figure 6.6 Cross-correlation in the frequency domain: (a) calculations; (b) signal x; 
(c) signal z is a shifted version of x; (d) cross-correlation. The peak in the cross-correlation 
array indicates the time shift between the two signals 
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6.4.1 imporfant Relations 

If y is the output signal of an LTI system excited with the input x, so that 
- Y = ~ * x ,  then Y, =H,.&,  and 

Although the DFT of the sum of two signals is the sum of the DFT of the signals, 
DFT(3 + y) = DFT(x) + DFT(y), the additivity rule does apply to the cross- 
spectra or-the autospectra. Therefore, AC'x+Y' # AC'"' + ACqY' (see exercises 
at the end of this chapter). 

6.5 FILTERS IN THE FREQUENCY DOMAIN - NOISE 
CONTROL 

A fdter in the frequency domain is a "window" W that passes certain frequency 
components X,, and rejects others. This is a point-by-point multiplication 

The modified array Y is transformed back to the time domain. Filters can alter 
the amplitude spectrum, the phase spectrum, or both, depending on the filter 
coefficients W, . 

Many signal processing operations can be implemented as filters, including 
noise control. The primary recommendation still remains: improve the signal- 
to-noise ratio at the lowest possible level, starting with a proper experimental 
design; then consider signal stacking if signals are repeatable (Section 4.1.5). 

6.5.1 Filters 

The filter coefficients W,, at frequencies f, = u/(N . At) determine the filter per- 
formance. The most common filters are: 

Low-pass. A frequency component X,, passes if the corresponding frequency 
f, = u/(N - At) is below the selected cutoff frequency. Frequency components 
above the cutoff frequency are attenuated or rejected (Figure 6.7b). Low-pass 
fdters are used to suppress high-frequency noise. 
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Figure 6.7 Filters - frequency domain. Autospectral densities and corresponding signals. 
The filtered signals are blocked. Note the double-sided definition of these filters. The orig- 
inal signal is xi = sin(2 % i) + 0.7 sin(6%i) + 0.75 . sin(l4ei). The filtered frequencies 
are shaded 

High-pass. High-frequency components above the cutoff frequency pass, while 
low-frequency components are attenuated or rejected Figure 6.7~).  Low- 
frequency components are common in measurement and applications. Some 
examples include: uneven illumination in photography, low-frequency bench 
vibration during ultrasonic testing, and the 60Hz of power lines with respect 
to radio signals. 

Band-pass. These filters are a combination of low- and high-pass filters. The 
intent is to keep a frequency band. The opposite effect is achieved with band- 
reject filters, where a selected band of frequencies is rejected. A notch filter is 
a narrow band-reject filter. 
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All-puss. This filter is used for phase control only. The magnitude response 
is 1.0 across the spectrum and the phase response is designed to cause a 
frequency-dependent phase shift in the signal. Typically, all-pass filters are 
used to correct the phase shift imposed by other filters in a series of filters. 

If the transition region from "pass" to "reject" is gradual, the cutoflfrequency 
corresponds to a reduction in the signal magnitude of -3 dB, that is IYuI = 
0.71XuI. 

Phase shift Aq and time shift 6t are related as Aq/27r = 6tlT. If the phase shift 
varies linearly with frequency Aq, = af,,, 

Acpu a &,,=--=-- - constant 
2nfU 27r 

A linear-phasejilter causes a constant time shift at,, in all frequency components 
and it does not distort the waveform (see solved problems at the end of this 
Chapter.) 

6.5.2 Frequency and Time 

The point-by-point multiplication in the frequency domain indicated in Equa- 
tion 6.21 implies a convolution in the time domain between the signal x and the 
inverse discrete Fourier transform (IDFT) of W. This vector must be the array 
named "kernel" 5 in Section 4.1.3. Therefore the kernel K = IDFT(W) is thefilter 
impulse response. Conversely, knowing the kernel, one can determine the win- 
dow (note that real signals in one domain become complex-valued signals in the 
other domain in most cases). Then, the understanding of filters in the frequency 
domain helps gain insight into the design of moving kernels in the time domain. 

Consider the windows W shown in Figure 6.8. The corresponding kernels 
K are also shown in the figure. Kernels obtained from windows with sharp - 
boundaries show excessive ringing. In general, smoothly varying band-pass filters 
are preferred. 

6.5.3 Computation 

If the filter is the DFT of a kernel in time, then the filter W must satisfy 
the periodicity property in frequency (Figure 5.2). In addition, if double-sided 
operations are used, the filter must be defined above the Nyquist frequency (or 
in the negative frequencies) as well, as shown in Figure 6.7. This annoyance is 
avoided when single-sided operations are used. The process of filtering a signal 
in the frequency domain is summarized in Implementation Procedure 6.4. 
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Window DFr Kentel 
(a) (point-by-point multiplication) e (convolution) 

DFT ' 
(b) 

0 
a O 

0 16 32 48 64 -3 2 . 32 
O I 

Figure 6.8 Windows !if and kernels s: (a) mathematical relation; (b) sharp boundary 
wide window; (c) gradual boundary wide window; (d) gradual boundary narrow window. 
Sharp boundaries lead to kernels with high ringing. 

Implementation Procedure 6.4 Filtering noise in the frequency domain 

I 1. Given a signal i, compute its DFT: = Dm(%). I 1 2. Plot the magnitude 1XU1 vs. fu to determine the frequency band of interest. I 
1 3. Choose the type of filter to be used. I 

4. Caution: if double-sided DFT is used, then the filter must have a compatible 
double-sided definition. Low-pass filter: removes frequency components 
below counter u* and above N-1-u*, where u* is the frequency counter 
for the cutoff frequency. High-pass filter: keeps frequency components 
between the counter at the cutoff frequency u* and N-1-u*. 
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5. Define the array that represents the filter or window W. Superimpose a 
plot of this array onto the spectrum of the signal to c o n f i i  the selection 
of the filter. 

6. Apply the window to the signal: multiply point by point Y, = Xu . W,. 

7. Compute the inverse Fourier transform of the filtered signal: y = IDFT (I). - 

Example 

The effect of different filters is explored in Figure 6.7. 

Note: Electronicfilters are frequently used during data acquisition. Antialias- 
ing low-pass filters must be included in the measurement system before the 
signal is digitized. Analog-to-digital devices often have antialisingfilters built- 
in. Because the information content in a signal increases with increasing 
bandwidth, filtering removes information. Consequently, the design of filters 
is a critical task in signal recording and postprocessing. 

The information content in a signal increases with the bandwidth. Filters reduce 
the information content and rejected frequencies are irreversibly lost. That is, the 
convolution of the signal with the filter is a linear transformation, but it is not 
necessarily invertible. 

There are versatile nonlinear signal-enhancement operations in the time domain 
(Figure 4.5). Likewise, there are nonlinear filters in the frequency domain as well. 
For example, the band pass of a filter can be implemented by thresholding: if 
1&1 > threshold, then Y, =Xu; otherwise, Y, = 0 (Figure 6.7d). The threshold 
may be established in linear scale or in dB. 

6.5.4 Revisiting Windows in the Time Domain 

Time windows are used to reduce "leakage" (Section 5.5): the signal x in'the 
time domain is multiplied point by point with the window (qmw,) before it is 
transformed to the frequency domain. Multiplying a signal times a window in 
the time domain is equivalent to the convolution sum of their transforms in the 
frequency domain (duality property). On the other hand, windows are used for 
filtering in the frequency domain which is equivalent to convolution with a kernel 
in the time domain. 
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At this point, the concepts of "window" and "kernel" have been encountered 
in both the time and the frequency domains. What is the difference? Typically, 
kernels are convolved whereas windows are multiplied point by point with the 
array being processed. Both operations may take place either in the time domain 
or in the frequency domain, and each operation is the Fourier transform of the 
other. 

Frequency domain 

Point-by-point (.) y. = x..w. 

Convolution (*) 

6.5.5 Filters in Two Dimensions (Frequency-Wavenumber 
Filtering) 

The process of filtering in the frequency domain can be extended to two- 
dimensional (2D) signals. The original 2D signal is 2D discrete Fourier trans- 
formed to the f-k space. A 2D band-pass window is multiplied point by point, 
keeping only the information of interest. Finally, the windowed spectrum is 
inverse transformed to the original 2D space of the signal. 

For example, consider wave propagation (refer to Figure 6.9). Time series 
gathered at different aligned locations can be transformed into the frequency- 
wavenumber space f-k (f = 1/T, k = l/A). In this space, events that emerge with 
characteristic slopes f/k = A/T = V. Unwanted events are conveniently identified 
and filtered. In geophysical applications, 2D f-k filtering permits removing a 
coherent component such as surface waves or "ground roll" from signals. 

6.6 DETERMINING H WITH NOISELESS SIGNALS 
(PHASE UNWRAPPING) 

The determination of the impulse response q in the time domain is hampered by 
the mathematical nature of the impulse signal. A more convenient alternative in 
the time domain is to apply a step, to measure the step response, and to compute 
its time derivative. Then, the frequency response is H = DFT(h). 

One can also determine the frequency response by exciting the system with 
single-frequency sinusoids, which are system eigenfunctions (Implementation 
Procedure 6.1). If needed, the impulse response is computed as h = IDFT(I4). 
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Geophones 
V V V V V V V V  

Figure 6.9 2D filters. f-k filtering for seismic applications. The direct wave is removed 
from the records by rejecting the high wavenumber region. One quadrant shown in 
frequency-wavenumber space 
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However, the most effective and versatile approach to determine the frequency 
response H is to use any broadband input signal and to process the data in the 
frequency domain. Indeed, if convolution in the frequency domain is Y, = Hu - Xu, 
then the u-th entry in the frequency response array H is 

- a SI'"" 

Real Inraninary 

yu 2lr H, = - for frequency ou = u- 
XU N.At 

v Spacc 

Real Irnaginar)' 
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where the arrays and Y are the DFTs of the measured input and output sig- 
nals, X = DlT(xJ and Y = DlT(y). The frequency response array H is obtained 
by repeating this point-by-point division for all frequencies. This is a salient 
advantage of frequency domain operations! 

6.6.1 Amplifude and Phase - Phase Unwrapping 

Each entry in the array H is complex. The magnitude (HuI relates the amplitude 
of the response sinusoid to the amplitude of a single input sinusoid of the same 
frequency o,; the units of IH,I are those of [outputlinput]. The phase between 
output and input sinusoids is cp, = tan-'[Im(H,)/Re(H,)]. The analysis of the 
computed phase often requires an additional step. Consider a system that causes 
a constant phase shift St to all frequencies: 

Figure 6.10a shows the true phase shift cpu = 21~(8t/T,) = €it w,. (Note that 
this is a linear phase system) 

Figure 6.10b shows the computed ratio Im(H,)/Re(H,) = tan(cp,). 

Figure 6 .10~ shows the computed phase cp, = tan-'[Im(H,)/Re(H,)]. 

The computed phase appears "wrapped" between - d 2  and +d2 .  Phase unwrap- 
ping means shifting each segment up everywhere where the phase jumped from 
-1r12 to + ~ / 2  as shown in Figure 6.10d. (If the time shift is negative, the phase 
jumps from + ~ / 2  to -7r12 and segments must be shifted down.) The jumps are 
not always obvious, and in some cases local jumps may be related to the phys- 
ical nature of the phenomenon, rather than the mathematical effect described in 
Figure 6.10. Increased frequency resolution may help clarify some apparent dis- 
continuities in phase. In any case, phase unwrapping must be guided by physical 
insight into the system under consideration. 

Implementation Procedure 6.5 summarizes the steps involved in computing and 
interpreting the frequency response H of any LTI system using noiseless signals. 

Implementation Procedure 6.5 Determination of the frequency response 
H with a generic broadband signal - No noise - 

I 1. Select any broadband source that operates in the frequency range of interest. 

2. Select the signal duration N-At, the number of points N and the sampling 
interval At following the guidelines in Implementation Procedure 5.2. 
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3. Measure the input at the interface between the source and the system. This 
is the input signal in the time domain 25. 

4. Capture the measured response y. - 

5. Compute the DFTs of the input and the output: X=DE;T(x) and 
Y = DFT(y). - - 

6. Compute the "measured" frequency response as a point-by-point division: 

Y U  21T 
qma> = K for frequency o, = u- 

NAt 

7. Transducers, multimeters, analyzers and other peripheral electronics must 
operate within their frequency range. Each component transforms the 
signal. Therefore, determine the frequency response of transducers and 
peripheral electronics H'-' in calibration studies with known speci- 
mens. 

8. Assuming that the response of transducers and peripheral electronic 
~ < t r a n >  - is in series with the system response, then the measured response 
is 

Therefore, the sought system response is 

Note: The system response HCSYS' is an array of complex numbers. Results 
are commonly presented as amplitude II-I,,l and phase cp, versus fie- 
quency o,. The phase is calculated as cp, = arctan [Im(H,)/Re(H,)] and it 
yields values between - d 2  and ~ 1 2 .  The phase spectrum is "unwrapped" 
by accumulating the phase at every jump between -1~12 and 1 ~ / 2  
(Section 6.6.1). 

6.7 DETERMING _H WITH NOISY SIGNA LS (COHERENCE) 

Equation 6.23 is valid for ideal noiseless signals. Yet, noise is always present. In 
most cases, the input signal x can be measured close enough to the system so that 
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Figure 6.10 Phase unwrapping: (a) consider a process that produces a time shift 8t = 
0.1 between input an output so the phase shift is linear with frequency $,, = 8t. o,. 
(b) However, tan(cp,) is not a linear but a periodic function of frequency. This is the 
value computed with input and output data: tan(cp,) = Im(H,)/Re(H,). (c) The inferred 
phase shift +, = arctan [Im(H,)/Re(H,)] oscillates between ~ / 2  and -7t.12 in a seesaw 
function that is characteristic of the wrapped phase. (d) The original phase spectrum is 
reconstructed by "unwrapping" the phase, adding v at each jump from  IT/^ to -a/2 in 
the spectrum 
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Figure 6.11 System characterization with noisy signals. The measured output signal z 
included noise !: added at the output 

Input x 

no undetected signal goes into the system, still, noise E gets added at the output 
y (see Figure 6.1 1). Then, the measured output z in the frequency domain is - 

2- - U- Z,, = Yu + R,, = Hu s Xu + R,, for frequency o, - (6.24) 
N. At 

t 
Noise I 

System 
characteristics 

where R is the discrete Fourier transform of the noise R = DFT(r). If the fre- 
quency response is computed with Equation 6.22, one obtains 

Output 41 Measured g 

Hence, the error in the frequency response depends on the ratio R,/X,. The 
procedure to determine the frequency response must be modified to correct for 
noise effects. In the new procedure, the input and the output will be measured 
" M  times so that the effect of noise will be canceled by averaging spectral 
densities. The proper equation to compute the frequency response is 

where the average spectral densities are 

The values of auto and cross-correlations for each measurement are averaged at 
each u-th frequency for similar signals to eliminate uncorrelated noise. Note that 
contrary to signal stacking in the time domain (Section 4.1.2), the various signals 
x need not be the same. - 
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Why does Equation 6.26 work? The average cross-spectral density is 

(cc:X'z')avr = ( z u  . JLU)avr 
= [(X;H, + ~ ~ ) q ] ~ ~ ~  (6.28) 

= [(xu TT;) ~ u l , ,  + (R, . X), 
In the first term on the right-hand side, Hu is a constant and can be factored out 
of the summation. In the second term, the sum goes to zero because noise and the 
input signal are uncorrelated. Therefore, the numerator in Equation 6.25 tends to 

and the computational procedure prescribed in Equation 6.26 adequately esti- 
mates the frequency response without the effects of random noise. (Notice the 
parallelism between Equation 6.19 for a single noiseless signal and Equation 6.29 
for averaged spectra of an ensemble of noisy signals.) 

As an example, consider a simple system with frequency response Hu = 0.5 
and cpu = 0 for all frequencies fu. Figure 6.12 shows the computed frequency 

T Input 

h 1 - 1 High noise level 
0 128 i 256 

r', 1- 

t L t 
0 4 u 128 

10 

SNR, 
0.1 8 

0.01 
1.10-~ 

Figure 6.12 Example of evaluation of frequency response from an ensemble of noisy 
signals 
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response given a set of input signals and the corresponding output signals 
"gathered" with additive Gaussian noise. 

6.7.1 Measures of Noise - Coherence 

The noiseless output y is fully caused by the input x (Figure 6.1 1). This is not 
the case for the measured output 6. The coherence operator yields a real valued 
array -y2 where each u-th entry denotes the energy in the measured output that 
can bejustified by the input. In mathematical terms, 

2 (AC:yr)avr for frequency ou = U- 2lT 
N.At 

(6.30) 
= (AC:"), 

Coherence quantifies the energy in the measured output that was caused by the 
input. Coherence y2 is properly determined using average spectra for an ensemble - 
of signals: 

2 - 1 ( c c ~ > ) ~ v r  1' for frequency o, (6.3 1) " - (AC?), . (AC?), 

If only one signal is available, this equation results in yZ = 1.0 for all frequencies. 
Thus, the value of coherence is meaningful when average spectra for multiple 
signals are used. The average spectra are computed as indicated in Equation 6.27. 
It can be shown through mathematical manipulations and arguments similar to 
those invoked for the derivation of the frequency response that 

where &"' is the autospectrum of noise R. This equation agrees with the 
definition in Equation 6.30 (recall identities in Equations 6.19,6.20). Furthermore, 
it shows that if coherence is one (that is, $ = 1 at frequency ou = u . ~ I T / ( N .  AT), 
then all the energy in the output is caused by the input. 

Coherence is a valuable diagnostic tool. Coherence less than 1.0 indicates one 
or more of the following situations: 

Noise in the output 

Unaccounted inputs in the system 

Nonlinear system behavior 
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Lack of frequency resolution and leakage: a local drop in coherence observed 
near a resonant peak suggests that the system resonant frequency does not 
coincide with a harmonic o, = u - 21r/(N . AT) in the discrete Fourier trans- 
formation (Section 5.6). 

The signal-to-noise ratio (SNR) is computed as the ratio between the autospectral 
density of the signal without noise y - and the autospectral density of noise r: 

SNR, = (AC'y>)a~r for frequency wu 
( A C T  ),", 

Its proper determination requires ensemble averages, similar to Equation 6.29. 
From Equation 6.30, the SNR is related to coherence as 

7: SNR, = - for frequency w, (6.34) 
1-Y: 

The range for SNR varies from 0 to infinity; the higher the SNR, the stronger the 
signal is with respect to noise. 

Figure 6.12 shows the spectrum of coherence and SNR for the simple system 
with frequency response H, - = 0.5 and cp, = 0 for all frequencies f,. 

6.7.2 Statistical Interpretation 

Statistical parameters can be computed for the value of a signal 5 at discrete 
time ti, using the ensemble of M signals, 

mean value 

1 2 
mean square value $: = 

k 

variance 
1 2 

0; = - C (x;" - -;") = $2 - p,? 
M k  

I 1  

If the signal is ergodic (Section 3.1) ,  these statistical parameters can be computed 
using the N-values in one signal. In this case, the mean square value $2 is 
known as the root mean square m of the signal and it is equal to the value 
of the autocorrelation for zero-time shift ac,'"' = $2 = d + p,2. On the basis of 
Parseval's identity, $2 is also equal to 1 /N2  times the area of the autospectral 
density plot. These observations suggest the mathematical link between ensemble 
statistics and spectral densities. These concepts are invoked in the next section. 
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6.7.3 Number of Records - Accuracy in fhe Frequency 
Response 

The computation of the frequency response is enhanced by increasing the length 
N-At of recorded signals and the number of signals M in the ensemble. Longer 
signals reduce estimate errors in time average operators such as cross-correlation 
and autocorrelation (recall Figure 4.8). Furtherlnore, the length N-At must be 
much larger than the average time shift 6t between input and output to avoid bias. 

On the other hand, the higher the number of signals M in the ensemble, 
the lower the variance in the estimate of the frequency response. Following an 
analogous discussion to Section 4.1.2, the mean computed from samples size M 
has a coefficient of variation (cov) proportional to the cov of the population and 
inversely proportional to a, where the cov is the standard deviation divided by 
the mean cov = u/p. 

The number of signals M that must be processed to estimate the magnitude 
of the frequency response IH,,I, with an expected cov in the estimate, given a 
signal-to-noise ratio SNR or coherence y2, is (see Bendat and Piersol 1993) 

1 1 1- y 2 

M =  
2c0v2 SNR - 2c0v2 y2 

Similar statistical arguments were used in the time domain (Section 4.1.2). How- 
ever, the criterion followed in the time domain was to obtain a good estimate 
of the signal xi at a given time ti. The aim in Equation 6.38 is to obtain a good 
estimate of the frequency response H, at frequency o,. For clarity, subindices 
are not included in Equation 6.38. 

For example, for an SNR = 1 and a desired cov = 0.01 (excellent) in the 
estimate of If, it would require M = 5000 signals, while for cov = 0.1 (good) 
the number M = 50. The desired cov can be lowered if single-point estimates 
of system characteristics are replaced by a more comprehensive consideration 
of the array H. For example, estimating the mechanical characteristics of a 
single DoF oscillator from resonant frequency and the amplitude at resonance is 
more sensitive to errors than least squares fitting the theoretical response to the 
measured response. 

6.7.4 Experimental Determination of _H in Noisy Conditions 

In summary, the frequency response can be determined by exciting the system 
with: 

a step or a "quasi-impulse"; noise is controlled by stacking in the time domain 
the response for the same repeatable input. The result is h (or an integral of h 
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when a step is used), and the frequency response is computed as H = Dm@). 
This approach was discussed in Chapter 4. 

steady-state single-frequency o, sinusoids to determine the values of H, one 
at the time, and repeating the measurement at multiple frequencies to form @. 
High signal-to-noise ratios may be attained even for signals buried in noise 
(lock-in amplifiers facilitate this task). 

generic broadband input signals and computing with spectral quantities. 
Noise is controlled by spectra averaging. 

The methodology for the last approach is outlined in Implementation Procedure 
6.6 and relevant equations are summarized in Table 6.1. 

Implementation Procedure 6.6 Determination of the frequency response 
H using generic broadband signals - Noisy output - 

1. Start the experiment following the initial guidelines provided in Implemen- 
tation Procedure 6.5. Conduct preliminary measurements to assess the level 
of noise. Compute the SNR ratio and estimate the coherence. 

2. Determine the number of signals to be stacked for the required cov in the 
measurement 

For example, if the coherence at the resonant frequency is = 0.8 and 
the desired cov of the peak frequency response is cov = 2%, then a total 
of M = 312 measurements will be needed. 

3. Collect input x and output 5 signals: acquire the longest possible record to 
reduce the bias in the estimate of the frequency response. 

4. Pre-process the signals by detrending the arrays (Section 4.1.1), applying 
smooth transition windows (Section 5.5) and extending the recorded time 
series by zero-padding (Section 5.6) as needed. 



DETERMING H WITH NOISY SIGNALS (COHERENCE) 167 

1 5. For each measured input and output signals: compute the following arrays: 

X = DFTk); the conjugate of X; and Z = DFT(z) - 

I CC'"-"' where the u-th entry is (Z,, . a - 

AC'"' where the u-th entry is (x, - X,) - 

1 6. Use these results for all measurements to compute average spectra 

(g<X'Z>)aw where the u-th entry is (CC:X.Z')aw = (Z,, . a,, 
all meas. 

(&'"'),, where the u-th entry is (ACZx'), = (Xu .ameas 
all meas. 

1 7. Finally, compute the frequency response array & The u-th entry is 

<x,z> 2 7 ~  
& = (CCu<x> law and it corresponds to frequency o, = u- 

(ACu law N - A t  

8. The coherence y2 and signal-to-noise ratios corresponding to the ensemble 
of collected signals are 

1 ( ~ ' 7 ~ ' ) ~ ~ ~  1 7,' 2% and SNR,= - at ou =u- " = (AC?>), (AC?),, 1-7; N.At 

9. Analyze low coherence values to identify possible causes. Consider noise, 
nonlinear system behavior, or poor resolution near resonance. 

10. Correct the measured for the frequency response of transducers and 
peripheral electronics (see Implementation Procedure 6.5). 

The input signal may be random noise. The average autocorrelation of white 
random noise is constant -a for all frequencies mu, and Equation 6.25 becomes 
H, x ol (CC~x3z')av,. Furthermore, systems that preferentially amplify certain 
frequencies, such as a low damping resonant oscillator, tend to vibrate in that 
frequency and exhibit an increase in coherence near resonance. These two obser- 
vations suggest the use of "unmeasured ambient noise" to explore the frequency 
response of systems that cause sharp amplification in narrow frequency bands. 
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Table 6.1 Summary of equations 
I 

No noise - ideal signal Noise added to output 

Time domain 

Input signal 

Output signal 

Frequency domain 

Input signal 
Output signal 

Component in DFT 

Complex conjugate 

Autospectrum 

Cross-correlation 

Frequency response 

Phase shift 

Amplitude 

Coherence function 

Noise-to-signal ratio 

AC,(') = Xu = [ ~ e  (xU)l2 + [Im (x,,)12 

I 
Not applicable 

I (cc:x.~> )aVr) 

I " = (AC?),, - (AC:x>)a, 
I -.2 

Not applicable I SNR, = A 
I 1 - ': 

The u-th value of a parameter corresponds to frequency: w, = u& 

6.8 SUMMARY 

Sinusoids and complex exponentials are eigenfunctions for LTI systems: the 
output is a scaled and shifted sinusoid or complex exponential of the same 
frequency. 

The frequency response H fully characterizes the LTI system. It is equal to the 
DFT of the impulse response H = DFT(hJ. 
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The convolution sum in the time domain y = x*h becomes a point-by- 
point multiplication in the frequency domaink, = Xu %. Cross-correlation 
becomes a multiplication in the Fourier domain as well. 

Circular convolution and cross-correlation reflect the inherent periodicity in 
the DFT. Zero-padding helps reduce the effects of circularity. 

A window is applied as a point-by-point multiplication with a signal. Windows 
are used in the time domain to reduce leakage in truncated signals. In the 
frequency domain, windows are used to implement filters. 

Windowing in one domain is equivalent to convolution with a kernel in the 
other domain. The kernel and the window are related by the DFT. 

The frequency response H can be computed in the frequency domain using 
any generic broadband input signal, including random noise. This is a salient 
advantage of the frequency domain. 

The presence of noise requires adequate signal processing procedures. 

Low coherence indicates noise, unmeasured inputs, inadequate resolution, or 
nonlinear system behavior. 

The simpler, albeit slower, approach of determining each value Y, by exciting 
the system with steady-state single-frequency sinusoids can render high signal- 
to-noise ratios even when the signal is buried in noise. 
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SOLVED PROBLEMS 

P6.1 Properties of the Fourier transform. Demonstrate that if X = DFTk), 
then the DFT of the tail-reversed r e v 0  is the complex conjugate of X. 
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Solution: Let us consider a real-valued single-frequency sinusoid computed 
as the sum of a cosine and a sine. Its tail-reversed rev(xJ is obtained by 
changing the sign of the sine component: 
xi = cos (E i )  + 1.3 sin ( 2 i )  then rev(x,) = cos (1 E i )  - 1.3 sin (Ei )  

The signal is evaluated for N = 8 points. The real part of the double- 
sided DFT of x has positive amplitude at frequency counters u = 1 and 
u = N - 1. The imaginary part Im@) has negative amplitude at u = 2 and 
positive at u = N - 2 in agreement with the symmetry property of the 
DFT (Section 5.3). All other terms are zero. The DFT of the tail-reversed 
signal has the same real components but the imaginary components have 
opposite sign. Indeed, the DFT(rev(xJ) is the conjugate of X. 

Important: notice that the array is not obtained by reversing the array! In 
fact, x, = rev(x,). 

P6.2 Convolution in the frequency domain. Demonstrate that Yu = Xu . H, start- 
ing with the expression for time-domain convolution and assuming that 
H = DFT(ll). - 
Solution: Convolution in the time domain is y, = Cxk.himk 

k 

-j.(u?i) 
Its DFT is Y, = 

-j (" 2 k) 
But according to the shift property (Equation 5.22): hi-k = hi . e 

- j ( u g k )  .-j.(u$i) 
Replacing Y, = x x xk . hi e 

k i 
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( k  -~(uFk)) (=~~.~- j . (uFi ) )  Rearranging Yu = C x, . e 

The factors in brackets are the u-th components of the DFT of 5 and h; 
therefore, Y, = X,, . Hu. 

P6.3 Filters. All-pass filters are used for phase control, and the magnitude 
response is lHul = 1 .O for all u. Typically, all-pass filters are used to correct 
the phase shift imposed by other filters. Design an all-pass filter that will 
cause a linear phase shift with frequency and apply the filter to a sine sweep. 
Conclude on the response of the filter and the behavior of the output signals. 

Answer: All-pass filter defined as 2n JH,J = 1 and cpu = VFU 

The filter frequency response is Hu = II-4 1 . [cos + j . sin (cpu)l 

Consider a frequency sweep xi = sin (%i'.5) 

Its DFT is - X = DFT(3) 

The filtered signal is Y u = % . &  

The filtered signal in time is - Y = mW(1) 
The original and filtered signals with v = 64, 128 and 192 are presented 
next. As the rate of phase shift v increases, the signal is shifted to the left, 
advancing in time. Because a linear phase shift is equivalent to a constant 
time shift at, there is no distortion in the signal. The effect of circularity 
is clearly seen (periodicity assumption in the DFT). 
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ADDITIONAL PROBLEMS 

P6.4 Power spectra. Demonstrate that the additivity rule does not apply to 
either the cross- or the autospectra: AC'"'+"~' <XI>+ AC<~2>. #AC - 

P6.5 Filters - Hanning window. Consider arrays of length N.At. A Hanning 
window of width E-At is used to extract signal segments. Compute and plot 
the DFT of Hanning windows with width E = N, E = N/2 and E = N/4. 
Realizing that these transforms act as kernels in the frequency domain, 
what is the effect of windowing a single-frequency sinusoid with a Hanning 
window? Repeat for a Gaussian window. Move the windows off-center; 
how do real and imaginary components react? 

P6.6 Filters: windows and kernels. Band-pass filtering in the frequency domain 
is equivalent to the convolution of the kernel with the signal in the time 
domain. Study the kernel characteristics for band-pass filters of different 
width and transition rates at boundaries. What is the kernel of a Gaussian 
window? Explore the effects of these filters on a sawtooth signal. Draw 
conclusions. 

P6.7 Noise and frequency response. Study the effect of noise in the determi- 
nation of H when (a) the input is measured with noise but noise does not 
go through the system; and (b) the input is measured without noise, but 
noise gets introduced into the system at the input and manifests in the 
output. (Note that these two cases are different from the one covered in 
the chapter.) 

P6.8 Frequency response determination. What is the DFT of random noise 
(consider spectral averages)? What is the DFT of an impulse signal? What 
can you conclude about the application of these signals to determine the 
frequency response of a system? What are the differences from the point 
of view of a system with a limited linear range? 

P6.9 Coherence. Expand the definition of coherence and show that coherence 
y: = 1.0 for all frequencies when a single measurement is used. 

P6.10 Coherence and signal-to-noise ratio. Compare the theoretical and practical 
definitions of the coherence and signal-to-ratio functions. Vary the noise 
level and the number of signals in the ensemble. Conclude. (Hint: define 
the input signal x, noiseless output y, noise and noisy output zi = yi + ri - 
for each signal in the ensemble.) 

P6.11 Application: echo testing (e.g. ultrasound). An exponentially increasing 
amplification is sometimes applied to the received signal to compensate 
for the effects of geometric and material attenuation. This amplification 
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is a window in the time domain. What is the corresponding kernel in the 
frequency domain? What are the implications of this method? 

P6.12 Application: transducers and peripheral electronics. Find the manual or 
specifications for standard laboratory devices that you use (transducers, 
amplifiers, signal generators). Identify the information provided by the 
manufacturer about the device frequency response H(w). Is the information 
sufficient to completely define H(o)? Implement a numerical simulation 
of the effect of the device on a known measurement 5 as a convolution 
between & and H. Draw conclusions on the effect of transducers and 
peripheral electronics on your system. 

P6.13 Application: system characterization. Design a step-by-step procedure to 
determine the frequency response of a system of your interest (e.g. trans- 
ducer, image analyzer, bridge, city traffic). Consider both the experimental 
setup and the numerical processing of signals. Make sure you include 
guidelines to reduce noise and experimental and computational details to 
correct for the frequency response of transducers and peripherals used in 
the measurements. 

P6.14 Application: system characterization with random noise (Part I ) .  Systems 
with low damping readily respond in their resonant frequency, and the 
measured response Z for any broadband signal will resemble the system 
frequency response H. Consider a single DoF oscillator. Prepare an ensem- 
ble of M input signals x of length N generated with a random number 
generator. For each input signal x, compute the output y as a convolution 
with the system response, and add random noise to obtain the ensemble 
of "measured" output signals z. Then (1) compute the frequency response 
with average spectra, and (2) consider the possible use of ambient noise to 
explore H without measuring the input. Repeat these studies for different 
number of signals M, duration N, and system damping. Draw conclusions. 
Can the system be characterized using ambient noise as excitation without 
measuring the input? 

P6.15 Application: system characterization with random noise (Pan 2). Back- 
ground noise is omnipresent and may be used as a source to study systems 
without additional excitation. Design a detailed procedure - both exper- 
iment and data-reduction components - to determine the frequency 
response of a system of your interest using background noise. Include 
detailed information about the transducer, the sampling interval, the signal 
duration, the number of records, and the data processing procedure. 

P6.16 Application: cepstrum analysis.The cepstrurn (from spectrum) of a signal 
is defined as IDFT[~O~(&'~')]. Standard signal processing tenninol- 
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ogy is changed when using cepstrum analysis in order to denote this 
type of transformation, for example: gamnitude (magnitude), quefrency 
(frequency), a m o n i c s  (harmonics), and liftering (filtering). Cepstrum 
analysis may facilitate detecting changes in the system such as the for- 
mation of cracks (or the effect of repairs) and recovering the signal at the 
source without the multiple reflections. Explore the viability and benefits 
of cepstrum analysis in your system of interest. 

P6.17 Application: spectrum of velocity and attenuation. Consider ID wave prop- 
agation in an infinite rod. A traveling wavelet is measured at two locations 
at a distance L apart. There is only material attenuation in this system 
e-ae where a is the attenuation coefficient and .t the travel length. Detail 
the algorithm to determine the velocity and attenuation spectrum given 
the two measurements (include phase unwrapping). Consider (a) noiseless 
signals, (b) noisy signals, and (c) known transducer transfer functions. 



Time Variation 
and Nonlinearity 

The operations presented in previous chapters are versatile and effective and 
facilitate the interpretation of signals and the characterization of systems in a 
wide range of problems in engineering and science. However, there are some 
restrictions. For example, consider a musical score: it simultaneously tells us the 
timing and the frequency of each note; yet, the frequency domain representation of 
sound would convey no information about timing. On the other hand, the efficient 
algorithms for system analysis described in previous chapters were developed 
on the bases of linear, time-invariant system behavior; yet many systems do not 
satisfy either or both assumptions. Alternatives to analyze nonstationary signals, 
and time-varying nonlinear systems, are explored in this chapter. 

7.1 NONSTATIONARY SIGNALS: IMPLICATIONS 

The discrete Fourier transform (DFT) perfectly fits the N-points of a discrete 
signal with a finite series of harmonically related sinusoids. Each nonzero Fourier 
coefficient indicates the existence of a sinusoid that is present at all times, not 
only in the time interval of the signal [0, T[ but from t = -co to t = +co. The lack 
of timing-related information in the Fourier transform would suggest a stationary 
signal with constant statistics across broad time segments. By contrast, speech, 
earthquakes, music, topography and color pictures consist of different frequencies 
or "notes" that take place at different times and for a fixed duration! 

For example, Figure 7.la shows successive wave trains of different single- 
frequency sinusoids. The autospectrum of the complete signal is shown in 
Figure 7. lb. The spectral peaks reflect the frequency of the wave trains, but there 
is no information in the frequency domain about the timing of the events. 

Discrete Signals and Inverse Problems 1. C. Santamarina and D. Fratta 
8 UX)5 John Wiley & Sons, Ltd 
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Figure 7.1 The frequency domain representation of the signal yields information 
about frequency content, but fails to define the time location of each frequency: 
(a) a nonstationary signal with different frequencies at different times; (b) autospectral 
density 

There are important, yet often subtle, effects related to the interpretation of 
signal processing results in the case of nonstationary signals. Consider the mul- 
tiple transmission paths an emitted sound experiences (Figure 7.2). The signa- 
ture recorded with the microphone includes the direct wave, signals reflected at 
walls, floor and ceiling, and signals diffracted around or traveling across any 
anomaly within the medium. Each arriving component will have experienced 
a travel-length and frequency-dependent phase shift and attenuation (geometric, 
backscatter, and material loss). Assume the complete record obtained with the 
geophone is discrete Fourier transformed. What do amplitude IY, 1 and phase cp,, 
indicate? 

The implications of this situation are analyzed with the help of Figure 7.3. 
Figure 7.3a consists of a sinusoidal of 8 cycles in 512 points. The DFT is 
an impulse at the corresponding frequency (u = 8) and phase cp, = - ~ / 2 .  By 
contrast, Figure 7.3b shows a windowed version of the same single-frequency 
sinusoid (u = 8), showing only two cycles followed by zero entries from i = 128 
to i = 51 1 points. In spite of having the same frequency, the DFT of the windowed 
signal is fairly broadband. The phase is correct, cp, = -a/2. Even though a single 
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Figure 7.2 A visit to the Museum of Modem Art. Emitted sound: "Oh..!?". The signal 
detected at the microphone includes the multiple arrivals along different transmission 
paths, with different arrival times and frequency content partially filtered by the medium 
and reflections 

frequency acts for a short time, the DFT implies the presence of multiple sinusoids 
at all times. There are two ways to interpret this result: 

1. The DFT is equivalent to fitting the array x with the Fourier series. In this case, 
it is clear that several nonzero Fourier coefficients are required to fit not only 
the two cycles of the sinusoid but the full signal including the zero amplitude 
region as well (see Figure 7.3b). All sinusoids are present at all times; yet 
their amplitude and phases are such that their contributions in the synthesized 
signal render the correct values of xi at all discrete times ti, including the 
xi = 0 values. 

2. The alternative view is to consider the signal 5 in Figure 7.3b as a sinusoid 
512 points long but multiplied point by point with a square window w in 
which the first 128 points are ones, and the rest are zeros. The point-by-point 
multiplication in the time domain implies a convolution in the frequency 
domain between the DFT of the sinusoid (which is an impulse) and the DFT 
of the square window. Therefore, the DFT in Figure 7.3b is the DlT of the 
window shifted to the frequency of the sinusoid u = 8. 

Figure 7 . 3 ~  shows the original signal plus a "reflected" signal with no attenuation. 
The reflection arrives at i = 255. Given the phase of the reflection, this signal can 
be considered as the original sinusoid in Figure 7.3a, but windowed with a square 
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Figure 7.3 Some effects of nonstationarity: (a) a single-frequency sinusoid transforms 
to a single peak in amplitude and phase; (b) two cycles of a single-frequency sinusoid with 
zero-padding. The amplitude spectrum is broadband; the phase remains as -1~12 in the 
dominant frequency; (c) two wave trains of the same frequency with time shift equal to 
twice the period; (d) two wave trains of the same frequency but with time shift equal to 2.5 
times the period. The computed amplitude and phase are zero at the otherwise "dominant" 
frequency 

wave with two nonzero regions. Then, the DFT of the signal in Figure 7 . 3 ~  is the 
DFT of this new window with two nonzero regions shifted to u = 8. The phase 
computed for the frequency of the sinusoid is still cp, = -a/2. 

Finally, the case analyzed in Figure 7.3d consists of the initial two-cycle signal 
followed by a "reflection" that arrives at i = 288, that is, half a period after 
the reflection in Figure 7 .3~ .  This signal cannot be obtained as a window of the 
sinusoid in the first frame. In fact, the computed energy is ACT' = 0 and the 
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phase is q, = 0 at the frequency of the sinusoid u = 8. In general, the computed 
phase corresponding to the frequency of the wave train cannot be associated with 
any of the two arrivals. 

7.2 NONSTATlONA RY SlGNA LS: INSTANTANEOUS 
PARA METERS 

Let us reconsider the fundamental signals used in frequency domain analyses: 
cosine, sine, and complex exponentials dwt and e-Jwt. The signals are plotted in 
Figure 7.4, including both the real and the imaginary components of the complex 
exponentials. Their corresponding double-sided DFTs are shown from u = 0 to 
u = N - 1, where the Nyquist frequency corresponds to u = N/2. 

The DFT(cos) is real and symmetric, whereas the DFT(sin) is imaginary and 
antisymmetric (Chapter 5: periodicity and symmetry properties). However, the 
DFT of complex exponentials are single-sided. Furthermore, visual inspection 
allows the confirmation of Euler's identities in the frequency domain: 

DFT(ejwt) = DFT(cos) + j . DFT(sin) (7.1) 

and DFT(~-~"') = DFT(cos) - j . DFT(sin) (7.2) 

7.2.1 The Hilbert Transform 

The Hilbert transform fht' is a new signal, orthogonal to the original signal 5, 
obtained by imposing -7~12 phase shift, and of the same spectral density. By 
definition, the following is a chain of interrelated Hilbert transforms: 

ht ht ht ht 
cos (wt) + sin (wt) ---+ - cos (wt) - - sin (wt) - cos (wt) (7.3) 

These transforms are readily confmed by visual inspection of results in 
Figure 7.4. Moreover, the detailed analysis of these figures allows us to identify 
a procedure to implement the Hilbert transform: 

Given a signal &, compute its & = D m .  

For 0 5 u < Nl2, set Kht' = -j . Xu. 

F o r N / 2 ~ u ~ N - l , ~ e t ~ ~ ~ ' = j . X ~ ,  

The array zCht' is the Hilbert transform of the signal in the frequency domain. 

The Hilbert transform in the time domain is xcht' = IDFT(~'~~') .  
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Figure 7.4 The double-sided DFT of elemental signals. For reference, the signal length 
is N = 128 and includes 10 periodic cycles in all cases. (a and b) Sinusoids are real- 
valued in the time domain and double-sided in the frequency domain. (c and d) Complex 
exponential are complex-valued in the time domain and single-sided in the frequency 
domain. (e) Multiplying the signal by j converts real into imaginary components of the same 
sign, and imaginary into real components of opposite sign as j . j = j2 = - 1. ( f )  Verification 
of Euler's identity 
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7.2.2 The Analytic Signal 

Let us define the "analytic signal" as the array of complex numbers formed 
with the original signal x as the real part and its Hilbert transform z'~" as the 
imaginary component: 

x:~> = xi + j . X;ht> analytic signal (7.4) 

The following analytic signals are computed by visual inspection in relation to 
Figure 7.4, or by invoking the results in Equation 7.3 and Euler's identities: 

if x = cos(ot) then x'~' - - cos(ot) + j . sin(ot) = dm' (7-5) 

if x = sin(ot) then x'~' = sin(ot) - j cos(ot) = -j . dw' (7.6) 

Notice that the DFT of these two analytic signals is an impulse between 0 and 
the Nyquist frequency, 0 < u < Nf2. This is always the case: it follows from 
the definition of the analytic signal (Equation 7.4) that its Fourier transform is 

= Dm(&) + j . DFT(z'~''). Then, recalling the procedure for com- 
puting the Hilbert transform, the values of the analytic signal at the u-th frequency 
become 

qA' = X,, + j(-j X,,) = 2Xu for 0 I u < N/2 (7.7) 

and c A ' = X u + j ( j . & ) = O  f o r N / 2 s u ( N .  (7.8) 

These observations lead to an effective procedure to compute the analytic signal 
X'A> - associated with a signal &: 

Compute the DFT of the signal: X = DFT(x). 

Set all values above the Nyquist frequency to zero: qA' = O  for 
N / 2 I u I N - 1 .  

Multiply values times 2 for 0 5 u < N/2 : KA' = 2Xu. 

This is the analytic signal in the frequency domain 2~'~ ' .  

The analytic signal in the time domain is &'A' = IDFT'E~']. 

By definition (Equation 7.4), the real part of the analytic signal is the signal itself, 
R~(x:~') = xi. 
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The analytic signal can be processed to extract "instantaneous amplitude" and 
"instantaneous frequency" information at each i-th position in time (see exercise 
at the end of the chapter). The instantaneous amplitude is 

-- 

2 
amp, = /Re (I?') * + Im (xj*') instantaneous amplitude (7.9) 

The instantaneous frequency requires an intermediate computation of "instanta- 
neous phase": 

Finally, the instantaneous frequency is computed as the time derivative of the 
instantaneous phase. Using the first order-finite difference approximation 

0. = +i - + i + ~  instantaneous frequency 
At 

The methodology is summarized in Implementation Procedure 7.1 and demon- 
strated in Figure 7.5. The instantaneous frequency and amplitude are plotted 
versus time to resemble a musical score (see solved problem at the end of this 
Chapter). 

Implementation Procedure 7.1 Analytic signal and instantaneous 
parameters 

Determination of the analytic signal 

1. Detrend the signal. 

2. Compute the DFT of the signal &= Dm@. 

3. Create a single-sided array: 

XZA' = 0 for N/2 5 u 5 N - 1 (above Nyquist frequency) 

I xZA' = 2 .  X,, for 0 5 u t N/2 (below Nyquist frequency) I 
1 4. Calculate the analytic signal as xGA' = IDFT[X'~']. I 
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I Evaluation of instantaneous parameters 

Instantaneous amplitude: amp, = J R ~  (%(A) )' + +~m (xi(*) )' 

Instantaneous phase: 

Instantaneous frequency: W .  = 4i - 4i+l 
At 

2 

(a) Xi 

-2 

Figure 7.5 Analytic signal: (a) signal composed of two wave trains of different fre- 
quency; (b) instantaneous frequency versus time; (c) instantaneous amplitude versus time; 
(d) autospectral density 
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Comments 

In most cases, results are not as clear as in the example in Figure 7.5, and require 
careful interpretation. For example: 

The instantaneous frequency of a beat function x = A cos(w, t) + B sin(w,t) 
oscillates from oi = 0 to oi = (Ao, + Bo,)/(A + B) with periodicity o, - w,. 

Whereas the instantaneous amplitude is quite stable, the instantaneous fre- 
quency is very sensitive to noise, which becomes magnified by a factor o when 
the derivative of the instantaneous phase is computed. Thus, it is recommended 
that at least a low-pass filter be applied in the frequency domain. 

The instantaneous frequency may be outside the bandwidth of the signal 
observed in the autospectral density. 

An alternative analysis of nonstationary signals involves its transformation into 
the time-frequency space, where the "momentary" signal characteristics are 
determined at different times. In this case, the one-dimensional (ID) signal 
in time is transformed into a two-dimensional (2D) signal in time-frequency. 
Three time-frequency signal processing methods are introduced in the following 
sections. 

7.3 NONSTATIONA RY SIGNALS: TIME WINDO WS 

Drawbacks in the global DFT can be lessened by extracting time windows of the 
original nonstationary signal 3 and analyzing each windowed in the frequency 
domain. Then frequency content is plotted versus the time position of each 
window. Implementation details follow. 

The k-th windowed signal is obtained as a point-by-point multiplication 
gk' = w:~'. xi. The Fourier transforms of the extracted subsignals are assem- 
bled into a matrix Y that defines the short-time Fourier transform (STFT) of the - 
original signal 5 

Y = STFT (x) short-time Fourier transform - - (7.12) 

where the k-th column of 1 is the D lT  of the k-th windowed signal yqk'. 
Therefore, while the DFT of; signal converts the 1D array 5 in time into the 1D 
array &in frequency, the STFT converts the 1D array 5 in time into the 2D array 
Y in the time-frequency space. - - 

If the window width is M.At, only M entries are kept in the windowed signals 
(where M is the number of points in the window, and At is the sampling rate of 
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the signal), the maximum period of the window is M.At and the u-th element in 
the k-th column Y,,, is the Fourier coefficient that corresponds to the frequency 

(for window width M - At) 

The timing assigned to the k-th window is the time at the center of the window. 
The presentation of STlT results is more cumbersome than a simple DFT. 

Typically, the graphical display of 1 involves the amplitude IYu,,I on the time- 
frequency information plane. This iFthe "spectrogram" of the signal. If contour 
plots or collapsed three-dimensional (3D) graphs are used, the value IY,,I is 
mapped onto a color scale or shades of gray. Figure 7.6 displays the DFT of 
individual windowed records and the STFT of the signal. 

7.3.1 Time and Frequency Resolufions 

The separation between two adjacent window positions 6t = q - At and the win- 
dow width M.At define the overlap between windows, and affect the STFT and 
its interpretation. The analyst must select the integers q and M, and the shape of 
the window. 

Window width, and to a lesser extent its form, determine time and frequency 
resolutions. The longest discernible period is obtained with a square window; 
however, it causes spurious frequencies. For any other window, T,, < M . At. 
Thus, the lowest resolvable frequency in the windowed signal is >l/(M. At) and 
this is frequency resolution Af, between successive harmonics: 

frequency resolution 

The maximum frequency remains the Nyquist frequency, which is determined by 
the sampling rate At used in digitizing the signal E, and is independent of the 
characteristics of the window. 

While a wide window enhances frequency resolution, it also leads to the 
analysis of longer time segments, and the timing of a certain frequency component 
in x loses precision. For windows that are square at the center with smooth edge 
transitions, time resolution is worse than half the window width MeAt, 

M.At 
At,z-3- time resolution 

Optimal coverage of the time-frequency plane takes place when two neighbor 
windows just touch. In practice, higher overlap is used, yet, the separation 6t 
between windows need not be less than the time resolution Af .  



1 86 TIME VARIATION AND NONLINEARITY 
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lime oosition 

7 

800 Window 
time position 

Figure 7.6 Short time Fourier transform: (a) original signal; (b) arnplitude-frequency 
plots for windowed signals indicate the time location corresponding to each wave train - 
only 9 of the 16 windows are shown; (c) contour plot - amplitude normal to the page 

Equations 7.14 and 7.15 can be combined as 

1 
Af,, . Ah, > - 

2 

This relation summarizes the trade-off between time and frequency resolution, 
and determines the rate of scanning of the time-frequency information plane. 
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The successful implementation of the STFT depends on balancing the trade-off 
between frequency and time resolutions. 

7.3.2 Procedure 

The STFT is intuitively appealing and enhances signal analysis. Implementation 
Procedure 7.2 outlines the steps to compute the short-time Fourier transform 
Y = STFTW. The technique can be readily extended to image processing; the - - 
display in this case involves frequency-specific plots. 

Implementation Procedure 7.2 The short time Fourier transform (nonsta- 
tionary signals) 

I 1. Digitize and store the N-point signal 5 

2. Define the form and length of the window 5 Square windows with smooth 
transitions are adequate. Consider the following criteria when selecting the 
width M: 

Each signal segment, length M-At, will be considered stationary. 

The time and frequency resolutions are A k  lO.5.M.At and 
Af,, 1/(M-At). 

I The longest period that can be discerned is T,, 5 M-At. 

A wider window will improve frequency resolution but decrease time 
resolution (windowed segments may be zero padded). 

3. Select the time distance between two successive windows 6t = q . At where 
q is an integer. The value of 6t need not exceed the time resolution, 
6t < 0.5.M.At. The separation 6t and the width of time windows M-At define 
the overlap between windows. 

4. For the k-th window position, compute the windowed signal y'k-"' consist- 
ing of M points, 

1 5. Compute the D lT  of each windowed signal y'k-l> 
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6. Ensemble these arrays into a matrix Y, so that the k-th column of 1 is the - - 
DFT of the windowed signal - Y'~-"'. This is the STFT of g 

The u-th element in the k-th column Y,,, is the Fourier coefficient that 
corresponds to frequency o, = u . ~IT/(M. At) and central time t, = k . at. 

7. The STFT may be presented as a collapsed 3D plot of magnitude IY,.,]. 

The trade-off between time and frequency resolution is explored in Figure 7.7. 
The two wave packets in the simulated signal are of different frequency. STFTs 
computed with two window widths are presented in Figures 7.7b and c as con- 
tour plots of amplitude. Results confirm the dependency the STFT has on the 
selected window width, and the lower time resolution attained with wider win- 
dows. 

7.4 NONSTATIONA RY SIGNALS: FREQUENCY 
WINDOWS 

The STFT seeks to identify the frequency content at selected time segments. 
One could also wonder about the time when selected frequency bands take 
place. In this case, the DFT is computed for the whole signal, Z=DFT@, and 
frequency windows of Z are extracted and inverse-transformed to time. Once 
again, windowing is a point-by-point multiplication, in this case in the frequency 
domain. For the s-th window K<'' 

The band-pass filtered spectrum 1"' is inverse transformed to the time domain 
and placed in the s-th column of the matrix y. Thus, this is also a transformation - 
from a 1D array 5 in time into a 2D array in time-frequency - y. The plotting 

- 
strategies for the spectrogram resemble those used in STFT. 

A window in frequency is a band-pass filter. Therefore, each column of y 
is a band-pass filtered version of 5. Yet, why does this procedure work foi 
nonstationary signals? The time-frequency duality predicts that the point-by- 



NONSTATIONARY SIGNALS: FREQUENCY WINDOWS 1 89 

4 Wide window Narrow window 1 7  

\\ 1n~l11n l ~ m e  pmition U'lntiow time position 

Figure 7.7 The time window size has important consequences on the results of the STFI': 
(a) signal made of two wave trains of different frequencies; (b) STFT performed with a 64- 
point wide window presents high resolution in frequency, but does not discriminate well 
in time; (c) STFT performed with a 16-point narrow window presents higher resolution in 
time, but does not discriminate the fast-varying frequencies very well 

point multiplication in the frequency domain (Equation 7.17) is equivalent to 
the convolution between the signal and the kernel K that contains the inverse 
transform of the frequency window, x * ~ .  But convolution is a tail-reversed 
cross-comelation (see Sections 4.2, 4.4, 6.3 and 6.4). Therefore, the procedure 
can be viewed as the identification of similarities between the original signal x 
and the IDFT of the frequency window. 

7.4.1 Resolution 

The trade-off between the resolution in time and in frequency persists: a narrow 
filter enhances frequency resolution but it corresponds to a wide kernel in time, 
decreasing time resolution. Furthermore, a narrow frequency band deforms the 
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Figure 7.8 Windows in the frequency domain - Band-pass filters: (a) the signal consists 
of three wave trains of different frequency; (b) the autospectrum of the signal; (c) the 
DFT of the original signal is windowed to extract the frequency bands that are inverse 
transformed 

signal, creating phantoms of the signature before the true signal appears in time 
(typically fish-shaped; Figure 7.8). 

7.4.2 Procedure - Example 

Implementation Procedure 7.3 presents the step-by-step algorithm to compute the 
band-filtered time-frequency analysis of a signal This type of algorithm can 
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be used to unmask events that are hidden within other frequency components, 
including noise. 

The procedure is demonstrated in Figure 7.8. The signal 5 in Figure 7.8a is 
transformed to the frequency domain 5 (Figure 7.8b) and analyzed by extracting 
successive frequency windows. Figure 7 . 8 ~  presents the spectrogram assembled 
with the inverse transforms of the filtered signals. 

Implementation Procedure 7.3 Band-pass filters and nonstationary signals 
(windows in the frequency domain) 

1. Digitize and store the N-point signal x. 
2. Compute the DFT of the signal: X = DFTO. 

3. Define the form and width of the filter W and the frequency separation 
between adjacent windows so. Consider the trade-off in the frequency-time 
resolution. 

4. For each position of the window, multiply xby the window w'~-"' centered at 
frequency o, = s .so (a symmetric window must be applied above the Nyquist 
frequency when double-sided Fourier transforms are used - see Section 6.5): 
ycs-th' - - wcs-th> . &. This array has the same length as x. 

n 

5. Compute the IDFT of the filtered signal: - yCS-"' = IDFT (x's-"'). 
6. Ensemble these arrays into a matrix y, so that the s-th column of y is the IDFT - - - 

of the filtered signal yc". The i-th eiement in the s-th column yi,, is the value 
of the band-pass filtered signal at time ti = i . A t. 

7. Display the results. 

7.5 NONSTATIONARY SIGNALS: WAVELET ANALYSIS 

The STFT highlights time resolution in the spectrogram; on the other hand, band 
filtering enhances frequency resolution. It would be advantageous to improve the 
frequency resolution of low-frequency events while enhancing the time resolution 
of high-frequency events. This could be achieved by increasing the width of the 
band-pass filter as it is moved along the frequency axis. Let us analyze this 
suggestion: 
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A band-pass filter is a window that is multiplied point by point with the DFT 
of the signal. This is equivalent to the convolution of the signal with a kernel 
K in the time domain. - 
The IDFT of the band-pass filter is a wavelet-type kernel. The duration of the 
wavelet is inversely related to the width of the band-pass filter. 

The convolution of the kernel K with the signal 5 is equivalent to cross- 
correlation (Chapter 4); that is, it identifies similarities between the signal and 
the kernel. 

These observations are the foundations for the wavelet transform. 

7.5.1 Wavelet Transform 

The wavelet transform of a signal x consists of identifying similarities between 
the signal and the wavelet kernel K. The wavelet is translated by imposing time 
shifts T = be At, and its frequency is varied by successive time contractions a: 

1 
a-5 ~ i - b  controlling time shift and frequency (7.18) 

Mathematically, the wavelet transform is the cross-correlation of the signal with 
wavelets of increasing central frequency, and it converts a 1D signal x onto the 
2D wavelet transform G: ' - 

Some wavelet functions form a base, and the inverse wavelet transform exists. 
This is important if the intention is to conduct signal processing in the time- 
frequency domain, followed by a reconstruction of the signal back to the time 
domain, for example, in the processing of noisy signals. In other cases, wavelet 
analysis may be restricted to the detailed study of the signal within some frequency 
range, for example, to analyze dispersion. In this case, wavelet analysis involves 
a finer scanning of the time-frequency information space, within the region of 
interest and the constraints imposed by the time-frequency resolution. 

' The wavelet transform in continuous time is (the bar indicates complex conjugate): 
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The wavelet transform depends on the selected wavelet. Therefore, the wavelet 
used in the analysis must be explicitly stated. There are several well-known 
wavelets (see exercises at the end of the chapter). The Morlet wavelet is reviewed 
next. 

7.5.2 The Morlet Wavelet 

The Morlet wavelet consists of a single-frequency sine and cosine in quadrature 
(complex, with 90" phase shift). The amplitude is modulated with a Gaussian 
function, 

The first complex exponential represents the sinusoid and the second exponential 
captures the Gaussian amplitude modulation. The wavelet central frequency is 
indicated in the exponent v . i = (v/At) - (i - At); thus o = v/At. The value of v 
must be v < 7~ to satisfy the Nyquist criterion a,, = .rr/At. The wavelet 
width M.At is measured at half the peak amplitude of the wavelet. Figure 7.9 
shows a Morlet wavelet in time and frequency domains. The DlT is single-sided 
(refer to Figure 7.4) and its spectral density is a Gaussian curve (not a single 
frequency). 

The wavelet transform of a signal 5 in terms of the Morlet wavelet is 

where the central frequency is o, = 7r/(2". At), and the Nyquist frequency corre- 
sponds to a = 0, that is o = n/At. The time shift for each value of b is T = b At. 
If the signal x has N points, then 2" 5 N/2. Finally, the width of the wavelet is 
M = 2" d m .  The parameters "a" and "b" are indices in the frequency-time 
information space. 

7.5.3 Resolution 

The trade-off in time-frequency resolution is also manifest in wavelet analysis. 
The time resolution attained in the wavelet transform using the Morlet wavelet 
is related to its width M.At, and the frequency resolution Af,, is related to the 
frequency band of the transformed wavelet. If the time and frequency widths are 
determined on the Gaussian envelopes at half the peak, the uncertainty princi- 
ple becomes 

Af,, . A t ,  x 0.9 (7.22) 
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Figure 7.9 Morlet wavelet: (a) mathematical definition of the complex series; (b) Morlet 
wavelet with parameters v = 0.15 . IT and M = 40 - real and imaginary components; 
(c) autospectral density - note that it is single-sided - refer to Figure 7.4 
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7.5.4 Procedure - Example 
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Implementation Procedure 7.4 outlines the computation of the wavelet transform 
of a signal in terms of the Morlet wavelet. A numerical example is shown in 
Figure 7.10. Small values of "a" give information about high-frequency content 
details in the signal, whereas high values of "a7' show the low-frequency global 
trends. 

Nyquist 
I - 
I 
I 
I 
I 

Implementation Procedure 7.4 Wavelet transform of nonstationary signals 
(Morlet wavelet) 

I \  I t I 

1. Select a wavelet ~ ( t ) .  Copies in discrete time are obtained by time shifts b 
1 

and contractions a: a-5 . ~ i - b  - 
a 
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2. Decide the scanning rate for the time-frequency space, keeping in mind the 
restrictions imposed by the uncertainty principle. This rate will determine 
shift b and contraction a parameters. 

3. Calculate the wavelet transform as a cross-correlation of the signal 5 and 
the wavelet for each degree of time contraction 

, N-l 
Ga,b = a-7 . C Xi . K B  

(I 

i=O 

4. If the Morlet wavelet is used, the wavelet transform of 5 is computed as 

, N-1 i-b 

I - The Nyquist frequency corresponds to a = 0. 

- If the signal x has N points, 2" 5 Nl2. 

- The width of the wavelet is M - At = 2a J-. 

5. The values of the wavelet transform for each combination of contraction "a" 
and shift "b" are plotted versus a and b, or versus time shift T~ = b . At and 
frequency o, = 17/(2, . At). 

Example 
A numerical example is presented in Figure 7.10. 

Note: Eflcient algorithms are implemented with filter banks and decimation or 
down-sampling. (Recall the time-scaling properties of the DFT in Chapter 5.) 
The wavelet transjomz can be designed to minimize oversampling the time- 
frequency information space, while assuring invertibility. 

In practice, the scanning of the time-frequency space is planned to avoid 
redundancy, in agreement with the superposition of windows in the STFT, and 
the scaling parameter a is varied in powers of 2, a = 2, (compare Equations 7.19 
and 7.20). Likewise, it is not necessary to compute the cross-correlation for time 
shifts that differ in only one sampling interval (T = b - At); in fact, the time shifts 
can be related to the central period of the wavelet. 
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-I I 
0 128 256 384 512 

b - time shift 

Figure 7.10 The wavelet transform: (a) the signal in discrete time; (b) the wavelet 
transform presented as amplitude versus time shift b for different frequencies; (c) contour 
plot: wavelet transform presented in the frequency-time space denoted by parameters a 
and b 
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7.6 NONLINEAR SYSTEMS: DETECTING NONLINEARITY 

The application of the convolution operator is restricted to linear time-invariant 
(LTI) systems where the generalized superposition principle applies: "the input 
is expressed as a sum of scaled and shifted elemental signals and the output 
is computed as a sum of equally scaled and shifted system responses". The 
superposition principle loses validity in nonlinear or time-varying systems. 

7.6.1 Nonlinear Osciilator 

The single DoF oscillator in Figure 7.1 l a  is the archetypal LTI system applicable 
to wide range of engineering and science applications, ranging from atomic phe- 
nomena to mechanical and electrical engineering systems (see also Figure 4.10). 
The frequency response fi is independent of the amplitude of the forcing func- 
tion &. 

By contrast, the other four systems displayed in Figures 7.11b-e are nonlinear. 
The systems in frames b and c include frictional elements: nomecoverable slip 

Figure 7.11 Linear and nonlinear single DoF systems: (a) linear system; (b, c) nonlinear 
frictional systems; (d) Duffing nonlinear system (nonlinear spring); (e) nonlinearity caused 
by physical constraints 
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takes place whenever the force transmitted to the frictional element exceeds its 
capacity. Nonlinearity is first exhibited near resonance and its effect spreads to a 
wider frequency range as the amplitude of the imposed excitation increases. At 
low frequencies - below resonance - the inertial response of the mass is very 
small and most of the applied force is transmitted to the support; this is not the 
case at high frequencies - above resonance - owing to the inertial resistance of 
the mass. Hence, the quasi-symmetry of 1111 in a linear viscoelastic system is 
gradually lost as the system becomes nonlinear. 

Figure 7.1 1d presents another simple yet revealing nonlinear system in which 
the restoring force is nonlinear with the displacement. This is called the Duffing 
system. The equation of motion is 

When a = 0, the equation of motion becomes the equation of motion of a lin- 
ear system. If a > 0, the restoring force increases with amplitude, and (HI is 
skewed to the right. If a c 0, the restoring force decreases with amplitude, and 
IH/ is skewed to the left (Figure 7.12a). These examples show that a shift in 
the peak value of IHI with increasing input amplitude is another indicator of 
nonlinearity. 

7.6.2 Multiples 

Consider the nonlinear system in Figure 7.1 1e subjected to a single-frequency 
sinusoidal input x. As the excitation amplitude is increased, the mass oscillation 
eventually reaches the boundaries, the displacement is stopped, and the rest of the 
motion is distorted. Without further analysis, assume that the mass displacement 
history resembles the signal y shown in Figure 7.13a. The response repeats with 
periodicity T = 21~/o, where o, is the frequency of the input sinusoid; however, 
it is not a sinusoid. 

How is this periodic response y fitted with a Fourier series? Clearly, the 
sinusoid corresponding to frequency o, remains an important component of the 
response. But other frequency components are needed to fit the response, and 
their contribution to the synthesis of y must take place at locations that are 
repeatable with periodicity T = 21~/o,. Therefore, the other components must 
be harmonics of o,. The DFT of the response y is shown in Figure 7.13b 
where harmonics or "multiples" are readily seen (see problems at the end of this 
Chapter). 
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I I I A;; kd 
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of sweep of sweep 

Figure 7.12 Duffing nonlinear system: (a) spectral response as a function of a and the 
amplitude of excitation F,; (b) measured response varies with the sweep direction (the 
case shown corresponds to a soft spring, a < 0; the same applies for a z 0 

Figure 7.13 Nonlinear response of the nonlinear system presented in Figure 7.11e: 
(a) input x and output y signals; (b) the amplitude of the discrete Fourier transform 1 
in dB. The multiple peaks are harmonics of the excitation frequency (only the first 10 
harmonics are shown) 
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7.6.3 Detecting Nonlinearity 

Because the application of classical signal processing and system analysis methods 
presumes linearity, it is important to assess whether the system under consid- 
eration exhibits nonlinear response. Let us list here those previously discussed 
methods that can be used for this purpose: 

Scaling and additive rules. Test whether the scaling or additive rules are 
fulfilled by exciting the system with the same signal at different amplitudes, 
or with two different signals and their sum (Section 3.5). 

Preserving statistics. Compare the statistics of input and output signals 
(Section 3.5; also Chapter 9). 

Input-independent frequency response. Compute the frequency response H for 
different levels of excitation. Hdoes not change in shape, amplitude, or position 
if the system is linear (Sections 6.6 and 6.7). 

Loss in coherence near peak. Check the value of coherence, particularly at 
frequencies near the peak of H. (Recall: loss in coherence near the peak is also 
an indicator of poor frequency resolution, Section 6.7.) 

Multiples. Check higher harmonics or multiples in the DFT of the response to 
narrow-band input. 

Compatible spectral variation. The spectral variation of the real and imaginary 
parts of H are related through the Hilbert transform (known as Kramers-Kronig 
relations in materials research, Section 7.2.1). 

Other aspects in the detection of nonlinearity are described next. 

7.7 NONLINEAR SYSTEMS: RESPONSE TO DIFFERENT 
EXClTATIONS 

The frequency response H of linear systems is independent of the excita- 
tion used. (Techniques based on frequency sweep and broadband signals were 
discussed in .Implementation Procedures 6.1, 6.5, and 6.6.) This is not the 
case in nonlinear systems, as is demonstrated in this section. For clarity, a 
step-by-step description of each experiment is summarized in Implementation 
Procedure 7.5. 
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Implementation Procedure 7.5 Nonlinear systems - Different excitations 

I Frequency sweep at constant amplitude input I 
1. Select the amplitude of the input Amp@. This is the excitation force for 

the case of a single DoF oscillator. 

2. For a given frequency w, apply the forcing function with amplitude Amp@ 
and determine the amplitude of the response A m p 0  

3. Compute the magnitude of the frequency response IH,(= 
Amp(y),/Amp(y),- 

4. Repeat for other frequencies w. 

5. Repeat for other selected input amplitudes Amp@. 

Frequency sweep at constant amplitude output 

1. Select the amplitude of the response % for a given frequency o. 

I - Apply the input with frequency w and amplitude Amp@. I 
- Determine the amplitude of the response Ampw. Modify the amplitude 

of the input until Amp(y) - = W (feedback loop). 

- Compute the magnitude of the frequency response IH,I = 
Amp(y),/Amp(d,. 

2. Repeat for other frequencies w. 

3. Repeat for other selected magnitudes of the amplitude of the response 8. 

Random input signal 

I 1. Select the amplitude of the random input signal. I 
2. Apply the signal, compute the coherence, and determine the number of 

signals M to be stacked. 

3. Compute the frequency response using the average cross- and autospectra 
(Implementation Procedure 6.6): 

Hu = c c z ' a w  for frequency ou = u - 2li/(N - At) 
(AC:"'), 



202 TIME VARIATION AND NONLINEARITY 

The computed frequency response 11 is the equivalent linear model that is 
least squaresjtted to the data, within the extent of the input random signal. 

4. Repeat for other selected amplitudes of the random signal. 

Figure 7.14 compares data gathered with these three methods for the shear 
stiffness of a soil column. 

7.7.1 Input: Single- frequency, Constan t-amplitude 
Sinusoid 

In this method, the frequency of the forcing function is gradually stepped while 
keeping the input amplitude constant, so that IX,I = constant for all frequen- 
cies w,. The system response is measured at each frequency step o,. The fre- 
quency response H,, is the measured response Y, divided by a constant. This is 
a robust method to study the system response, including conditions with high 
background noise. 

Analytical results are presented in Figure 7.12b for a "soft spring" Duffing 
system. There is a "jump" from the low-frequency jump to the high frequency 
branch in the response. The frequency at which the jump occurs changes with the 
direction of the frequency sweep. This phenomenon, also known as "galloping", 
indicates that the frequency response is not only dependent on the amplitude of 
the input signal but also on the evolution of the experiment. 

Consider the following experiment: sand is poured inside a thin cylindrical 
latex balloon, and it is then subjected to vacuum to form a stiff sand specimen. 
The sand column is then subjected to torsional excitation to study its response. 
(This is a fairly standard device known as torsional-resonant column.) Results 
obtained for a frequency-increasing sweep are presented in Figure 7.14a. Note 
the gradually increasing asymmetry of the frequency response, the shift of the 
peak response to lower frequencies, and the increase in attenuation (lower peak 
and wider band) with increasing excitation amplitude. 

7.7.2 Input: Random Signal 

Frequency-domain analysis is required to determine the frequency response 
when a system is excited with wide-band signals. However, assumptions in 
frequency domain analyses are violated when the system is nonlinear and the 
computed frequency response is inadequate or misleading. 
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Figure 7.14 Determination of frequency response in nonlinear systems: (a) constant 
amplitude input - frequency sweep; (b) random input signal; (c) comparison for similar 
amplitude (Cascante and Santamarina, 1997) 
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Let us explore the nonlinear system response to random noise using the same 
sand column tested previously. A random signal is of particular interest: like the 
previous method, a random signal contains the same energy in all frequencies 
as in the previous method; however, all frequencies are present at all times in a 
random signal. 

Figure 7.14b shows the frequency response obtained with random noise using 
cross- and autospectral densities (see Implementation Procedure 7.5). The com- 
puted frequency response curves shift to lower frequencies and exhibit higher 
attenuation with increasing excitation amplitude. But there is an important dis- 
tinction with the results in Figure 7.14a: the responses measured with random 
noise are quasi-symmetric and resemble the response of linear systems. In fact, 
the system parameters inverted by fitting a linear viscoelastic model to any of 
these curves would be the parameters of an equivalent linear system for the 
corresponding strain level. It can be concluded that the frequency response IT 
computed from cross- and autospectra is the best-fit linear model to the data, 
within the extent of the input. 

7.7.3 Input: Single-frequency Sinusoid - Output: Constant 
Amplitude 

Consider the same experimental device and a single-frequency sinusoid, but in 
this case the input amplitude is modified to produce the same amplitude output 
for all frequencies; that is, IY,I = constant at all w,. The methodology requires a 
feedback loop (see Implementation Procedure 7.5). 

Results obtained at similar peak strains using constant amplitude output and 
random signal are almost identical (Figure 7.14e). 

Why are measured responses obtained with the two single-frequency sweep 
methods so different? The degree of nonlinearity and the associated frictional 
energy consumed per cycle are strain-dependent in sands. In the constant input 
method, the amplitude of the displacement varies with frequency; hence, the level 
of nonlinearity also varies across the spectrum. However, in the constant output 
procedure, the displacement and the strain are constant at all frequencies causing 
the same degree of nonlinearity and energy loss across the spectrum. 

7.8 TIME- VA RYING SYSTEMS 

The response of a nonlinear system inherently varies in time according to the 
imposed excitation history. Furthermore, there are linear systems that experience 
time-varying system parameters. Both cases fail the time-invariant assumption 
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that underlies frequency domain system analysis: the system response must not 
change during the measurement. 

If slowly changing time-varying systems are assumed time-invariant within 
short-time windows, data processing is based on spectral ratios, as discussed in 
Chapter 6. The selection of the window width M.At depends on the system rate 
of change. In turn, the window width affects the ability to identify the response 
to low-frequency components, the determination of "instantaneous" rather than 
time-averaged system parameters, and time resolution. 

A versatile time domain methodology for the analysis of time-varying systems 
is introduced next. 

7.8.1 ARMA Model 

Systems have "inertia" or "memory"; therefore, the current output yi can be 
forecast on the basis of the prior output values. On the other hand, the convolution 
equation in the time domain shows that the current output yi is a moving average 
of the current and prior inputs according to the entries in the impulse response h. 
In general these two approaches are valid and can be used in combination, 

ARMA Auto-Begressive goving-Average 

Current linear combination of linear combination of current 
output = prior output values + and prior input values 

Yi yi-1, yi-2, Yi-3. . . Xi, Xi-*, Xi-2,. . . . 

Formally, the predictive equation is written as 

where the output yi at discrete time ti is computed as an Auto-Regressive linear 
combination of the "na" prior output values, and a causal Moving Average of 
the "nb" current and prior input values. The values na and nb define the order 
of the auto-regressive and the moving average components of the ARMA model; 
proper implementation requires adequate a priori selection of orders na and nb. 
The coefficients a,, and b, capture all the information relevant to the system 
response. 
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7.8.2 A Physically Based Example 

Let us develop a physically based ARMA model for a single DoF oscillator. The 
equation of motion is (details in Section 4.3) 

where the driving force x and the displacement y are functions of time. In discrete 
time, the values of velocity and acceleration can be replaced by forward finite 
difference approximations in terms of the displacements at time ti 5 i . At: 

velocity 

yi - 2 yi-, + yi-2 
Y =  acceleration 
i At2 

Substituting into Equation 7.25, 

(2(1 +Dd~,,-At)  
Y i =  ) . yi-, + (2) yi-, + (g) xi (7.28) 

< , - 
Auto-Regressive Moving-Average 

where C = (1 + 2. D . o . At + w2 . At2). Therefore, the physical meaning of all 
A ~ M A  parameters is readily apparent (the factors of yi-,, yi-, and X,). The 
methodology can be extended to other linear and nonlinear systems. 

7.8.3 Time- V w n g  System Analysis 

An equation similar to Equation 7.28 can be written for each value of the measured 
output. This leads to a system of equations of the following form: 
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where the values of y and 5 are known. The total number of unknowns is 
N = na + nb. For example, for na = 3 and nb = 2, the system of Equations 7.29 
becomes 

The goal is to extract the values 3 and b that characterize the system parameters. 
This is an inverse problem. If the system is time-invariant, the inverse problem 
is solved using all equations. If the system is time-variant or nonlinear, a limited 
number of equations around time 6 is used to obtain the equivalent time-invariant 
behavior that corresponds to time 6. The calculation is repeated at all times of 
interest. This will render momentary system properties within the time covered 
by the model. 

The selected number of rows M corresponding to known values yi must be 
equal or greater than the number of unknown model parameters na+nb. If 
M > (na + nb), a least squares approach is used to determine the unknowns h, a, 
the inferred values are less sensitive to noise, and the system parameters average 
over the time interval M-At. The least squares solution to the inverse problem is 
presented in Chapter 9. 

If MA models are used instead of ARMA models, Equations 7.24 and 7.29 
become the convolution operation, and inverted MA model parameters are the 
system impulse response h = b. However, the convolutional nature of MA does 
not accommodate systems with feedback, which are common from mechanics, to 
biology and medicine; however, this is readily considered in the AR component 
of ARMA models. Furthermore, more complex models can be developed; for 
example, forecasting does not need to be based on linear combinations but may 
involve polynomial auto-regressive models. 

7.9 SUMMARY 

7.9.1 Nonstationary Signals 

The DFT of a signal converts a 1D array in time into a 1D array in frequency 
by decomposing the signal into a series of harmonically related, scaled and 
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phase shifted, infinitely long sinusoids. The signal is presumed periodic. It is 
always possible to compute the DFT of nonstationary signals; however, the 
unequivocal interpretation of the DFT requires stationary signals. 

Techniques for the analysis of nonstationary signals include short-time Fourier 
transform, band-pass filters and wavelet analysis. They convert the 1D array 
in the time domain into a 2D array in the time-frequency space. Alternatively, 
the analytic signal presents instantaneous amplitude and frequency versus time. 
Like a musical score, these methods capture the time-varying frequency content 
of the signal. 

The uncertainty principle is inherent to all forms of signal analysis: an increase 
in frequency resolution (for a given number of digitized points) can only take 
place at the expense of a loss in time resolution. 

All the available information is encoded in the signal. Hence, transfomza- 
tions do not generate new information, but facilitate the interpretation of the 
information encoded within the signal. 

7.9.2 Nonlinear Time- Varying Systems 

The analysis of signals and systems in the frequency domain presumes linear 
time invariance; thus, the generalized superposition principle applies. Under 
these conditions, there are equivalent operations in the time and frequency 
domains for all linear or convolutional operators. The choice between time or 
frequency domain reflects computational demands, enhanced interpretation of 
information, or the nature of the application at hand. Given the efficiency of 
FFT algorithms, frequency domain operations are often preferred. 

Several procedures permit the detection of system nonlinearity: verification 
of scaling or additive rules in the superposition principle, determination of 
the frequency response H for different excitation levels, similitude between 
input and output statistics, presence of multiples, verification of coherence, 
and compatible spectral variation between real and imaginary components of 
the frequency response. 

Both test procedures and data analysis methods may hide the nonlinear system 
response. Thus, the experimenter must remain skeptical and alert to the selected 
methodology. 

Slowly changing time-varying systems can be studied in the frequency domain 
by extracting short-time windows. Alternatively, locally fitted auto-regressive 
moving-average ARMA models extract momentary system properties in the 
time domain. 
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SOLVED PROBLEMS 

W. 1 Analytic signal. Consider the signal x = A - cos (w . t) + B . sin ( o  . t). Com- 
bine the results in Equations 7.5 and 7.6 to compute the analytic signal 
X<A> - . What is the instantaneous amplitude? 
Solution: The analytic signals for sine and cosine functions are (Equa- 
tions 7.5 and 7.6): 

x = cos (wt) =+ xcA> = cos (wt) + j - sin (wt) 

x = sin (ot) x<*> = sin (ot) - j . cos (wt) 

Invoking the linearity property: 

The instantaneous amplitude is 4 = J [ R ~  (x:*')12 + [ ~ m  (x;*')l2, there- 
fore 
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W.2 Analytic signal. Does the instantaneous amplitude follow the exponential 
decay observed just with the peaks of an attenuating sinusoid? 
Solution: To explore this question, let us plot 

for N = 512, A = 1, and attenuation a = -0.005. The signal and X = 
DFT(x) are 

Signal z Xi 

I 

Discrete 
Fourier 
transform X 

0 100 200 300 400 500 

Follow the step-by-step approach in Implementation Procedure 7.1 to com- 
pute the analytic signal. The real and imaginary parts of are 

Real 
component 

Imaginary 
component 

Let us plot the instantaneous amplitude Ai = J[~e(n:*>)]~+ [1m(x:*')12 
in semilogarithmic scale together with Ai = A . ea" 
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Semilogarithm plot: 
instantaneous 
amplitude versus 
time 

a =  
Ai 

I I 

-1 
I I I 1 I 

200 300 400 500 

a=- 
Ai 

- Analytic signal 
- - - Exponential decaying function 

- 

Results show that the instantaneous amplitude properly follows the atten- 
uation law. Add high frequency and random noise to the signal 5 and 
repeat this analysis. Furthermore, test this approach with real data. Evaluate 
potential applications and limitations of the analytical signal. 

W.3 Nonlinear systems. Explore the multiples in a thresholded beat function. 
Consider the following input 5 and output y signals: 

the(;) for [xi[ > t h  

Xi 

Set the threshold at th = 2.5. Plot the amplitude of the discrete Fourier 
transforms X and 1. Analyze the frequency where multiples are observed. 
Solution: The input and output signals 5 and y are 
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The magnitude of discrete Fourier transforms 3 and 1 is plotted in dB 
scale to enhance the identification of multiples: 

The two peaks in 1x1 correspond to the two frequencies f, and f, that 
make the beat function x (frequency counters u = 10 and u = 25). How- 
ever, the nonlinear thresholding transformation causes multiple peaks in 
1x1. Some develop in the harmonics of the primary frequencies f, (u = 
20,30,40, . . . ) and f,, (u = 50,75,100, . . . ), while others are mani- 
fest in the beat frequency f, - f, and its harmonics. Therefore, expect 
peaks at frequencies [pf, + qf, f r(f, - f,)] where p, q and r are integers 
0, 1, 2, ... 

ADDITIONAL PROBLEMS 

P7.4 Nonstationary signals. Express the transformation of a nonstationary signal 
into the time-frequency space in matrix form for: (a) time windows (STFT), 
(b) frequency windows (band-pass filtering), and (c) wavelet transform. 
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W.5 Wavelets. Consider the Morlet, Mexican hat and Sinc wavelets. Plot these 
wavelets for different control parameters (v, M). Compute their DFT. 

[ c)'] . e - ~ . ( ~ ) 2  Mexican hat wavelet K~ = 1 - - 

sin EX IT . &) 
"Sinc" wavelet K~ = . with ~g = 1 

2lT. + 
W.6 Nonlinearity. Knowing the linear response y of a single DoF oscillator 

(f, = 100 Hz, D = 0.4), assume that the response of a quasi-linear oscillator 
is y'q"a"i' = ~ ~ ~ l ' . ~  (yi/lyil). Simulate the output y<qWi' for the following 
input 5 signals: (1) a random signal, (2) an ensemble of single-frequency 
sinusoids of the same amplitude, that spans across the resonant frequency, 
and (3) an ensemble of single-frequency sinusoids with variable amplitude 
to render the same output amplitude. Compute the frequency response 
in each case. Compare results, analyze and draw conclusions. 

P7.7 Time varying system - ARMA. Reconsider the stock market problem in 
Chapter 1 using the ARMA approach. Download the data from the Internet. 
Fit ARMA models of order 2, 4, and 8 to 10-year data until 12 months 
ago. Then use the fitted models to extrapolate the Dow Jones values into 
the present time. Analyze the results and discuss. 

P7.8 Application in your area of interest: nonstationary signals. Obtain a long 
signal of your interest - either run experiments or download similar signals 
from the Internet. (1) Test whether the signal is stationary. (2) Analyze the 
signal with techniques described in this chapter: analytical signal, STFT, 
band-pass filtering, and wavelet transform. Modify the control parameters 
to optimize the information extracted in each case. Compare results and 
draw conclusions. 

P7.9 Application in your area of interest: linearity and time invariance. Identify 
a system in your area of interest. (1) Develop and implement a procedure to 
test whether the system remains time-invariant within the timescale of inter- 
est. (2) Run the different tests to explore nonlinearity, as in Section 7.6.3. 
(3) Analyze and discuss the results and their physical relevance. 
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Concepts in Discrete 
Inverse Problems 

Many engineering and science tasks are inverse problems (Tables 1.1 and 1.3). 
The goal of inverse problem solving is to determine unknown parameters from 
measured quantities by assuming a model that relates the two. This chapter 
begins with a few examples of inverse problems, introduces the general con- 
cept of data-driven solutions, and identifies some of the difficulties involved in 
inverse problem solving. Solution methods for inverse problems are presented in 
subsequent chapters. 

8. J Inverse Problems - Discrete Formulation 

Forward problems start from the known input. Conversely, inverse problems 
start from the known output and attempt to determine either the input or the 
properties of the system. Inverse problems appear in all engineering applications 
and scientific tasks. 

Possible forward and inverse problems are identified for simple examples in 
Figure 8.1. These examples underlie more complex problems: shadow inversion 
underscores tomographic imaging; water flowing out of the vase is analogous to 
rain falling in a river basin and causing surface runoff and flooding downstream; 
the moving weight on the beam is a simple model of a bridge structure; and the 
source of heat within a body is common to conduction phenomena of all kinds 
and it is directly relevant to geothermal resources as well as to infrared detection 
systems. 

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta 
Q 2005 John Wiey & Sons, Ltd 
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Description: The tube-lamp illuminates the medium 
and a shadow is created on the wall. 

Inverse problem 
4 

Forward problem: Given a semi-opaque object and a 
known source, compute the shadow on the wall. 

C 

INPUT signal 

Inverse problems: for a known medium and light 
intensity on the wall, 

-4 

Input: determine the tube position, orientation and 
intensity. 

System: infer the characteristics of the semi-opaque 
object. 

Forward problem 
b 

SYSTEM 

Description: At time t, the height of water in the 
vessel is y(t), the surface of the water has a radius 
r(t), and the stream strikes at distance x(t). 

Forward problems: Determine the striking distance x 
when the vessel is filled to height y, or the time 
required to drain the vessel. 

...... 

Inverse problems: 
Input: knowing x at a certain time, what is the height 

of the water in the vessel at that moment? 
System: knowing the time history x(t), what is the ves- 

sel's shape r(y)? 

TIT 

Figure 8.1 Inverse problems in engineering and science - simple examples 
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Description: The rigid beam supported on two 
springs is loaded with a known body weight W at 
position x. 

Forward problem: Compute the deflection of the 
beam given the knownposition and stiffness of 
both springs. 

Inverse problems: 
w Input: knowing the characteristics of the system and 

X its deflection, infer the body's location and 
weight. 

System: knowing the deflection of the beam for differ- 
ent positions of the weight, infer each spring 
position and stiffness. 

Description: There is a source of heat Q within the 
body. Temperature can be measured anywhere on 
the surface S. 

Forward problems: Compute the surface 
temperature knowing the source Q, location and 
size, and medium properties. 

Inverse Problems: 
Input: knowing the medium properties and the 

spatial distribution of surface temperature, 
infer the source position and size. 

System: for a given source position and size, and sur- 
face temperature, determine the volumetric 
distribution for thermal conductivity. 

Figure 8.1 (Continued) 

8.1.1 Continuous vs. Discrete 

Examples in Figure 8.1 can be formulated using continuous or discrete mathe- 
matics. Light attenuation from the tube source to the screen is an integral of the 
absorption that takes place in each differential ray length ds, along the ray path. 
On the other hand, the cumulative output from the vessel at time t depends on the 
corresponding elevation z of the water inside the vessel at time t and the geometry 
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of the vessel above it. These two examples can be captured in equations of the 
following form: 

y (P) = h(p, s) - x (s) . ds Fredholm equation (8.1) 

P 

or y (p) = / h(p, s) . x (s) . ds Volterra equation (8.2) 
a 

where the function h(p, s) is the kernel. When the kernel h(p, s) describes the 
system response at location p owing to a unit input at location s, the function 
h(p, s) is the Green 's function. 

In inverse problems, y(p) and the kernel h(p, s) are known, but the function x(s) 
is unknown. When the unknown function appears inside the integral, the expres- 
sion is known as an "integral equation". There are two main types of integral 
equations: Fredholm equations when both integration limits are fixed (Equa- 
tion 8.1), Volterra equations when one integration limit is variable (Equation 8.2). 
Either integral equation is of the first kind when the unknown function appears 
only inside the integral, and it is of the second kind when the unknown function 
appears both inside and outside the integral; therefore, both Equations 8.1 and 
8.2 are of the first kind. Note that convolution (Chapter 4) and even the Fourier 
transform (Chapter 5) are integrals of the product of two functions, and their 
inverse operations are integral equations. 

The discrete form of integral equations is a summation: 

When many measurements are available, the system of equations can be expressed 
as matrix multiplication 

where the array 5 captures the unknown values. (Note that the matrix h is lower 
triangular in Volterra-type problems.) If the matrix h is invertible, itskverse is 
computed h-', and the solution of the inverse becomes - 

1 x = h- . y inverse problem - - - (8.5) 

However, the matrix h is noninvertible in most cases, and a "pseudoinverse" is - 
computed instead. 

Vectors and matrices are the natural data structure for discrete signals and linear 
transformations that operate on discrete data values. Therefore, in accordance with 
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the scope of this book, we seek to express inverse problems in discrete form, like 
Equation 8.5. (Note: not all problems are amenable to this representation.) Once 
the forward problem is encoded in matrix form, we can implement simple yet 
powerful and versatile algebraic procedures to compute a pseudoinverse and solve 
the inverse problem. Matrix algebra also facilitates the analysis and diagnosis of 
inherent difficulties in inverse problems (Chapter 9). 

Selected examples are explored in the following sections. As you read these 
examples, consider simple problems of your own interest, identify the gov- 
erning physical laws, express them in mathematical form and convert them to 
a discrete formulation like Equation 8.4 that would be compatible with some 
possible measurement scheme. This association with a specific problem will 
facilitate understanding this and subsequent chapters, and enhance the interpreta- 
tion of underlying implications and limitations. (See exercises at the end of this 
chapter.) 

8.1.2 Revisiting Signal Processing: Inverse Operations 

Many signal processing operations have an inverse or involve the solution of an 
inverse problem, for example: deconvolution in the time domain, inverse Fourier 
transform, system identification including the case of time-varying systems using 
ARMA models, and adaptive filters (Chapters 4-7). 

Convolution is the forward problem of determining the output signal y know- 
ing the input & and the impulse response &. In terms of discrete mathematics, 
convolution is a sum of pairwise multiplications and it can be readily expressed 
in matrix form (Section 4.5) 

y = x forward problem: convolution - - (8.6) 
where the columns of matrix h are shifted versions of the impulse response h. 
The inverse problem of decon!olution is to determine the input & knowing the 
output y and the impulse response h. If the matrix h were invertible, - 

x = h-'. y inverse problem: deconvolution - - (8.7) 
The other type of inverse problem is system identification. Because convolution 
is commutative, the convolution sum in matrix form can be expressed as the 
multiplication of a matrix x whose columns are shifted versions of the input 
signal 5 times the vector of &e impulse response &, y = = li h. Following a similar 
reasoning as before, if the matrix 5 were invertibleTthe-impulse response could - 
be extracted as 

h = 5-'- y inverse problem: system identzjkation - - - (8.8) 

The inverse Fourier transform in matrix form was developed in Section 5.4. 
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8.1.3 Regression Analysis 

System identification problems can be seen as fitting a hypothesized model to the 
measurements in order to extract the unknown model parameters. The solution 
procedure starts by selecting a plausible model or physical law. This defines the 
function to be fitted. 

Consider fitting a polynomial of order N - 1, with constants (c,, c,, .... cN-,) 
to measurements of distance zi traveled by a free-falling object at times tj. 
A polynomial equation can be written for each i-th measurement: 

This set of equations can be rewritten in matrix form as 

The N model parameters c = (c,, .... c,, .... c,...,) are unknown. In general, 
there are more measurements than unknowns (M > N, overdetermined) and mea- 
surements are noisy (inconsistent set of equations). 

Note that setting the problem in matrix form does not require a linear func- 
tional relation t = f(z), but a linear combination of basis functions of z. The 
Fourier series is a good example: t = c, + c, - cos(o . z) + c2 . sin(o . z) + .... 
where sines and cosines are the basis functions. A hyperbolic model is fitted to 
experimental data in Figure 8.2. 

When several competing models are available, the goodness of the fit helps 
identify the most plausible one. However, this is a necessary but not sufficient 
selection criterion. Why is it not sufficient? The answer becomes apparent later 
in this chapter. 
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Experimental data: Stress-strain data 

Hypothesized law: Hype~tmlic model 

Inverted parameters: a and b parameters 

Hyperbolic model: d - 1 d - a + b . ~  

I 

Figure 8.2 Calibration of constitutive models. Experimental load-deformation data for 
a kaolinite specimen. The hypothesized stress-strain relationship is the hyperbolic model. 
Inverted parameters: initial Young's modulus E = a-' = 20.8 MPa, material strength b-' = 
41.5lcF'a. (a) Transformed coordinates; (b) data in standard stress-strain space (data cour- 
tesy of E. J. Macari) 

8.1.4 Travel Time Tomographic Imaging 

Tomographic inversion attempts to infer material parameters and their spatial 
variability within a body by mathematically processing measurements obtained at 
the boundary. The technique applies to chemical, electrical, thermal, or mechani- 
cal parameters. Hence, this is a powerful approach in the study of many systems 
in engineering and science. In all cases, a physical model must be presumed. 
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Consider an ultrasound diagnostics tool where travel time measurements are 
inverted to render a tomographic image of the spatial variability of veloc- 
ity V within the body. Both transmission data and reflection data may be used 
(Figures 8.3a and b). The signal emitted at the source travels through the medium 
and is detected at the receiver (Figure 8.3~).  The travel time from the source 
to the receiver is the integral of differential times spent in traveling differential 
lengths "dh" along the ray path, 

receiver 

where V(p, q) is the velocity of propagation within the medium at location (p, q). 
The problem can be set in discrete form by dividing the region of interest into 

pixels. For example, the unknown region shown in Figure 8.4 has been discretized 
into four subregions or "pixels", N = 4, such that each pixel k has a constant 
velocity V,. For simplicity, straight ray propagation is assumed as the governing 
physical model. Then, the travel time t, between source S, and receiver R, can 
be computed as 

This is the discrete form of Equation 8.1 1 .  The value hi,, is the distance traveled 
by ray i in pixel k. Defining "slowness" s as the inverse of velocity sk = l/Vk, 
the travel times for the four measurements in Figure 8.4 are (rays 1, 2, 3, and 4; 
M = 4): 

These equations can be arranged in matrix form as 
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(a) Transmission 

@) Reflection 

Vertical 
seismic 
profiling 

Inclusion 

(c) Travel time 
evaluation 

Figure 83  Travel time techniques. Data gathered with (a) transmission or (b) reflection 
techniques can be analyzed using inverse problem-solving techniques. (c) Travel time is 
the line integral of slowness (the inverse of velocity) along the ray path. Note: asterisks 
indicate the location of sources; dots show the location of receivers 

In the general case of M-measurements of travel time and N-unknown pixel 
values, 
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Figure 8.4 Tomography. The unknown region is digitized in four subregions or pixels. 
The region is "illuminated" with straight rays. Sources S and receivers R are placed on 
the boundary. Only one ray is shown S, + R,.  The other three rays in this example are 
S,  + R2,S, + R,, andS, + % 

where 

i refers to ray number; 
k refers to pixel number; 
t is the [M x 11 vector of measured travel times; 
h,,, is the length traveled by the i-th ray in the k-th pixel; 
4 - is the [M x N] matrix of travel lengths; and 
s is the [N x 11 vector of unknown pixel slowness. - 

Equation 8.15 is the forward problem: travel times 1 are computed knowing 
the travel lengths 4 and pixel slowness 2. The aim of the inverse problem is to 
determine the pixd values 5 by measuring travel times t Note that a physical 
wave propagation model is presumed to estimate the travel lengths in h. Once 
pixel values 5 are computed, the image is rendered by coloring pixels according 
to their slowness using a selected color scheme. 

8.1.5 Determination of Source Location 

Many tasks require precise information regarding the location of sources. Proper 
source location is used to (a) determine the evolution of material failure using 
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either electromagnetic or acoustic emissions; (b) locate brain lesion from elec- 
troencephalograms; (c) assess fault rupture evolution on the bases of successive 
hypocenter locations during earthquakes; (d) identify the instantaneous position 
of a transmitting antenna; or (e) define the trajectory of a pill transmitter that is 
swallowed and travels inside the body. 

The travel time ti from the source to the i-th receiver in a homogeneous medium 
is (Figure 8.5) 

1 2 
4 = , J(ps - pi)2 + (a - qJ2 + (rs - r,) homgeneous medium (8.16) 

where p,, p, and r, are the unknown coordinates of the source, and pi, qi, and ri 
are the known coordinates of the i-th receiver. The travel time ti can be expressed 
as the addition of (1) the time that the wave takes to arrive at a reference receiver 
to (unknown), and (2) the time difference between the amval at the reference and 
the i-th transducers Ati 

A similar equation can be written for each monitoring transducer. Each equation 
is a nonlinear combination of spatial coordinates. The problem can be linearized 

Location i-th station: (pi, qi, ri) 
Detection at time: ti 

Figure 8.5 Passive emissions. The unknowns are source location p,, q, r,, and time of 
emission to. Note: the asterisk indicates the location of the source; dots show the location 
of receivers 
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if equations for two different receivers are subtracted. Consider two receivers 
i and k: 

Expanding and simplifying, 

Finally, 

known a,, known big, known ci,, known d,, - - - - 
to v2 (A4 - Atk) -ps . ( ~ k  - pi) -4s . (qk - qi) -'s . (rk - ri) 
- - - .  [ P ~ + q ~ + r : - p : - q f - r ~ - ~ 2 ( ~ t ~ - ~ t ~ ) ]  (8.20) 

known ei,, 

where a, b, c, d, and e are auxiliary parameters that depend on known values 
related to receivers i and k and the reference receiver. Equation 8.20 is a linear 
equation in terms of the reference time t, and the coordinates of the source p,, 
q,, and r,. It can be written for each pair of receivers i and k (in relation to the 
reference transducer), 

I . .  .. .. . . I 1  

The goal of the inverse problem is to solve for the time of the event (with respect 
to its arrival at the reference receiver) and the coordinates of the source. This is 
the vector of unknowns g = (b, p,, q,, r,). 

If a large number of monitoring stations are available, Equation 8.21 can be 
extended to take into consideration the spatial variability in the medium. In this 
case, inversion will not only render the timing of the event and the location of 
the source but the characteristics of the medium as well. 
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8.2 LINEARIZATION OF NONLINEAR PROBLEMS 

The expression y = . z  implies a linear relation. However, linearity is only a 
tangential approima30n to any physical process. For example, the trend between 
conductivity and electrolyte concentration deviates from linearity as the salt 
concentration approaches saturation, and Ohm's linear law between current and 
voltage fails at high current densities. In nonlinear cases, the analyst must decide 
how far the linear model can be used within acceptable deviations. 

Still, a nonlinear relation can be linearized about a point using a first-order 
Taylor expansion. (See solved problems at the end of the chapter.) Consider the 
nonlinear function z = f (x) shown in Figure 8.6. The first-order Taylor expansion 
about x'O' permits the estimation of the value of the function z at x"' from the 
value of z at xC0> 

where the slope &/dxl,,~, is the derivative of the function evaluated at x'". If 
z is a function of two variables x, and x,, the value of z (x;", x;") at a point 
x;" = x;" + Ax, and x;" = x;'" + Ax, can be estimated as 

In general, if z is a function of N variables 5 = (x,. . . x,), 

x4b x<l> X 

Figure 8.6 Linearization of nonlinear problems: first-order Taylor expansion 
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If there are M nonlinear equations, the linearized approximations are assembled 
in matrix form as 

where 

Azi = zi(') - zico> for i = 1 to M measurements 

Ax k -  - x k (') - xk"' for k = 1 to N variables 

J. = - 
1,k 

azi I [M x N] Jacobian matrix of partial derivatives 
axk ,co, 

Equation 8.25 has the same mathematical form as other linear problems dis- 
cussed in the previous section. Therefore, inverse problems that involve nonlinear 
systems can be solved by successive linearizations. Difficulties associated with 
convergence and uniqueness are often exacerbated in nonlinear problems. 

8.3 DATA-DRIVEN SOLUTION - ERROR NORMS 

The solution of inverse problems is guided by the data and physical requirements 
about the model. Concepts related to data-driven inverse problem solution are 
discussed in this section. 

8.3.1 Errors 

Let us consider the case of curve fitting a second-order polynomial to the data 
shown in Figure 8.7. The error or residual for the i-th measurement is established 
between measured value Cmeas' and predicted value y'p"d' 

where the predicted value yi'pd' = a + b . ti + c ti
2 is computed for a given 

estimate of the unknown coefficients (a, b, c). The goal is to identify the set of 
coefficients that minimizes the residual, taking all measurements into considera- 
tion. 

Many physical parameters vary across orders of magnitude. For example, 
this is typically the case in conductivity of all kinds (fluid, thermal, electrical). 
Furthermore, complementary manifestations of the same physical phenomenon 
may take place in very different scaling conditions (see an example in Figures 8.8a 
and b). When very small and very large values coexist in the data, the error 
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Figure 8.7 Error between the measured and the predicted values for the i-th measure- 
ment. (Measured values yi'"-' and predicted values yi'@' = a + b - ti + c . q) 

yy 

y5P- 

Logarithm of frequency Logarithm of frequency 

(a> (b) 

t t 

j 

j * Measured data point 
2 

i F i t t e d e q u a t i ~ n : y ~ ~ = a + b . t i + c - t i  

(c) x ( 4  Logarithm of x 

ti 
C 

t 

Figure 8.8 Fkror definition: (a and b) real and imaginary parts of the complex perrnit- 
tivity K; (C and d) data points with a bias: the fitted line follows the data in linear scale, 
yet the bias is clearly seen in log-log scale 
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definition in Equation 8.26 will bias the inversion towards the largest measured 
values, and alternative error definitions should be considered: 

ei = log (y:"'"') - log (y,@") log dgerence (8.27) 

<meas> - y;~red> 

e. = Yi proportional error 
y'Pd' 

(8.28) 

y:'"e=> - y i < P d 7  
e. = standard error (8.29) 

ai 

where ui is the standard deviation for the i-th measurement. It is also possible 
to define the perpendicular error as the distance normal to the trend. While this 
definition has advantages (for example when inverting very steep trends), the 
implementation is more involved. 

Be aware that the selected error definition affects the inverted parameters. This 
is demonstrated in Figures 8 . 8 ~  and d where the same data and trend are plotted 
in linear and logarithmic scales. While the trend fits the data well in linear scale, 
it is clearly biased in logarithmic scale. (See problems at the end of this chapter 
to explore these issues further.) 

8.3.2 Error norms 

The global "goodness of the fit" is evaluated by computing the norm of the vector 
of residuals g. A useful family of "error norms" is the set of n-norms: 

Three notable norms are those corresponding to n = 1, n = 2 and n = oo: 

sum of absolute errors (8.31) 

sum of squared errors 

L, = max ((el ( , .., lei[ , .., (e,( ) maximum absolute error (8.33) 
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The search for the "best fit" attempts to minimize the selected error norm and 
leads to three distinct criteria: 

1. min(L,) or minimum total absolute value criterion. This norm is not sensitive 
to a few large errors and it yields "robust solutions". 

2. min(&) or "least squares" criterion. This criterion is compatible with additive 
Gaussian noise present in the data. 

3. min(L,) or "min-max" criterion. The higher the order of the norm, the higher 
the weight placed on the larger errors. The L, norm is the extreme case 
and it considers only the single worst error. This criterion is most sensitive 
to errors in the data and has a higher probability of yielding nonunique 
solutions. 

The term "robust" describes a procedure or algorithm that is not sensitive to 
a few large deviations or outliers in the data. For comparison, the term "sta- 
ble" in this context refers to a procedure where errors are damped rather than 
magnified. 

Figure 8.9 presents the fitting of data points with a linear regression y = 
a + b t, and the error surfaces computed with the three norms. The minimum 
in the L, surface is not a point but an area (Figure 8.9b): any combination of 
parameters a and b in this region gives the same minimum error, and the solution 
is nonunique. The lines displayed in Figure 8 . 9 ~  have the same minimum L,. 

Error norms and associated surfaces assess the goodness of a solution and 
provide information about convergence towards the optimal solution. A simple 
trial-and-error method to solve inverse problems based on this observation would 
start with an initial guess, and continue by perturbing one unknown at a time, 
trying to minimize the error norm between measured and predicted values. 

Let us utilize this procedure to study the implications of selecting different 
norms. Figure 8.10 presents the inverted parameters for straight lines that were 
"best fitted" to the measured data points by minimizing the three norms L,, 
L,, and L,. Observe the effect of the out-of-trend data point on the parameters 
inverted with each norm. 

It is instructive to study the variation of the norm in the vicinity of the optimal 
set of inverted parameters. This is done by fixing all inverted parameters except 
one, and varying it about the optimal value. Such plots are shown in Figure 8.11 
for the curve-fitting exercise presented in Figure 8.10. Each of these lines is a 2D 
slice of the error surface across the optimum, that is, the intersection between the 
error surface and a plane that contains the variable under consideration and goes 
across the minimum point in the error surface. Figure 8.1 1 shows that the different 
norms result in different inverted parameters and exhibit different convergence 
rates towards the minimum. 
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L, norm norm L, norm 

2 
Fitting equation: 
y=a+b . t  

-2 

Figure 8.9 E m  norms: (a) four data points to be fitted with a straight line y = a + b . t. 
The residual is evaluated using three different error norms: L,, L,, and L,; (b) contours of 
equal error. The central plateau for the L, error function suggests that several combinations 
of a and b parameters yield the same minimum error, as exemplified in (c) 
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,- L norm 
,::,- gnorm 

L1 norm 

5 -. 

Figure 8.10 Fitted straight lines using different error norms: 
L,: a=0.000 b=1.00 
: a = -0.73 b = 1.27 
L,: a=-1.40 b=1.40 

The L, norm is least sensitive to the data point that "appears out-of-trend 

yi<@=a+b.c 

Data: ti. yi""" 

Parameter b kept constant Parameter a kept constant 

Error 

: 8 

. .  . I 

I 8 I I 
-1 0 1 2 3 

b 

- L ~  norm ............ L2norm - - - - -  L, norm 

Figure 8.11 Slice of the error surfaces near optimum. Three different error norms (data 
from Figure 8.10). L, and L, are divided by the number of measurements to facilitate 
comparison. Note the differences in convergence gradients 
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8.4 MODEL SELECTION - OCKHAM'S RAZOR 

Error minimization between measured data and predicted values is only a part 
of inverse problem solving. The other part is selecting a proper model. In the 
absence of problem-specific criteria, we explore in this section the idea that a 
"good" model is simple. 

8.4.1 Favor Simplicity: Ockham's Razor 

While solving inverse problems, the engineer or scientist attempts to extract the 
most information possible out of the data. Therefore, it is tempting to select 
models with a large number of unknown parameters. However this may not be a 
desirable practice. 

Let us revisit regression analysis (Section 8.1.3). Given N data points, one 
may fit increasingly higher-order polynomials to observe that the residual error 
between measured and predicted values decreases as the number of unknowns 
increases. In fact, there is a perfect match and zero residual when an N - 1 order 
polynomial (N-unknowns) is fitted to the N data points. 

But should an N - 1 polynomial be fitted to the data? Linear and quadratic 
laws rather than high-order polynomials seem to prevail in the physical sciences. 
For example, Galileo invoked a second-order polynomial to predict distance d as 
a function of time t, in terms of velocity V and acceleration g: d = d,, + V t + 
g . t2/2. Why did Galileo not consider higher-order terms to fit the data? 

High-order polynomials "fit" data points well, but high-order term coefficients 
are small and add little information about the physical law. In contrast, lower- 
order polynomials follow trends, filter data noise, and extract the most meaning- 
ful information contained in the measurements. Therefore, new data will most 
likely fall near the low-order polynomial, particularly when it takes place outside 
the range of the original data. In terms of Bayesian probabilities, "a hypothe- 
sis with fewer parameters automatically has an enhanced posterior probability". 
Figure 8.12 shows a numerical example. 

In summary, a better fit does not necessarily imply a better model. A model 
with many unknowns is preferred over a simpler one only if its predictions are 
significantly more accurate for multiple data sets. If the predictions are similar, 
the simpler model should be favored. 

' The philosopher William of Ockham (14th century) is known for his principle: "Plurality must 
not be posited without necessity". The article by Jefferys and Berger (1992) presents an insightful 
discussion of this principle, also known as the rule of parsimony. 
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Second order polynomial Sixth order polynomial 

l" T 

Adequate prediction of new data Poor prediction of new data 

Figure 8.12 Ockham's razor criterion: favor simplicity. Simulated data correspond to 
d = . a .  t2 and includes random noise. The sixth-order polynomial fits the seven data 
points with zero residual. The higher the order of the polynomial, the higher the probable 
error will be between the model and new measurements, particularly when new data fall 
outside the range of the original data set (new data shown as empty diamonds) 

8.4.2 Reducing the Number of Unknowns 

There are different approaches to implement Ockharn's criterion in discrete 
inverse problems of the form y = h .x. - - 

Consider tomographic imaging where the vector of known measured travel 
times 1 [M x 11 is related to the vector of unknown pixel slowness 3 [N x 11 
through the matrix of travel lengths h [M x N] as 1 = h .  s. It is tempting to seek 
high-resolution tomograms. Yet phyzcal constraints (zg. wavelength) and limi- 
tations in the implementation of the experiment (e.g. noise, illumination angles) 
restrict the amount of information in the data. In this case one is well advised to 
reduce the number of unknowns. (Additional instability reasons are explored in 
Chapter 9.) 

There are several options. The simplest one is to reduce the number of pixels 
N by increasing their size, but this causes undesirable coarse image granularity. 
A more effective alternative is to fit a hypothesized slowness function. Let us 
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assume that the field of slowness across the p-q space of the image can be 
approximated with the following function (Figure 8.13): 

with six unknowns [a, b, c, d, e, fl. Then, each pixel value in the equation 1 = h g - 
can be expressed as a function of its location in the p-q space: 

Figure 8.13 Slowness variation. The functional characterization of slowness s(p, q) per- 
mits a decrease in the number of unknowns in tomographic imaging 
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Finally Equation 8.35 can be rearranged as 
r -. 

The second matrix Q is a function of the known pixel coordinates p, and G. 
Likewise, the entrierhi,, are known once the geometry is defined. Therefore, the 
product of the two matrices h [M x N] and Q [N x 61 on the right-hand side can 
be executed to obtain only &e [M x 61 m a s x  = h - Q. The relation between - - 
the vector of measurements and the unknowns &comes 

The result is a system of M equations with only six unknowns gT = 
(a, b, c, d, e, f), rather than the original system of M equations with N unknown 
pixel slowness, where typically N >> 6. The form of Equation 8.37 is identical to 
that of other linear discrete inverse problems analyzed previously in this chapter. 

Note: If a slowness function s(q, p) is assumed, then the slowness is not constant 
within pixels. However a single value of slowness is assigned to each pixel when 
the problem is discretized as = h - S.  The error in this approximation can be 
made as small as desirable by conTidering smaller pixels. While the number of 
pixels N increases, the size of the matrix !f in Equation 8.37 remains the same: - 
[MxN][N x 6 ]  = [ M x ~ ] .  

8.4.3 Dimensionless Ratios - Buckingham's IT Theorem 

Similarity is established in terms of dimensionless ratios. For example, consider 
the impact that operating a car has on an individual with an annual income I 
[$/yr], when the individual drives a vehicle with unit cost C [$/km] for a total 
distance D [kmlyr]. While the three parameters may vary in a broad range for 
different individuals, the dimensionless ratio .rr = D . C/I facilitates comparing 
financial conditions among individuals. 

Buckingham's IT theorem generalizes this observation: a physical relation of N 
parameters f (x,, . . . , x,) is equivalent to a relation F  IT^, . . . , .rr,-,) in t e r n  
of N - d dimensionless parameters T, where d is the number of dimensions 
involved. 
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The number of dimensions d is small. For example, d = 3 in typical mechanics 
problems: length [L], mass [MI, and time [TI. Therefore, there is a small relative 
reduction in the number of unknowns when N is large, such as in tomographic 
imaging. On the other hand, the dimensionless representation will be advantageous 
when the inverse problem involves a small number of unknowns and it is solved 
by repeating time-consuming forward simulations. 

8.5 INFORMATION 

Information is conserved in an invertible transformation: if y = h . 5  and 4 is - - 
invertible, then x = h-' - y without loss of information; in fact, y can be fully - - - 

recovered from x as - y = p - . (i-' . $ . The inverse problem cannot lead to a unique 
solution when more information is required during inversion (N unknowns) than 
the amount of available information. In this case, one must either reduce the 
number of unknowns or provide additional information. 

8.5.1 Available Information 

A large number of measurements M do not necessarily imply a large amount 
of available information, as many of the measurements may duplicate the same 
information. Deciding whether information is duplicated may not be obvious at 
first glance. For example, the system of equations for the tomographic problem 
in Figure 8.4 is (assuming square pixels of length 1.0) 

The fourth row can be obtained by adding the first and second rows and then 
subtracting the third one, and Equation 8.38 becomes 

Therefore, there are only three independent equations in this system, the rank 
r[h] = 3, and the information gathered with the M = 4 measurements is insuffi- 
cient to solve for the N = 4 unknown pixel values. (Note: appropriate diagnostic 
tools are identified in Chapter 9.) 
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8.5.2 information Density - Spatial Distribution 

Uneven information density has different effects on the various error norms and 
on the inverted parameters. In particular, the L, and L, error norms sum all 
individual errors e,; hence, regions with high information density have a stronger 
effect on the solution than regions with low information density. On the other 
hand, the L, norm is an error-averaging function and it is determined by the 
worst error; hence, it is not affected by information density. 

Consider the graphical example in Figure 8.14. In the top frame, the data set 
includes one out-of-trend measurement; in the bottom frame, three out-of-trend 
measurements plot on the same point. A straight line y = a + b . t is fitted in each 

Data set with one out-of-trend point 

6 + Fitting equation: yi = a + b ti 
(1 point) 

Data set with three out-of-trend points located at the same position 

Figure 8.14 Distribution of information. The regression line depends on the selected 
norm. The L, norm is not sensitive to the number of out-of-trend data points. The L, norm 
is least sensitive to outliers 
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case; inverted parameters are tabulated on the figure. Results confirm that the 
L, norm is not sensitive to information density and renders the same solution in 
both cases. 

In summary, high-order norms are most sensitive to outliers and least sensitive 
to uneven information density. (A persuasive example of the effect of uneven 
spatial distribution and the benefits of the L, norm is presented in Chapter 11 in 
the context of tomographic imaging.) 

8.6 DATA AND MODEL ERRORS 

Errors affect the invertibility of unknown parameters in the inverse problem 
y = h a  z. There are two main sources of errors. First, data error renders the - - 
measurements y noisy. Second, there is model error if the model assumed to 
compute the m&x 21 does not properly reflect the phenomenon being studied; 
for instance, a linekelastic model is used to analyze a material with nonlinear 
elastic behavior, or straight rays are used to analyze sound propagation data in 
heterogeneous media. Data and model errors combine, and are often magnified 
while inverting the equation y = h .  x. 

Implications are explored the context of least-squares fitting a straight line 
y = a + b - t to gathered data. Three cases are shown in Figure 8.15: noiseless 
data along a straight line, noisy data aligned with a straight line, and noiseless 
data along a nonlinear trend. The error surfaces for the L, norm are computed 
in each case. Once the minimum is identified, the L, norm is computed near 
optimum by perturbing one parameter at the time; these are the 2D cross-sections 
of the 3D error surface obtained across the point of minimum error (see also 
Figure 8.9b). 

It can be observed that in the absence of model or data errors, data are perfectly 
fitted with the model and the minimum of the error surface is zero (Figure 8.15a). 
On the other hand, data or model error widens the error surface, the minimum 
is above zero, and the curvature around optimum decreases, thus diminishing 
the ability to resolve the optimal values (Figures 8.15b and c). Furthermore, 
parameters estimated with an improper model mask real features in the data and 
bias the interpretation of measurements. 

Therefore, the error surface provides information to guide the search for the 
optimum set of parameters that minimizes the error, and provides an indication 
of error severity. However, identifying the source of error remains the analyst's 
task. This forensic exercise requires in-depth understanding of the underlying 
physical process and detailed knowledge of the measurement procedure. 
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Figure 8.15 Data and model error: (a and b) noise in the data increases the magnitude 
of the residual at optimum. The minimum in the error function does not necessarily occur 
at the true values of a and b; (c) If the presumed model is not in agreement with the 
underlying physical process (within the range of the data), the norm of the residual will 
not be zero, even for noiseless data 
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Data and optimal fitting 
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8.7 NONCONVEX ERROR SURFACES 

Error surfaces found in previous examples are convex, as in Figures 8.9, 8.11, 
or 8.15. However, this is not necessarily the case even in simple examples. 
Figure 8.16 shows a series of data points along a straight line. Data are fitted 
with a function y = x - tan(cw). The L, error norm is computed for angle values 
between 0" 5 a 5 180". The error surface - a line in this case - is nonconvex. 
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Figure 8.16 Nonconvex objective function. Data points in frame (a) are fitted with a 
straight line. The inclination of the line a is the only unknown. It can be searched clockwise 
"a J" starting at a = 180°, or counterclockwise "a T'' starting at cu = 0". The L, norm is 
plotted in frame (b). Search criteria guided by the gradient in the error surface would not 
find the minimum when the search starts at cu > 90". If the search is extended between 0" 
and 360°, it would identify either 75" or its symmetric 255" 

The minimum in a convex error surface is effectively searched following the 
gradient. However, gradient-based search algorithms may get trapped in local 
minima or deviate away from the minimum. This occurs in Figure 8.16 when the 
search starts anywhere in 90" < a 5 180". Therefore, proper search algorithms 
must be used when the error surface is suspected to be nonconvex (Chapter 10). 

Uneven information density tends to cause nonconvex error functions, partic- 
ularly when L, or L, error norms are used (see Chapter 11). But the information 
density is perfectly even in Figure 8.16: in this example, nonconvexity is caused 
by the selected error definition ei = yFmeas' - yi(P"d': all errors ei tend to infinity 
when cw approaches 90" and 270". 

8.8 DISCUSSION ON INVERSE PROBLEMS 

The goal of inverse problem solving is to obtain physically meaningful values 
of the unknown parameters x from measured quantities - y'meas' by assuming a 
proper model or relationship between the two. 

A transformation x 4 y is said to be invertible if there exists another transfor- 
mation that permits the recovery of x from y, y + x. Mathematical procedures 
with inverse operations include multiplication and division, integration and dif- 
ferentiation, DFT and IDFT, among others. But, which of the two operations is 
the inverse problem in each case? It is difficult to define "inverse problems" a 
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priori, yet we would most likely recognize one when we see it! Inverse problems 
share one or more of the following characteristics: 

The level of difficulty involved in inverse problem solving is higher than in 
forward problem solving; in fact, the forward solution may be explicitly used 
to solve the inverse problem. 

There is no certainty about the physical model that is selected to relate the 
measurements y"'-' to the unknowns x. - 
The available information is effectively much less than the gathered data. 

Data errors are amplified in the solution. 

The solution is ill-posed even if the forward problem is well-posed, where 
well-posed means that there exists a unique and stable solution that depends 
continuously on the input. 

The solution is not unique and more than one set of unknown parameters &'eSt' 

justify the available observations ym". - 
Additional information is needed to solve the inverse problem; otherwise, the 
problem must be cast with fewer number of unknowns. 

Complete time history data may be needed to solve the inverse problem, 
whereas the forward problem is a function of the current state only. (Recall 
the vase problem in Figure 8.1 and compare the forward computation of the 
instantaneous seepage velocity versus the inverse computation of the vase 
shape.) 

Computational demands are higher than for the corresponding forward problem. 

8.9 SUMMARY 

Vectors and matricds are the natural data structure to cast forward and inverse 
problems that operate on discrete data values. The resulting formulation is 
versatile and facilitates the analysis and diagnosis of inverse problems. 

The goal of inverse problem solving is to determine the value of unmeasured 
quantities (the unknown parameters) from measured quantities (experimental 
data). 

A model must be assumed to relate the two. Favor simple models. 

The solution of inverse problems is guided in part by the error between the 
measured data and model predictions. 

Select an error definition that weights all measurements alike. 
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Three salient error norms are identified. The L, norm is least sensitive to 
outliers and supports robust inversion; however, it is most sensitive to uneven 
information density. The L, norm is compatible with additive Gaussian noise 
in the data and it leads to close-form least squares solutions. The L, norm is 
most sensitive to outliers but least sensitive to uneven information density; it 
leads to min-max solution strategies. 

The solution of inverse problems typically faces: a noninvertible transformation 
matrix, insufficient independent data relative to the number of unknowns, noise 
in the data, difficulties in selecting a proper theory or a nonlinear model, a 
nonconvex error surface, uneven distribution of information density, and high 
computational demands. 

The following are preliminary recommendations for inverse problem solv- 
ing: (1) plan the experiment carefully to gain evenly distributed information, 
(2) gather high-quality data, and (3) stay in touch with the physical reality of 
the problem. 

The solution of the inverse problem must be physically meaningful and ade- 
quately justify the data, given an acceptable model. 
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P8.1 Problem linearization. Given the function z = x + 2 . y2 + 3 . xZ, estimate 
z at x = 1.2 and y = 7.2 using the first-order Taylor expansion around 
x, = 1.0 and yo = 7.0. 
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Solution: The partial derivates of z = x + 2 x . y2 + 3 . x2 with respect to x 
andy are: dz/dx= 1+2.y2+6.xanddz/dy=4-x.y.Then,thevalueof 
z at (x, y) = (1.2.7.2) is estimated as: 

The m e  value is z(1.2,7.2) = 129.2. Therefore the error is -1%. 

P8.2 Regression analysis. Data that follow a power trend y = a - xP are fitted 
with a straight line in log-log scale. Show that the inverted parameters are 
different from those obtained by fitting y = a - xB in linear scale. Write the 
objective function that is minimized in each case. 
Solution: Data are simulated as yi = a - (xi)P + md fora = 100, p = 0.25, 
where md is a uniform random number generator between -10 and + 10. 
The objective functions are: 

N-1 

log-log Err(a, P) = Ilog(y,) - [log(a) + P log(xi)l)* 

N- 1 
2 

linear Err(a, p) = [y, - a - (x,)~]  
i=O 

Slices of the error surfaces taken across the minimum are shown next for 
the fitting in log scale: 

Slices of the error surfaces taken across the minimum are shown next for 
the fitting in linear scale: 
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Data and fitted trends follow. Notice that errors in small values gain greater 
relative weight in log scale: 

200 - 2.5 I I 

- 
Fitted in linear scale Fitted in log scale - - - Fitted in linear scale 

I I I 

0 2 4 6 l-2 -1 0 1 
Xi log(xi) 

ADDITIONAL PROBLEMS 

P8.3 What is an inverse problem? Write a short essay to explain what an inverse 
problem is to a colleague in your own discipline. Identify the main chal- 
lenges. Highlight guiding principles that prevent pitfalls and facilitate iden- 
tifying physically meaningful solutions. Provide persuasive examples from 
your field. 

P8.4 Discrete formulation. Consider a point load on a beam. Write the Navier's 
equation for the elastic deformation of the beam in matrix form y = h 5. 
Explore the invertibility of h to infer the position and magnitude oFtheioad 
from the measured deformation of the beam. 
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Table P8.1 Table P8.2 

P8.5 Diferent norms. Regression analysis. Use the trial-and-error method to fit 
a plane z = a + b . x + c . y to the data set given in Table P8.1. Compare 
the results obtained with the L,, L, and L, error norms. Plot slices of the 
error surfaces for the three unknowns (a, b, c). Repeat for the three norms. 
Discuss your results. 

P8.6 Favor simple models. Regression analysis. Fit a polynominal by trial-and- 
error to the data presented in Table P8.2. Start by fitting a straight line and 
repeat the exercise for increasingly higher orders. In each case: plot the 
data set as points and the polynomial as a continuous line, and extrapolate 
the polynomial from x = -5 to x = +15. Plot the residual error versus the 
order of the polynomial. Discuss your results. 

P8.7 Tomography. Generate the matrix of travel lengths for the set of sources 
and receivers and the pixel geometry shown below. (Note: there are 16 
possible rays). Assume straight rays. 

0 Receiver 
Source 
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P8.8 Deconvolution. Given the output signal y= [O, 4, 2, -1, 0.5, -0.5, 0, OIT 
and the impulse response h= [2, -1,0.5, -0.25,0,0,0, OIT, determine the 
input signal 3. (Hint: form the matrix 11. - refer to Section 4.5.) - 

P8.9 Application. Consider problems in your field of interest. Identify the gov- 
erning physical relations. Express these relations in discrete form y = 11.. 5. 
Rewrite the physical relation in terms of dimensionless IT ratios.~x$ore 
invertibility . 



Solution by Matrix 
Inversion 

The inversion of forward problems y = 3 is explored in this chapter. The aim 
is to obtain a physically meaningful ~ o l u ~ o n  x'"" that can adequately justify the 
measured data yCm"' according to the assumed physical law or model, while 
taking into congderation all available information. 

9.1 PSEUDOINVERSE 

The forward solution predicts the outcome y'@'[M x 11 as a function of the 
vector of known input values K'"~'[N x 11 G d  the transformation matrix h [M x - 
N], which represents the physical law that connects x to - y 

y(pRd) = h - x ( ~ ' )  forward problem - - - - (9.1) 

In the inverse problem, the M-values yi are measured, and the aim is to estimate 
the N-unknown parameters In general, h is noninvertible and a pseudoin- - 
verse h-g must be used instead: - 

= h-g . y(meas) inverse problem - - - - (9.2) 

The pseudoinverse h-g is not the "normal" inverse of the matrix h, and the 
products hPg and E-g - h are not necessarily equal to the identity ma'trix 1. Let - - 
us explore the implications of this observation. The values of - ycJuSt' that would 
be justified if the input parameters were x''S" are 

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta 
8 2005 John Wiley & Sons, Ltd 
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and, replacing x'""" in terms of the vector of measured values y'meas' - (Equa- 
tion 9.1), 

The matrix D = 4.  h-g[M x M] is called the data resolution matrix. The trace - - -  
of Q is the sum of its diagonal elements and it is an indicator of the number of 
unknowns that can be resolved. The length of the vector of residuals 

is zero when D = I and increases as D deviates from the identity matrix 1. 
On the othG hand, the measured values y'-" were gathered in a red event; 

thus, - ycmeas> = - h - - x<tnre> and Equation 9.2 becomes - 

The matrix = hPg . h [N x N] is called the model resolution matrix. Equation 9.5 
indicates t h z  the estimated i-th parameter xFt '  is a linear combination of the 
true parameters xcme', as prescribed by the elements in the i-th row of G. When 
G = I, the estimated parameters qceSt' are identical to the true pararneter~x:me>. - - - 

9.2 CLASSlFlCATlON OF INVERSE PROBLEMS 

Inverse problems can be diagnosed and classified by analyzing the available 
information in relation to the requested information and the characteristics data 
consistency. 

9.2.1 Information: Rank Deficiency and Condition Number 

The comparison between the number of measurements M and the number of 
unknowns N provides the first indication of the type of problem at hand. The problem 
is underdetermined if the number of unknowns N exceeds the number of equations 
M, that is M > N. The converse is not necessarily true: interrelated measurements 
do not contribute to the pool of available information (Section 8.5.1) and problems 
that appear even-determined M = N or overdetermined M > N may actually be 
underdetermined. 

The rank r of a matrix is the number of linearly independent rows or columns 
(Section 2.2). Therefore, the rank of the transformation matrix r@] indicates that - 
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the number of independent measurements is r m  < min(M, N). Yet, rank can be 
misleading. Consider the following two matrices: 

The matrix on the right is rank = 2; yet, the second row is "almost" linearly 
dependent on the first row and it does not really contribute new information to 
the solution of the inverse problem. 

Eigenvalue analysis or singular value decomposition (SVD) provide a better 
alternative to assess a matrix. The condition number K is defined as the ratio between 
the eigenvalues or singular values X with maximum and minimum absolute value: 

K=- max l h l  condition number 
min 1.1 

The condition number applies only to square matrices. This is not a limitation 
because the computation of the pseudoinverse involves either hT h or h - hT (later - - -  
in this chapter). If the matrix is positive definite, all singular values are positive, 
and the bars for absolute value can be removed. The condition number properly 
captures the transition from invertible to noninvertible matrices: 

A matrix is noninvertible when K = oo. On the other hand, a matrix is 
ill-conditioned when K is very large; in this case, numerical inaccuracies become 
important to the solution, and errors in the data are magnified during inversion. 
The magnification of numerical noise in computer algorithms with double pre- 
cision takes place when K + 1012. However, the condition number required to 
prevent data noise magnification can be significantly lower and it is related to the 
noise level in the data. (The procedure to identify the optimal condition number is 
outlined in Section 9.6 - for an example see Chapter 11.) The number of singular 
values between max IXI and the minimum acceptable singular value is a measure 
of the amount of available information. 

Singular values are computed for the hT - h square matrices for the two cases 
shown in Figure 9.1. Figure 9.la presents th< singular values for the regression 
analysis matrix h developed to fit a fifth-order polynomial to 11 data points. 
There are M = 11 measurements but only three "meaningful" singular values if 

Noninvertible 

[: :] 
1 

oo 
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Rank: 

Condition number: 

Invertible 

[: i] 
2 
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2 
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(a) Regression analysis-fitting aJifth order polynomial 

Case - data 

Singular 
values h 

Distribution of singular values 

I 
Ranking of singular values 

(b) Cross-hole tomography 
Singular 101 
values h ................................. 

l o - 5 r ~  

0 10 20 

Ranking of singular values 

Figure 9.1 Singular values. The number p of "meaningful" singular values is not always 
trivial, even when a clear break is found 

the condition number is limited to K = 2 x lo4. Figure 9.lb shows the singular 
values for the matrix of travel times in cross-hole tomography. There are M = 25 
travel time measurements but only -- 14 meaningful singular values when the 
condition number is limited to K = 5 x lo2. 

9.2.2 Ems - Consistency 

Rank and condition number pennit the assessment of the transformation matrix 
h even before data are acquired. Once data become available, the system of 
&pations can be tested for consistency. The system of equations is "consistent" 
if there is a solution x that satisfies y = h .  x. Therefore, the rank is - - 
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where the expanded or augmented matrix hly is formed by adding the vector of 
measurements y'""' as the N+l column ofh. 

Data or mo&l errors make the system of-equations inconsistent. Therefore, 
there is no solution & that can satisfy all the data y, and the vector of residuals is - 
not the null vector, 

9.2.3 Problem Classification 

The amount of information that is available (for an acceptable condition number) 
relative to the number of unknowns is used to classify inverse problems into: 
underdetennined, even-determined, and overdetennined. 

Very often the amount of available information is not the same for the different 
unknowns and the inverse problem is mixed-determined. Consider the case of 
atmospheric data: it is relatively easy to gather information near the earth's sur- 
face; however, data become gradually sparser at higher elevations, so that lower 
atmospheric layers are overdetennined whereas remote layers remain underde- 
termined. Mixed-determined inverse problems are frequently encountered and 
they tend to cause uneven data and model error magnification onto the inverted 
parameters. 

Inverse problems using real data are inherently inconsistent; that is, r[hJ < 
r[hly]. Therefore, no solution 5 can satisfy all equations when there are more 
equations than unknowns M > N. In this case, the inverse problem is solved by 
identifying a compromise solution x'~"> that minimizes a preselected error norm 
such as the L, norm. This leads to the family of least-squares solutions. 

9.3 LEAST SQUARES SOLUTION (LSS) 

The least squares solution (LSS) is the set of values & that minimizes the L, 
norm or min (gT -g), where the square root is herein omitted for simplicity 
(Section 8.3.2). Individual errors ei = yi'meas' - yi'just> form the vector of resid- 
uals e = - y'"""' - - h .&. Therefore, the objective function r to be minimized - 
becomes 
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The least squares solution corresponds to the minimum point of the error surface 
and it is found by setting the derivative of the objective function r with respect 
to 5 equal to zero. The derivative of r is computed using the rules derived in 
Section 2.3: 

If hT . h  is invertible, the solution for x returns the sought estimate z'~"': - - 

This is the least squares solution.' The matrix hT . h  is square [N x N] and 
symmetric; it is invertible when h - [M x N] has lin&rly independent columns so 

that r h = N. [-I 
The corresponding generalized inverse, data resolution matrix D = h h-g, and 

model resolution matrix G = hPg - h become (substitute the solutio~  gago on 9.1 1 
in the corresponding deFnitions): 

' An alternative demonstration is presented to gain further insight into the solution. The goal is to 
determine so that the justified values y'JuS" = - h , K  (in the range of the transformation) lie closest 
to the set of measurements - y'-' (which cannot be reached by the transformation). This will be 
the case when y'jUSt> is the "projection" of y"'-' onto the range of the transformation. The vector - - 
normal to the space of y that executes the projection is (yCmcas' - y<Just>), and by definition of 
normality, its dot product with y<JUSt> must be equal to zeror~athematicali~, 

0 = - ybnst)T . ( y ~ )  - yfiu80) - 
The following sequence of algebraic manipulations leads to the solution: 

o =  (g.$T.(y(-'-..x - -> 
- - - - - - - 

~ = h ~ . ~ ( ~ ~ ~ ~ )  - -hT .h .x  - - - - 

Rnally, if hT - . h - is nonsingulax, the sought estimate is I(es') = (kT  @)-I hT - . - y(mm). 
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As the model resolution matrix is the identity matrix, the LSS resolves &, but it 
does not resolve the data y (Note: D = I when the problem is even-determined). 
A solved example is at &e end of the chapter. 

9.4 REGUM RlZED L EAST SQUARES SOLUTION (RLSS) 

The LSS applies to overdetermined problems. However, many inverse problems 
are mixed-determined. In this case, the inversion - if at all possible - would 
unevenly magnify noise in the solution, particularly on values of x, that are 
least constrained due to limited information. This can be prevented by enforcing 
known properties on the solution &. 

It is possible to include available a pn'ori infonnation about the solution & 
during the inversion stage. This information is captured in the "regularization 
matrix" R and it is added as a second criterion to be minimized in the objec- 
tive funcTon. Therefore, the objective function for the regularized least squares 
solution (RLSS) includes: (1) the length of the vector of residual gT - e, where 
g = y'me"' - y<JUS'>, and (2) the length of the regularizing criterion applied to 
the solution [a - x ) ~  ( R e  &)I: - 

where A is the nonnegative regularization coeficient that controls the weighted 
minimization of the two functionals in the objective function. (Note: assuming 
that R is dimensionless, the units of A are [A] = [y2/x2].) The partial derivative 
of the objective function with respect to is set equal to zero 

The estimate of & is obtained assuming that @T .4  + A. &T - RJ is invertible, and - - - 
results in 

RLSS (est)=(hT.h+h.R~.K)-l .h~.y(~a) - - - - - - (9.17) 
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A symmetric, positive-definite matrix is invertible (Chapter 2). Therefore, the 
effect of regularization is to guarantee the invertibility of (hT . h + A . R~ . I3) - - 
by correcting the ill-conditioning of hT . h  and delivering a stablesolution. The 
corresponding generalized inverse, data r&solution matrix D = h hPg, and model - - -  
resolution matrix G = h-g . h are - - -  

The versatile RLSS solution can provide adequate estimates even in the presence 
of data and model errors. The approach is also known as the Phillips-Twomey 
method, ridge regression, or Tikhonov-Miller regularization. 

9.4. I Special Cases 

The LSS is obtained from the RLSS when the regularization coefficient is set to 
zero, A = 0. 

If the identity matrix is selected as the regularization matrix R, the solution is 
known as the damped least squares solution (DLSS) and ~quatiGn 9.16 becomes 

- 1 + q2 .I) . hT - y(mm) damped least squares solution (9.21) - - - 

A solved problem is presented at the end of this chapter. The effect of damping q2 
in promoting a positive-definite invertible matrix is readily seen in this solution 
where the main diagonal of hT - h  is increased by q2. Note that (1) the value q2 
is always positive; (2) typicaly,\ matrix is positive-definite when the elements 
along the main diagonal are positive and large when compared to other entries in 
the matrix; and (3) a positive-definite symmetric matrix is invertible - Chapter 2. 

9.4.2 The Regularization Matrix 

The matrix R often results from the finite difference approximation to one of the 
following cseria: 

If a priori knowledge of & indicates that values should be constant, then the 
first derivative is minimized. 
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If the local variation of 5 can be approximated with a straight line, then the 
second derivative is minimized. This is the Laplacian regularizer. 

If the values of 5 are expected to follow a second-degree polynomial, then 
the third derivative should be minimized. 

This reasoning can be extended to higher-order variations. Table 9.1 presents 
examples of regularization matrices R for applications in one and two dimensions. 

Notice that the matrix R is constructed with a criterion that is minimized in 
Equation 9.15. ~hereforeFif a priori information suggests that the solution 5 
is "smooth, then the criterion to be minimized is "variability", which is often 
computed with the second derivative, as shown in Table 9.1. 

The regularization matrix can also reflect physical principles that govern the 
phenomenon under consideration, such as heat conduction, chemical diffusion, 

Table 9.1 Guidelines to construct the regularization matrix R - 
Expected Criterion Kernel A row in the 
variation of regularization matrix 
parameter x 

x = constant 
min (2) xi - xi-1 (ID system) [O ... 01-10 ... 01 

Finite difference 

x = a + b - p  &($) xi+l - 2 .  x, + xi-l [O ... 01-210 ... 01 
(ID system) Finite difference 

x = a + b . p + c . p 2  xi+* - 3 . %+I + 3 . xi - xi-I [0 ... 01-33 -1O...O] 
(ID system) Finite difference 

x linear in 
P and q [0 ...I ... 1-41 ...I . . . I  
(2D system) 

Note: Entries not shown in the rows of R are zeros. R,,i element shown in bold. - 
Systems: 1 D. Beam, layered cake model of the near surface. 

2 0 .  Cross-section of a body, topographic surfaces, digital images. 

Boundaries: "Imaginary points" follow zero-gradient or constant gradient extrapolation 

Imaginary pixel: 
x*-~ =xi 

Imaginary pixel: 
x*-~ = 2.%-x. I+l 
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equilibrium and compatible deformations in a continuum. In this case the con- 
struction of the regularization matrix proceeds as follows: 

1. Express the governing differential equation in finite differences to determine 
the kernel K. 

2. The convolution of the kernel with the vector of unknowns x would result in 
a new vector g* that would better satisfy the physical law. In matrix form, 
x* = 11.11 (Sections 4.4 and 4.5). - 

3. The goal of regularization is to minimize the distance x* -g; hence, the 
regularization matrix is E = - 1, where 1 is the identity matrix. - - -  - 

The kernel that is used to compute rows in & for elements xi away from the 
boundary cannot be used for boundary elements. There are two possible alterna- 
tives: 

Finite difference approximation: develop asymmetric kernels using forward or 
backward approximations in the finite difference formulation of differential 
equations. 

Imaginary elements: create "imaginary" elements outside the boundary of 5. 
The value of these imaginary elements must be physically compatible with the 
physics of the problem. For example (see sketches in Table 9.1): (a) if there 
is zero-gradient or no flow across the boundary, the imaginary value xLi is 
symmetric and adopts the same value as the corresponding point inside the 
boundary, xi i  =xi; (b) if it is a pivoting boundary, the gradient is constant 
across the boundary and xLi = 2xi+, - xi, where x, is the boundary value and xi 
its immediate neighbor. Once imaginary elements are created, the regularization 
matrix is formed by running the kernel within the problem boundaries (see 
solved problem at the end of this Chapter). 

The complete Laplacian smoothing regularization matrix for a 2D image of 
6 x 6 pixels is shown in Figure 9.2. Symmetric imaginary pixels are assumed 
outside the boundary. 

Regularization applies to unknown parameters x of the same kind (same units), 
such as the concentration of a contaminant in a 3D volume, pixel values in a 2D 
image, or temperature along a 1D pipeline. 

9.4.3 The Regularization Coefficient A 

The optimal X value depends on the characteristics of the problem under consid- 
eration, the quality of the data y and the adequacy of the assumed model. - 
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Figure 9.2 Regularization matrix R constructed to minimize the 
second derivative during the inveson of an image with 6 x 6 
pixels. Each row in R corresponds to a pixel in the image, which 
are numbered as shokn on the right. Compare the rows in R that - 
correspond to pixels 29, 30, 35 and 36 

Let us explore the evolution of the residual and the solution x'""" for differ- 
ent values of A. The following discussion relates to schematic trends shown in 
Figure 9.3. 

Follow the Evolution of the Residual (Data Space) 

Low regularization lets the solution xqeSt> accommodate to the measured data 
y'meas' and residuals g = [yGmeas' - h . x < ~ ~ ~ >  - - - ] are small. Conversely, an increase 
in regularization coefficient A cons6ns  the solution and the residuals increase. 
Discard the range of A where the solution stops justifying the data to an acceptable 
degree. To facilitate this decision, plot the length of the vector of residuals gT - g 
versus A (Figure 9.3b). 
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Length of 
xurue>-x<est> - - 

(a) Estimated vs. true solution (unknown) 
L 

Underdamped Overdamped 
ill-conditioned disregards data 

\- - 

(b) Data space 
Length of 4 
residual 

C 

(c) Solution space 
Property of 
*e solution 1 maJ/ 

Range of 
possible 
material 

properties 

Optimum i 

Figure 9.3 Selection of optimal inversion parameters X (includes q2) and p: (a) deviation 
of estimated solution x<eS" from the true x<me>. In real cases this plot is not known; 
(b) length of residuals; (c) property of the solution. The figure shows a plot of the minimum 
and maximum values of x 

Follow the Evolution of the Solution gWt' (Solution Space) 

The estimated solution ~l'~"" is very sensitive to data and model errors when A is 
low and the problem is underregularized. However, the solution x'""' is overreg- 
ularized and fails to justify the data - ye""' when the regularization coefficient 
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A is too high; for example, an overregularized image becomes featureless when 
A is high R is constructed to minimize variability. Therefore, discard ranges 
of h where'the solution is physically unacceptable or uninformative. A robust 
approach is to plot salient characteristics of the solution versus the corresponding 
A values. Consider parameters such as (Figure 9.3~): 

The characteristic to be minimized, which is captured in the regularization 
matrix, and summarized in the length [(E - &'a")T (& xcest>)]. - - 
Extreme values m i n ( ~ ' ~ ' )  and max(gest"). Superimpose the physically 
acceptable range for parameters x. 

Statistical summaries of the values in 5, such as mean, standard deviation, or 
coefficient of variation (standard deviationlmean). 

The relative magnitude of parameters (e.g. the smoothness of the spatial varia- 
tion of x'""" can be known a priori such as when x relates to surface elevation 
or light intensity). 

A prevailing trend in the solution (e.g. ocean temperature decreases with 
depth). 

Decision 

This discussion highlights the inherent trade-of between the stability of the 
solution (improved at high regularization) and the predictability of the data (best 
at low regularization). The selected level of regularization A must (1) return a 
physically meaningful solution within the context of the engineering or science 
problem being studied and (2) adequately justify the data. 

It is anticipated that higher levels of data or model error and uneven data cov- 
erage will require higher level of regularization A. Details are provided in Irnple- 
mentation Procedure 9.1. The RLSS is demonstrated at the end of this chapter. 

Implementation Procedure 9.1 Optimal regularization coefficient A and 
optimal number of singular values p 

1. Solve the inverse problem for different values of A (RLSS) or p (SVD 
solution; section 9.6). 

2. Solution relevance. For each solution x'""', compute and plot the following 
parameters versus A or p (see Figure 9.3): 

I the regularization criterion [(E - K'"')~ . @. &"')I I 
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extreme values min(x'est') and  ma^(&'"^') and superimpose the phys- 
ically acceptable range for parameters x 

mean(5'""'') and standard deviation of the solution zest'' 
plot the solution itself when appropriate, such as a sequence of tomograms 

3. Discard the range of A or p where the solution is physically unacceptable. 

4. Data just$cation. Analyze the residuals e = [y'""' - h - - - x'""" ] for each 
solution xCest'. Compute and plot the following parameters versus A or p: 

L, norm = g T . e  

L, norm = max(eJ 

A 3D plot of residuals ei vs. measurement counter i, against A or p 

5. Discard the range of A or p where the solution stops justifying the data to 
an acceptable degree. 

6. Plot of the trace of the data resolution matrix tr(Q) = tr(h. b-g) versus A or p. - - - 

7. Discard the range of A or P that yields trace values much smaller than the 
number of equations M. 

8. Select A or p that returns a physically meaningful solution and adequately 
justifies the data. 

9.5 INCORPORATING A DDlTlONA L INFORMATION 

Regularization pennits the addition of known information about the solution x. 
One may also have additional information about the data y, the model, or an initial 
guess of the solution &. The following sections explain how this information 
can be incorporated during inverse problem solving. In all cases, incorporating 
additional information should lead to a better conditioned inverse problem and 
more physically meaningful solutions. 

9.5.1 Weighted Measurements 

We often have additional infonnution about: 

the model that is assumed to construct the matrix h. For example: a certain 
model is not adequate for measurements gathered in &e near-field of the source 
or for measurements that cause nonlinear effects 
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the quality of gathered data y. For example: some measurements were gathered 
with a low signal-to-noise ra60, few measurements were obtained by driving the 
instrumentation outside its range or under difficult conditions (e.g. tight comers, 
difficult to reach transducer locations, or low-energy directivity angles), a 
subset of the measurements was recorded by a tired and inexperienced operator 

the statistics of each measurement. In particular, all measurements can 
have the same importance in the solution when the standard error is used 
(Section 9.8) 

the presence of outliers in the data. This can be identified a priori during data 
preprocessing or by exploring errors ei once a preliminary inversion has been 
completed 

This information can be incorporated by applying different weights to each mea- 
surement or equation, 

In matrix form 

where the elements in the [M x MI diagonal matrix W are the weights assigned 
to each equation WiSi = wi. Equation 9.22 is equivalentto the system of equations 
y = h .  x, when the following substitutions are implemented: - - 

+ W - y  and 4+W.4  1I = -  - 

Then, the LSS and RLSS pseudoinverse solutions become 

x(est) = (hT. wT . W . hT . wT . W . y(ma) W-LSS - - - - - - -  - - - - - - -  (9.24) 

- 1 
W - RLSS x(est) = 

(9.25) 
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To avoid any confusion, make these substitutions in the corresponding objective 
functions and retrace the derivations. Furthermore, because these substitutions 
afSect the objective function, the meaning of the solution has to be reworded 
accordingly. 

9.5.2 Initial Guess of the Solution 

The estimate x'eS" can be computed starting from an initial guess of the 
solution 3, and redistributing the unjustified component of the measurements 
(yCm"' - - h - 3) according to the generalized inverse solutions derived earlier. 
The new set of pseudoinverse solutions is obtained from the original set of 
solutions by replacing 

to obtain 

Once again, these substitutions affect the corresponding objective functions and 
the solutions gain new meaning. For example, the LSS becomes the solution 
with minimum global distance between x'""" and %. Likewise, the criterion 
expressed in the regularization matrix R now applies to (&<eSt' - 3). The initial 
guess & may be the solution of a sidar inversion with earlier data in a time- 
varying process, it may reflect previous knowledge about the solution, or it may 
be estimated during data preprocessing (Chapter 11). 

9.5.3 Simple Model - Ockham 's Criterion 

Available information about model parameters may allow a reduction in the 
number of unknowns, in accordance with Ockham's criterion (Section 8.4), 

y = h . & = h . Q . g  - - - - 
The corresponding substitutions are 
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The Ockham-based LSS becomes 

The invertibility of ( Q ~  . hT 4. Q) is not guaranteed but may be attained when a - - 
sufficiently low num&r 3 unknowns remains in g. Indeed, a salient advantage in 
selecting simpler models is to reduce the ill-conditioning of the inverse problem. 

9.5.4 Combined Solutions 

The previous sections revealed methods to incorporate additional information: 
initial guess of the solution s, measurements or equations with different weights 
W, regularization R and Ockham's criterion Q. These methods can be combined - - 
to generate new szlutions. For example, a "weighted regularized least squares 
with initial guess" is 

The meaning of the solution becomes apparent when the substitutions are imple- 
mented in the objective function that is minimized. 

9.6 SOLUTION BASED ON SINGULAR VALUE 
DECOMPOSlTlON 

The singular value decomposition (SVD) is as a powerful method to diagnose 
inverse problems and to assess available information (Section 9.2). It also per- 
mits computation of the pseudoinverse of a matrix h  [M x N]. The solution 
follows immediately from 4 = U. yT and the orthogonality of the matrices - - - -  
(Section 2.2.4): 

h-g=v..-l.uT - 
- (9.31) 

where the entries in the diagonal matrix 11 [M x N] are the singular values hi 
of &ahT - - or - hT . h - in descending order, the columns in the orthogonal matrix 
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U [M x MI are formed by the eigenvectors u of h.hT (ordered according to - - 
the eigenvalues A in 3, and the columns in matrix @ x N] are formed by the 
eigenvectors y of hT 3 (in the same order as the e i s a l u e s  h in A). - 

In explicit form~thesolution x'est> = - - hWg - - y'""' becomes 

P V. . UT . y<meas> 
Xcest> - h-g . y<measz = C -I -1 - 
- - - - (order p) (9.32) 

i=l hi 

This equation indicates that small singular values Xi in ill-conditioned problems 
will magnify model errors in h (retained in ui and vi) and measurement errors 
in y. Error magnification is cosolled by restricting the summation bound "p" to 
tak; into consideration the largest singular values. Then, the generalized inverse 
of h obtained by keeping the first p singular values and corresponding singular 
veiiors is 

T 
svss h-g = - - . (&<.>)-I . (gcp>) order p 

N x M  N x p  p x p  p x M  (9.33) 

The data resolution matrix D = h-g and model resolution matrix G = h-g . 
can be computed for different viiues p to further characterize the nature <f thz 
inverse problem, and to optimize its design. A numerical example is presented at 
the end of this Chapter. 

9.6.1 Selecting fhe Optimal Number of Meaningful 
Singulcrr Values p 

How many singular values should be used in the solution? The selection of an 
optimal value of p starts by sorting singular values to identify jumps; in the 
absence of jumps, select a condition number that ensures numerical stability. This 
is the preselected order po. Then follow a similar methodology to the identification 
of the optimal level of regularization (Section 9.4.3 - Figure 9.3): 

1. Compute the solution xXeSt> for the preselected order p,. 

2. Assess the physical meaningfulness of the solution. 

3. Assess its ability to justify the data. 
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4. Repeat for larger and smaller values of p around p,. 

5. Select the value of p that provides the best compromise between the two 
criteria. 

Higher data and model errors lead to lower optimal p-values. Details are provided 
in Implementation Procedure 9.1. 

9.6.2 SVD and Other Inverse Solutions 

If the measured data y'"-' can be expressed as a linear combination of the 
u, . . . u, vectors, then y'me"' is in the range of the transformation, and the solution 
to the inverse problem is a vector in the space of x that includes the null space. 
Therefore, there are infinite possible solutions and some criterion will be needed 
to select one. However, if the measured data y<mws' cannot be expressed as a 
linear combination of the u,. . . y vectors, theny'""' is not in the range of the 
transformation and there is no solution 3. Yet one may still identify the solution 
that satisfies some criterion, such as the least squares. 

When the rank of h is r, and the summation bound "p" in Equation 9.32 is 
equal to r, the computed estimate ge"" corresponds to the LSS: 

U S  SVD 

The RLSS and DLSS convert the matrix hT - h [N x N] into a positive-definite 
invertible matrix. When these inversion meth-ods are analyzed using SVD, it 
is readily seen that regularization and damping raise the magnitude of singular 
values, control the ill-conditioning of the inverse problem, and "damp" the mag- 
nification of errors from the measurements y and the model h onto the solution - - 
x (Equation 9.32). - 

9.7 NONLINEARITY 

A nonlinear problem can be linearized around an initial estimate, as shown in 
Section 8.2. The iterative Newton-type algorithm includes the appropriate updat- 
ing of the transformation matrix. In the q + 1 iteration, the estimate @'est>)q+, is 
computed from the q-th estimate (x'eSt'), as 
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where (h), and (hPg), are computed taking into consideration the q-th esti- 
mate (zTSt>),. convergence dfficulties and the likelihood of nonuniqueness 
are exacerbated in nonlinear problems, and different solutions may be reached 
when starting from different initial estimates. Other approaches aie discussed in 
Chapter 10. 

9.8 STATISTICA L CONCEPTS - ERROR PROPAGATION 

Measurements y'meas', any initial guess % and the assumed model are uncertain. 
Therefore, the &verse problem can be stated in probabilistic terms. The solutions 
that are obtained following probabilistic approaches are mathematically similar 
to those obtained earlier. 

9.8.1 Least Squares Solution with Standard Errors 

Measurements have the same importance in the L, norm when the standard error 
ei is used (Section 8.3): 

yi<me=> - yi<~d> 
e. = standard error (9.36) 

ui 

where q is the standard deviation for the i-th measurement. The vector of residuals 
becomes g = a. (y '""' - XJ and the diagonal matrix Q [M x MI is formed 
with the inverz d u e s  of the standard deviations = 1 /a, Then, the objective 
function r for the LSS is 

Finally, setting the derivative of the objective function r with respect to x equal 
to zero returns the sought estimate 

The matrix Q is diagonal; therefore, aT . is also a diagonal matrix with entries - - 
l/u;. whenall measurements exhibit the same standard deviation, this solution 
becomes the previously derived LSS. 

Equation 9.38 is the same as Equation 9.24 for the weighted LSS solu- 
tion, where = VV; by extension, the other solutions obtained with weighted - - 
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measurements can be used to take into consideration the standard deviation of 
measurements. 

These results can be generalized to correlated measurements: the matrix nT . Q - - 
or wT. W in Equations 9.24 and 9.25) becomes the inverse of the covariance = =  

matrix where the main diagonal elements represent the width of the distribution 
and off-diagonal elements capture the pairwise correlation between measure- 
ments. Then the expression for the weighted LSS is mathematically analogous to 
the "maximum likelihood solution". Finally, maximum entropy methods result in 
mathematical expressions comparable to generalized regularization procedures. 

9.8.2 Gaussian Stcrtistics - Outliers 

In a broad least squares sense, the statistics of the measurements Y'~"', the 
transformation (entries in hJ and an initial guess are presumed ~ G s s i a n .  The 
least squares criterion is a poor choice if Gaussian statistics are seriously violated, 
for example, when there are few large errors in the measurements. In such a 
case: 

Improve the data at the lowest possible level, starting with a proper experi- 
mental design (Chapters 4 and 5). 

Identify and remove outliers during data preprocessing prior to inversion (see 
example in Chapter 11). 

Guide the evolution of the inversion with the more robust L, norm rather than 
the L, norm (Chapter 10). 

Redefine the objective function r to consider proper statistics. 

Identify and downplay outliers during inversion. 

Let us explore the last two options. Many inverse problems relate to nonnegative 
quantities, yet the tail of the normal Gaussian distribution extends into negative 
values. Examples include mass, precipitation, traffic, population, conduction, 
diffusion, strength, and stiffness. Often, such parameters are better represented 
by the log-normal distribution and the error function is computed in terms of 
log(y) rather than in terms of y. (Note: y is log-normal when log(y) is Gaussian 
distributed - Section 8.3.) If regularization is used, the matrix R must be designed 
taking into consideration values z, =log&) rather than x, Once again, the 
meaning of the computed solution becomes apparent when the redefined objective 
function is carefully expressed in words. 
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Finally, outliers can be identified during inversion to reduce their impact on 
the final solution. The inversion solution is as follows: 

1. Invert the data and obtain a first estimate of the solution x'""'-". 

2. Compute the error between measured and justified values: 

3. Form a histogram of ei values and explore whether it satisfies Gaussian 
statistics. 

4. Identify outliers y:meas' that exhibit large deviations from the mean. 

5. Underweight and even remove those measurements and obtain a new estimate 
,pest-2> 
- using weighted solutions such as W-LSS or W-RLSS (Section 9.5.1). 

This approach must be applied with caution to avoid biasing the inversion; place 
emphasis on large deviations, typically two or more standard deviations from the 
mean. 

9.8.3 Accidental Errors 

Consider a function t = f(s,, . . . , s,), where the variables si follow Gaussian 
statistics. The mean of t is the function f of the means, 

The standard deviation ut is estimated using a first-order Taylor expansion of the 
function f about the mean values pi, assuming that s-values are independent (the 
covariance coefficients are zero), 

For the linear inverse problem in matrix form, 5 = h-g . y, these equations become 
(Note: the values of the estimated parameters IC'~" & correlated through the 
transformation hPg as indicated by the model resolution matrix in Equation 9.5, 
however measurements - y'""" are assumed uncorrelated), 
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Each entry in u-g is the square of the corresponding entry in h-g for the selected 
inversion solu~on, such as LSS, RLSS or their modifications. If the standard 
deviation of the measurements is constant for all measurements and equal to "c", 
Equation 9.42 becomes 

where all entries in the vector I are equal to 1.0. In other words, the standard 
deviation of the k-th unknown x, is equal to c-times the square root of the sum 
of all elements in the k-th row of Equations 9.42 and 9.43 can be applied 
to linearized inverse problems wherethe matrix 4 corresponds to the current q-th - 
iteration. 

9.8.4 Systematic and Proportional Enors 

Systematic errors, such as a constant trigger delay in recording devices, do not 
cancel out by signal stacking or within LSS. The only alternative is to detect 
them and to correct the data. A constant systematic error E in all measurements 
alters the estimated value of the unknowns by a quantity &: 

Therefore, the error in the k-th unknown Ax, is E times the sum of all elements 
in the k-th row of the generalized inverse h-g. 

Proportional errors occur when a measured value is equal to a constant a times 
the true value, erne"' = ai . Cme'. Often, a proportional error reflects improper 
transducer calibration and it may be present in conjunction with a systematic 
offset. In the general case when all a,-values are different (for example, when 
each transducer has its own calibration), the estimate of the solution becomes 

where diag(a) is the diagonal matrix formed by ai values in the main diagonal. 

If all a-values are the same, a, = . . . = a, = a, then x'""' = a - h-g . y, and the 
solution that is computed is a times the solution estimated without th; propor- 
tional error in the data. 

9.8.5 Error Propagation - Regulwization and SVD Solutions 

Poorly conditioned inversions are characterized by high values in 4-g. Therefore, 
Equations 9.42, 9.44 and 9.45 predict that errors will be preferentrally magnified 



272 SOLUTION BY MATRIX INVERSION 

in some x-values more than others. Magnification is related to the amount of infor- 
mation that is available to determine each x-value: poorly constrained x-values 
will magnify data noise the most. 

Regularization and SVD solutions (Equations 9.17 and 9.33) reduce the effects 
of ill-conditioning, limit the high values in h-g and control error propagation as 
inherently predicted when these solutions are replaced in Equations 9.42, 9.44 
and 9.45. These observations are further explored in Chapter 11 in the context of 
tomographic imaging. 

A strong correlation between x'""' and the vectors h-g I and .I that 
contain the row-sums in matrices h-g and should I% ~arefu l l~~rut in ized:  
make sure that the solution is not-determined by the combined effects of high 
data error and uneven distribution of information. 

9.9 EXPERIMENTAL DESIGN FOR INVERSE PROBLEMS 

The transformation matrix h is a function of the test design and data collection 
strategy only. It does not depend on the data y but on sensor location and the 
spatidtemporal distribution of measurements. Therefore, the following informa- 
tion is known and can be analyzed as soon as the experiment is designed, and 
before expensive and time-consuming data gathering: 

transformation matrix h - 
the number of meaningful singular values that keep ill-conditioning under 
control 

generalized inverse hPg (with some level of regularization or formed with the 
meaningful singulfialues) 

data and model resolution matrices D and G - - 
the spatial distribution of information - a simple estimate is related to the 
column-sum of the transformation matrix iT - h - 
the vectors 4-g 1 and that contain the row-sums in matrices h-g - - - 
and h2-g - 

Conversely, this information can be used to improve the design of experiments. 
Preliminary guidelines are summarized in Implementation Procedure 9.2. Details 
are presented in Section 11.2. 
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Implementation Procedure 9.2 Preliminary guidelines for the design of 
experiments leading to inverse problems 

1 .  Design the test to attain maximum informution and stable solutions. 
Conceive different realizable experimental configurations. For each con- 
figuration: 

Identifylcompute and tabulate the number of measurements M, the num- 
ber of unknowns N, and the trace of the hT -11 matrix. - - 

Compute the singular values of the transformation 4. Plot sorted singular 
values and identify the number p of singular d u e s  that satisfy an 
acceptable condition number. 

Monitor the spatial distribution of information by computing the colurnn- 
sum of the transformation matrix lT - h. - 
Compute the row-sums 4-g -1 and @-g -1 to explore the propagation 
of systematic and accideiital errors onto each parameter in the solution 
X<ests - . For this step, compute the generalized inverse for various realistic 
levels of regularization. 

Compute the data resolution matrix D = h .  4-g and the model resolution - - -  
matrix G = h-g . h. Analyze their resemblance with the identity matrix 
and calZlate theii trace. 

Prevent spatial and temporal aliasing in measurements. 

2. For a similar number of measurements M, favor test configurations that 
provide high amount of information, evenly distributed and with controlled 
error propagation. 

3. Utilize the insight gained from the initial test configurations to generate 
new ones, as needed. 

4. Design the test to gather high-quality data. Carefully select transducers 
and peripheral electronics. Create testing conditions that minimize noise. 
Implement signal processing algorithms that facilitate measuring the data 
with minimum error. Remove the effects of transducers and peripheral 
electronics from the measurements. 
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9.70 METHODOLOGY FOR THE SOLUTION 
OF INVERSE PROBLEMS 

The elegant close-form solutions obtained using the L, norm facilitate the anal- 
ysis of inverse problems, provide diagnostic tools to identify difficulties and 
limitations, and permit incorporating information in the form of an initial guess, 
regularization, relative weights, and model characteristics. These solutions apply 
to linear problems and are extended to linearized nonlinear problems within the 
context of iterative algorithms. 

We must pay special attention to the choices that are made and track noise 
magnification during the inversion so that the solution is controlled neither by 
data errors and model errors, nor by our own preconceptions. Guidelines for the 
solution of inverse problems are summarized in Implementation Procedure 9.3. 
A comprehensive methodology is proposed in Chapter 1 1. 

Implementation Procedure 9 3  Preliminary guidelines for the solution of 
inverse problems in matrix form 

1. Roperly design the experiment (Implementation Procedure 9.2). 

2. Gather high-quality data. While conducting the experiment, identify mea- 
surements that present unique difficulty and repeat doubtful measurements. 

3. Accumulate additional information that may be later incorporated during 
inversion. 

4. Select a model to relate the unknowns 5 to the measurements y'""' that 
adequately captures all essential aspects of the system or 

5. Favor simplicity - limit the number of unknowns in the representation of 
the problem. 

6. Reanalyze the data y'""' to identify trends and outliers. This step may 
help define an initial-guess of the solution 5. 

7. Implement more than one pseudoinverse. 

8. Vary inversion parameters such as the regularization coefficient A or the 
number of singular values p while monitoring changes in the solution and 
in the residuals (Implementation Procedure 9.1). 
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1 9. Gradually incorporate additional information, such as an initial guess %, I 
information about the solution (regularization IX) and information about the - 
data (W). I - 

10. Compute the residuals g = y'""' - - h . - x'-". Look for trends in the mean, 
median, extreme values, and histogram. 

11. Underweight or remove equations that are clear outliers and rerun the 
inversion. This can be a dangerous step! 

12. Compute the column-sum lT l ~ ,  the row-sums h-g - 1 and @-g .I. Plot 
these vectors versus s'~'''. Care'fully scrutinize any apparent correlation. 

113. The final solution x'"' must justify the data and be physically meaningful. 

Note: Chapter 11 presents a more comprehensive approach and examples. 

The generalized inverse expressions derived in this chapter include various 
matrix operations such as addition, multiplication, transpose, inverse, eigenvec- 
tors and eigenvalues. Efficient computer implementations are developed to reduce 
data storage and processing time. These algorithms recognize the inherent charac- 
teristics of the matrices involved, which can be positive-definite, sparse, diagonal, 
symmetric, Toepliz, and so forth. 

9.1 1 SUMMARY 

The goal of inverse problem solving is to identify the parameters of a physically 
meaningful solution that can adequately justify the data - y given an 
acceptable model that is captured in h. - 
A problem is "well-posed" when a unique and stable solution exists. This is a 
rare situation in real inverse problems. 

Elegant expressions can be obtained for the solution of discrete inverse prob- 
lems expressed in matrix form. The L, error norm plays a preponderant role 
in these derivations. The least squares criterion is a poor choice if Gaussian 
statistics are seriously violated, for example, when there are few large errors 
in the measurements. 

Additional information available to the analyst may be considered. Information 
about the solution is included through the regularization matrix R, Ockham's 
matrix a or as an initial guess %. Information about the measure&ents or the 
model incorporated through weights W. - 
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SVD is a powerful tool to diagnose the transformation matrix h. The relative 
size of singular values gives an indication of rank deficiency in &e transforma- 
tion, shows how close the system of equations is to a system of lower rank, and 
provides a reliable indicator of ill-conditioning. The pseudoinverse computed 
by SVD explicitly shows the amplification of data and model error caused by 
small singular values. 

Well-posed problems satisfy the requirements of existence, uniqueness, and 
stability. Sufficient information is required to secure the first two requirements. 
Stability can be controlled with proper regularization. Regularization makes 
the matrix bT . & invertible and increases the size of small singular values. - - 
Ill-conditioning is determined by experimental design, rather than by the accu- 
racy of data. Consider various viable distributions of transducers and measure- 
ments and evaluate them to select the optimal one. 

Data errors are magnified during inversion. Therefore, experimental design 
must also attempt to minimize measurement errors through careful selection of 
transducers and peripheral electronics, calibration of the measurement system, 
and noise control. Outliers can have a major impact on the quality of the 
solution and should be removed during data preprocessing or downweighted 
as part of an iterative inversion strategy. 

Model errors are amplified as well. Focus on the physics of the problem. Select 
the simplest model that can properly justify the data. 

SuccessJitl inverse problem solving is strongly dependent on the analyst. The 
analyst designs the experiment, chooses the physical model, selects the inver- 
sion strategy, recognizes and incorporates additional information, and identifies 
optimal inversion parameters such as the degree of regularization or the number 
of singular values. 

Remain skeptical. Make sure that the solution is not a consequence of your 
preconceptions and choices, but that it justifies the data and truly reflects the 
nature of the phenomenon or system under study. 
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SOLVED PROBLEMS 

P9.1 Underdeteimined problems: the minimum length solution (MLS). There is 
an infinite number of solutions that result in null prediction error e = Q 
when the problem is underdetermined and consistent (number of equations 
M < N number of unknowns; and r[hJ = rhly]). Identify the MLS. 
Solution: The objective function l' that isused to identify the minimum 
length solution (MLS)  minimizes the Pythagorean length of the solu- 
tion zT x = X: + . + xN2 subject to the constraint of error minimization 
(see constrained minimization using Lagrange multipliers in Section 2.3): 
rw  (y(-) -h.&). 
There are N-unknown v a l u e s  z and M-unknown Lagrange multipliers 
in A. The resulting system of N + M simultaneous equations is 

I N-equations Q = 2 .  x - hT . A (partial derivatives of r with respect to XJ 
I M-constraints Q = y'ms> - h - 3 - - - 
Replacing x from the first set of equations into the second set, and 
assuming that h .hT is invertible, the vector of Lagrange multipliers is 
h = 2 .  (h. hT)-'- pmeas>. Finally, replacing in the fmt  set of equations, 
the ~ ~ S e & m a t e F  is 

Is the MLS estimate physically meaningful to your application? 

P9.2 Least squares solution. Given the following stress-strain data, identify the 
model parameters for a linear elastic behavior ui = uo + E . ci where E is 
Young's modulus and the sitting error uo is due to the early localized 
deformation at end platens. 
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Stress: gT = [5.19 6.61 8.86 11.8 13.6 15.5 17.6 19.71. lo6-kPa - 
Solution: The LSS transformation matrix is (the transpose is shown to 
facilitate the display): 

The LSS generalized inverse is hPg = (bT .h)-l .hT and estimated model - -  - 
parameters are x'eSt' = - hPg . ytmeas>. 
Results: a,, = 4.93 - 10%. paand E,,, = 2.1 1 - 10" . Pa 
Residuals g = ytm"."> - - he - x'~~" . Norm of residuals gT - g  = 6.932. - - 
1015 - pa2 

Model resolution matrix is G = (hT . fi)-' . bT = - - -  - -  I:, f 
Therefore, the LSS resolves the unknowns x. L -1 

P9.3 Singular value decomposition. Compute the SVD of 

Solution: the eigenvalues t, eigenvectors of matrices h - hT and hT . h are 

Matrices A, y, and U are - - - 

9.508 0 0.429 0.806 -0.408 
0.386 -0.922 

- 0.773 .= 0.566 0 . 2  0.8161 y= [o.922 o.,86] 
A = [ : :  ] [ 0.704 -0.581 -0.408 

(size M x N) (size M x M) (size N x N) 
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Matrices U and are orthogonal, i.e. the inverse equals the transpose: - - 

Verification of SVD: u .  A yT = which is equal to h - - -  - 

Generalized inverse for p = 2: 

and h-g . h  = - - 

P9.4 Deconvolution as a least squares inverse problem. Given the measured 
output signal - yemeas' and the impulse response h, determine the input 
signal 3. 

Output signal: - y = [ 0 0 2 -1 0.5 -0.5 0 0 lT 
Impulse response: h = [ 0 -1 0.5 -0.25 0 0 0 0 lT 
Solution: the matrix h is assembled with time-shifted copies of the vector h - 
(Section 4.5): 

Clearly, the matrix h is noninvertible (zeros on main diagonal). A damped 
least squares approach is adopted, that is, the RLSS 
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where R = I. The optimal value of h is found following the methodology 
outlineb-in hplementation Procedure 9.2. First, solution xXeStZ is computed 
for a range of X-values; then, results are analyzed as follows: 

Residual error: 6 I I I I 

('m' -h &<esD)T. (xj""eas> - h . x<esb) 
- - - - - - 

0.01 0.i 1 10 100 
I h 
I 

Maximum of x<esD 2 

Estimated feSt" and true values x"""' are compared next (Note: is 
not known in real problems): 

I 

I 
I 

10 

Trace of - D: Tr(g. K g )  - 

5 

0 

I 

- I 

I r I I 
I 
I 

- 

I 

1 

Minimum of x<eSD 0 

-1 

1.10-~ 0.01 0.1 1 10 
h 

100 

- 

- - - - - - - - - - - - - - - - 
I min 

I I I I 

1.10. 0.01 0.) 1 10 100 

I 
h 
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Input signal x I I I 

- 

with h= 10.00 - 

- 

P9.5 Regularizution matrix. Consider the beam below. The support on the left 
allows vertical displacement but it does not allow rotation, while the support 
on the right allows rotation but it prevents vertical displacement. Construct 
the regularization matrix R that will be used to invert for the load distri- 
bution on the beam kn0wi2~ the vertical displacements measured at points 
#1 through #11. 

Solution: the deformed shape is assumed smooth (a priori information), 
and the adopted regularization criterion is the minimization of the sec- 
ond derivative. The corresponding regularization kernel is (1 -2 1). The 
kernel is applied at end points #1 and #11 by assuming imaginary points 
that are compatible with boundary conditions. The imaginary point on the 
left is computed assuming zero rotation or symmetric boundary, x, = x,. 
The imaginary point on the right is computed assuming constant gradient 
x, - x, , = x,, - x,,, therefore xR = 2x1, - x,,. Each row in the regular- 
ization matrix corresponds to the kernel applied at different points along 
the beam, starting at the left boundary point #1, and ending at the right 
boundary point #11. The resulting regularization matrix R is shown below. 

Why is the last row zero? When the kernel is centeredat node #11, 
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Indeed, a constant slope has zero second derivative! Therefore constant 
gradient extrapolation combines with the Laplacian kernel to return a zero- 
row for the x,, entry. In this case, the last row should be computed with 
the forward second derivative, without assuming imaginary points, to avoid 
zero rows in &. - 

at point #1 

at point #2 

at point #3 

at point #4 

at point #5 

at point #6 

at point #7 

at point #8 

at point #9 

at point #10 

at point #I1 

ADDITIONAL PROBLEMS 

P9.6 Conditions for the pseudoinverse. Verify whether the RLSS and SVD 
solutions fulfill the Moore-Penrose's conditions: 
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P9.7 Pseudoinverse: hand calculation. Given the matrix 4, compute: (a) the rank 
of 4; (b) the singular values of bT .h; (c) the leastsquare pseudoinverse; 
(d)-the corresponding data and ;odd resolution matrices; (e) the singular 
values of (hT . 4 + 0.1 . i); and (f) conclude on the effects of damping in 
the DLSS. Bbs&ationi apply to the RLSS as well. 

1 0  1 " ' '1 for M = 4 measurements and N = 3 unknowns - 1 0 4  
1 2 0  

P9.8 Minimum length solution. Extend the MLS solution (Problem 9.1) to 
incorporate an initial guess s. Make the corresponding substitutions in 
the objective function and clearly state the meaning of the solution. 

P9.9 Error propagation. Demonstrate Equation 9.42 that predicts the propaga- 
tion of uncertainty in the measurements onto the model parameters (Hint: 
work equation by equation.) Explore the matrix @-g - for a problem of 
your interest. 

P9.10 Application: ARMA model. Consider the ARMA solution for an oscillator 
developed in Section 7.8 (a) Forward simulation: Assume a sinusoidal 
input (frequency f = 5 Hz) and compute the response for a single DoF 
with spring constant k increasing linearly with time t: k(t) = 1 [kN m-' 
s-'1- t[s]. (b) Use the LSS to invert for the time-varying system response 
with a two-term AR and two-term MA model. (c) Repeat the solution for 
a five-term AR and five-term MA model. (d) Conclude. 

P9.11 Wiener filters. Wiener filters can be used to compute deconvolution in a 
least squares sense when the matrix h is not square. Simulate a signal 3 
and a shorter array for the impulse response 4. Compute the convolution 
y = 5 * h. Then, compute the deconvolution of 4 and y as a least squares 
hers ion  (see Solved Problem 9.4). Add noise to y andrepeat. Extend the 
methodology to system identification. Analyze advantages and disadvan- 
tages with respect to the determination of the frequency response in the 
frequency domain outlined in Implementation Procedure 6.6. 

P9.12 Application: beam on elastic foundation. Consider the deflection of an 
infinite beam on a bed of linear springs all with the same spring con- 
stant. Design an experiment to gather data for the following two inverse 
problems: (1) apply a known load and infer the beam stiffness and the 
spring constant; and (2) measure the deformed shape of the beam and 
infer the position and magnitude of the applied load. Simulate a data 
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set using the forward model y = h .  5. Add random and systematic noise 
to the simulated data set. (N&: n e  relevant equations to construct the 
transformation matrix h can be found in mechanics books.) - 

P9.13 Application of your interest: RLSS and SVD solution. Describe the mea- 
sured data y'"""' and the unknown parameters x. Then develop an appro- 
priate methodology to identify the optimal number of singular values p and 
the optimal value for regularization coefficient A. Take into consideration 
data justification and the physical meaning of the solution. Provide specific 
measures and decision criteria. Obtain a data set, test the methodology 
and explore the effect of data noise on the optimal values of p and A. 



Other Inversion 
Methods 

Elegant solutions for linear inverse problems are presented in Chapter 9. Their 
salient characteristics are summarized next and compared against alternative 
requirements for inverse problem solving. 

Methods in Chapter 9: Alternative requirements: 

Operations are implemented in the space 
of the solution and the data 

Solutions are based on L, norm 

Solutions presume Gaussian statistics 

Methods apply to linear problems or 
problems that are linearized 

They involve memory-intensive 
matrix-based data structures 

Solutions exhibit convergence difficulties 
in linearized problems 

They are able to incorporate additional 
information 

Study solutions in the Fourier space 
Consider parametric representations 

Implement the L, norm (noisy data), or 
the L, norm (uneven information 
density) 

Accommodate any statistics 

Explore algorithms that can be applied to 
both linear or nonlinear problems 

Can be implemented in effective 
matrix-free algorithms. Minimize 
storage requirements 

Capable of finding the optimal solution in 
nonconvex error surfaces 

Retain flexibility to incorporate additional 
information 

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta 
8 2005 John Wiley & Sons, Ltd 
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The methods explored in this chapter include transformed problem postulation, 
matrix-free iterative solutions of the system of equations, fully flexible inver- 
sion by successive forward simulations, and heuristic methods from the field of 
artificial intelligence. These algorithms bring advantages and associated costs; 
trade-offs are identified in each case. 

10.1 TRANSFORMED PROBLEM REPRESENTATION 

Three methods are explored in this section: the parametric representation of a 
presumed solution, the low-pass frequency representation of the solution space, 
and the Fourier transform of the solution and data spaces. 

10.1.1 Parametric Representation 

Imagine trying to find a small ringing buzzer in a dark room 10 m x 10 m x 4 m 
(Figure 10.1). You walk along the walls and gather M = 100 measurements of 
sound amplitude. Then, you attempt to invert the data to infer the location of the 
buzzer. Inversion using methods in Chapter 9 starts by dividing the volume of the 
room into small voxels (0. lm  x 0. lm  x O.lm) and invert boundary measurements 
y, along the walls to determine the sound level x, generated at each voxel. Clearly, 

Figure 10.1 Finding a buzzer in a dark room 
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the inverted zCe"" should justify the measurements y given a reasonable physical 
model in h, such as the 3D geometric attenuation gf sound. However, there are 
only M =-I00 measurements and N = 400000 unknowns (room volume/voxel 
volume). While a larger voxel size would reduce the number of unknowns, it 
would also cause a decrease in resolution. On the other hand, regularization would 
reduce ill-conditioning, but it would smear the source. Certainly, the voxel-based 
representation of the solution space is inappropriate in this case. 

Instead, the problem can be cast as the identification of the spatial location 
hUt, qb. and rbuz of a single source. There are only three unknowns in this 
representation. (Note: the buzzer intensity is also unknown but the problem can be 
cast in terms of normalized amplitudes.) The solution would proceed as follows: 
guess the buzzer position (pbuz, qbuz, rb)<O'. predict the sound amplitudes along 
the wall y'pced', compare with measured amplitudes yCmCBS' and modify the 
estimate 3 the buzzer position until measured and predic& amplitudes minimize 
some error norm (any norm could be selected). 

Trade-offs 

A priori information about the system is readily used; for example, a single 
point source is assumed above. This is a strong restriction on the solution but 
it permits high resolution to be attained in the inverted results. The solution 
cannot be computed as a one-time matrix inversion problem, but it requires 
successive forward simulations (disadvantages with this approach are addressed in 
Section 10.3). In some cases, the number of unknowns can be reduced even further 
if the problem is expressed in terms of dimensionless IT ratios (Buckingham's IT 

theorem, Section 8.4). Examples are presented in Chapter 11 in the context of 
tomographic imaging. 

10.1.2 Flexible Narrow-band Representdon 

The parametric representation suggested above is too restrictive when there is 
limited information about the solution or if the physical phenomenon is not well 
defined, as in the case of a diffused sound source or the evolution of a chemical 
reaction in a body. 

Flexible representations of the solution space can be attained with a limited 
number of unknowns within the spirit of Ockham's criterion. Consider the tomo- 
graphic problem or other similar boundary value problems of the form y = h .  &. 
The unknown field of slowness can be approximated with a Fourier sezes k i th  
a limited number of terms "c" (procedure in Sections 8.4.2 and 9.5.3). Then, the 
pixel values 5 [N x 11 are expressed as 
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where the vector X [c x 11 contains the c unknown coefficients in the series, and 
each entry in the matrix S [N x c] depends on the known coordinates p and q 
of each pixel. The origin2 inverse problem y = h .  x becomes y = S.  X. The - - -  
least squares solution of this problem is (Seczon>.3) 

and from Equation 10.1, 

This transformation has advantages when the number of unknowns is reduced 
from the original problem, c c N. The invertibility of the matrix sT -hT .h.S - - - -  
[c x c] should not be an issue because the order of the Fourier series "c" is 
selected to avoid ill-conditioning. 

10.1.3 Solution in the Frequency Domain 

The flexible narrow-band representation introduced above is a preamble to the 
solution of inverse problems in the frequency domain discussed here. The pro- 
cedure consists of transforming the inverse problem to the frequency domain, 
assembling the solution in the frequency domain, and computing its inverse 
Fourier transform to obtain the solution in the original space. Although this may 
sound impractical at first, the advantages of implementing convolution in the 
frequency domain suggest otherwise (Section 6.3). This formulation applies to 
problems in which boundary measurements y are line integrals of the unknown 
field parameter x(p, q) that varies in the p-qspace 

Tomography is a clear example: the field parameter is either slowness or attenu- 
ation, and boundary measurements are travel time or amplitude. 

Let us assume a straight ray propagation model and define aparallelprojection 
as the line integral of the parameter x(p, q) along parallel rays, as shown in 
Figure 10.2. To facilitate the visualization of the problem, assume a body with 
some opacity in the pq space x(p, q), a long fluorescent tube on one side at an 
angle a, and a screen on the other side also at an angle a. The shadow on the 
screen is the parallel projection of the body in the a-orientation. 
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Figure 103 Parallel projection. The parallel projection or "shadow" obtained from illu- 
minating a medium with an inclusion x(p, q) is the line integral of the host medium and 
the inclusion, from the source on one boundary to the screen on the other boundary 

The Fourier Slice Theorem 

The 1D Fourier transform of a parallel projection at an angle a is equal to a 
concentric slice taken at an angle a of the 2D Fourier transform of the p-q space. 

Figure 10.3 presents a graphical confirmation of the Fourier slice theorem. The 
image involves a square medium discretized in 32 x 32 pixels and an inclusion. 
The 2D transform of the image is shown at the top right-hand side. The three 
frames in the first row present the horizontal projection, the 1D Fourier transform 
of this projection, and the slice taken from the 2D transfom of the image in a 
direction parallel to the projection. The second row presents the same sequence 
of frames for the vertical projection. The equality between the 1D transform of 
the projections and the corresponding slices of the 2D transform of the image 
confirms the theorem. 

Let us now proceed with an analytical demonstration. The 2D Fourier transform 
of the medium is (Equation 5.37 - Section 5.8) 
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Medium with inclusion 2D Fourier transform 

Horizontal projection 1 D transform Slice of 2D transform 

Vertical projection 1 D transform Slice of 2D transform 

Figure 103 Graphical verification of the Fourier slice theorem. Observe the identity 
between the 1D Fourier transform of the projections and the corresponding slices of the 
2D Fourier transform of the medium with the inclusion 

For simplicity and without loss of generality, consider the parallel projection 
along the q-axis (Figure 10.4). According to the Fourier slice theorem, this should 
correspond to the slice of the 2D Fourier transform of the object for v = 0, 

However, the term in brackets is the summation of xi,, on k, which is the parallel 
projection of 5 along the q-axis. Therefore, this proves that the slice of the 2D - 
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Screen 

1 xi. 

Parallel projection 
t of the medium: 

C 

-C L~~ .,-Jcv% . i b  
projection parallel to the q-axis: "-'["-I -o ,=, 1 

" 4 
Figure 10.4 Analytical demonstration of the Fourier slice theorem. The DFT of the 
parallel projection of the medium in the q-direction yields the 2D transform of x for v = 0 - 

discrete Fourier transform of the object x is the 1D Fourier transform of the - 
corresponding parallel projection. 

Inversion 

One approach to invert the boundary measurements follows directly from the 
Fourier slice theorem: (1) Compute the 1D discrete Fourier transform of measured 
projections, (2) assemble the 2D discrete Fourier transform of the medium X 
as prescribed in the Fourier slice theorem ( K ~ K ~  space), and (3) compute the 
2D inverse discrete Fourier transform of X to determine x which is the sought 
variation of the parameter in the pq sfice (~m~lementition Procedure 10.1). 
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Implementation Procedure 10.1 Inversion in transformed space - Fourier 
slice theorem 

Basic procedure 

1. Determine parallel projections at different angles a: proj'"'. This is an array 
of parallel measurements in which sources and reczers  are aligned at an 
angle a with respect to a reference axis. Each measurement is a line integral 
of the spatial parameter x(p, q). 

2. Compute the ID-DFT of each projection: PROJ'"> = DFT@roj<">). - 

3. Assemble the projections PROJ'"' in the Fourier space, according to their 
orientations a, along a radial line from the origin (u = 0, v = 0). Interpolate 
the values from the radial line to the Cartesian grid (u, v). This is the 2D 
Fourier transform of the image 5. - 

4. Compute x = IDFT(XJ. This is the discrete version x in the original domain. - - - 

Filtered back-projection 

1.  Determine projections, proj'"'. Compute the ID-DFT of each projection, 
PROJ'"' = ~ F T ( p r o j ' " 7  - 

2. Multiply each PROJ'"' by a linearly increasing high-pass filter. The value 
of the filter at frequency K is equivalent to the width of the wedge between 
projections in the Fourier space. For example, if there are "g" equally spaced 
projections, the filter at wavenumber K has a value 27r. ~ / g .  This is the 
filtered transformed projection FPROJ'"'. 

3. Compute the inverse 1-D Fourier transform of FPROJ'"' to obtain the 
filtered projection fpr~j '~'  in the space of the image. - 

4. Smear the inverted filtered projections - fprojCa' onto the p-q space, along 
the ray paths, interpolating among cells in the p-q grid. 

5. Add the contribution of all filtered back-projections on each pixel in the p q  
space to obtain the sought solution x. - 
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The following observations permit the development of an even more effective 
algorithm: 

The matrix & in the frequency domain is assembled by gradually adding 1D 
transformed~rojections. Given the linearity property of the Fourier transform, 
the field x in the original domain can be constructed as a summation of inverted 
transform-ed projections. 

The assembled 1D transformed projections fan out in K ~ - K ¶  space, and they 
are independent in the K ~ - K ¶  space except from shared static DC component 
at (u =0 ,  v =O). 

As the wavenumber increases, the separation between records increases. There- 
fore, there is an uneven coverage of the frequency domain (high coverage 
close to the static component but decreasing away from it). This can be cor- 
rected by multiplying the transformed projection by a function that increases 
linearly with the wavenumber K. This linear high-pass filter cancels the shared 
static component at the origin; hence, filtered transformed projections become 
independent of each other. 

The filtered back projection algorithm outlined in Implementation Procedure 10.1 
improves the original procedure introduced earlier following these observations. 

Trade-offs 

The filtered back projection algorithm starts forming the inverted solution as 
soon as the first projection is obtained, and it only requires 1D Fourier tr&sforms. 
Therefore, inversions are computed very fast and with significant savings in 
memory requirements. A disadvantage in this algorithm is the need to interpolate 
diagonal entries along the projection directions onto the 2D Cartesian space of 
the solution. 

10.2 ITERATIVE SOLUTION OF SYSTEM OF EQUATIONS 

Matrix inversion can be avoided by solving the system of equations y'""' = 
h . x-=est> - - - using iterative algorithms (also known as the Kaczmarz solution of 
simultaneous equations). Iterative algorithms gradually correct the estimate of 5 
in order to reduce the discrepancy between the measured data yGmaS' and the 
predictions y'm' - made with the current estimate x's' after the& iteration. 
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10.2.1 Algebraic Reconstruction Technique (ARf) 

ART updates the vector of unknown parameters 1! by redistributing the residual 
every time a new measurement is analyzed. Updating starts with the first measure- 
ment i = 1, proceeds until the last M-th measurement is taken into consideration, 
and continues starting with first measurement again. The algorithm is stopped 
when residuals reach a predefined convergence criterion. Each updating of the 
solution x is considered one iteration. 

The residual for the i-th measurement after the s-th iteration (e,)'" is computed 
with the s-th estimate f": 

(ei)<s> = yi<meas> - (yi<~d>)<s' for the i-th measurement 

= ~i <meas> - hi,, . x,'~' afer the s-th iteration (10.7) 
k 

This residual is distributed among values according to their participation in 
the i-th measurement. The new s + 1 estimate of the solution 5 is computed as 

hi,k 
- xk + (ei)<'> - - xk-+" - "> based on the i-th measurement 

afer the s-th iteration (10.8) k 

Note that when the i-th measurement is being considered, the k-th unknown 
xk is updated only if it is affected by the i-th measurement; in other words, 
if h,k # 0. 

Implementation Procedure 10.2 presents the step-by-step algorithm for ART. 
The solution of a simple system of equations using ART is presented at the end 
of this chapter together with insightful error evolution charts. 

Implementation Procedure 10.2 Iterative solution of equations - ART 

Algorithm 

I 1. Start with an initial guess of the solution 5"'. I 
2. For the fust iteration s = 1, consider the first measurement i = I. Update 

the values of the solution 5 as prescribed below. 

3. Repeat for other measurements. If the last measurement has been considered 
i = M, start from the first measurement i = 1 again. The counter for iterations 
s continues increasing. 
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4. Monitor the residual e and the solution x. Stop iterations when the residual 
reaches a predefined level or when the solution fluctuates about fixed values. 

I Updating procedure I 
During the s-th iteration, the solution x is updated to justify the i-th measure- 
ment as follows: 

Predict the value of the i-th measurement y'@' given the current estimate 
of the solution &<'> 

Compute the error ei between the i-th measurement y:""' and the predicted 
value SpEd> 

Distribute this error so that the new estimate of x for the s+l iteration becomes 

Note: the k-th unknown remains the same if it is not involved in the i-th 
measurement so that hi,k = 0. 

10.2.2 Simulataneous lterufive Reconstruction 
Technique (SIRT) 

SIRT also distributes the residual onto the solution x, but & is not updated 
until all measurements have been considered. Then, each value xk is updated 
"simultaneously" considering all corrections computed for all M measurements 
or equations. Each simultaneous updating of the solution & is considered one 
iteration. 

In particular, the correction of the k-th unknown xk owing to the i-th equation 
can be made proportional to the value of hi,, relative to the sum of all coefficients 
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in the k-th column of h : hi,,/ Chi,,. Within this weighting scheme, the equation - 
k 

to update the solution in SIRT becomes 

< S + l > _  <s> 
Xk 

hi*k based on all M measurements -xk +C(ei)<s>.-- 
i ) *  ajier the s-th iteration (10.9) 

k 

Because matrix multiplication involves summation, this equation can be rewritten 
in matrix form: 

where 

X<S> x<"l> 
- - solution vectors [N x 11 after s and s + 1 iterations 

- 1 

4 , k  = [? hqk] diagonal matrix [N x N] 

2 
@i,k = (4.k) matrix of size [M x N ]  

= C diagonal matrix [ M x MI 
[ k  1 

g<s> vector of residuals [ M x 11 after the s-th iteration 

M is the number of equations and N is the number of unknown parameters. 
Equation 10.10 is written in terms of three matrices 2 , B  and A to highlight - - 
the correspondence with Equation 10.9. However, the product n =%. B ~ .  A is - -  - 
a matrix that depends on the entries h,, and is computed on7e. While Equa- 
tion 10.10 is based on matrix operations, it does not involve computing the 
inverse of a matrix. The algorithm proceeds as follows: (1) compute the resid- 
uals e's' for a given estimate (2) update the estimate as x'S+" = - + 
n.gcs', and (3) repeat. A solved example is presented at the end of this 
Zapter. 
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10.2.3 Multiplicative Algebraic Reconstructfon 
Technique (MART) 

Iterative algorithms can also be developed to reduce deviations from 1.0 when 
the measured value is divided by the predicted value y'pEd' 

y:"'-> - y;"-> for the i-th measurement 
(y;~d>)<s' - C hi,k Xk<S' afer the s-th iteration (10.1 1) 

The MART algorithm updates the estimate of & to satisfy y:mMS'/y'p"d' = 1.0: 

xkx"> = ( "-> ) . xk<'> update xk only if $,) # 0 (10.12) C hi,k - Xk cs' 

Note that the xk should not be updated if hi,, = 0 when the i-th measurement is 
being considered. Furthermore, factorial updating requires that the initial guess 
of the solution to be nonzero, x?=O' # 0 for all i. A solved problem at the end 
of this chapter shows the first few iterations and the evolution of the solution and 
the residual. 

10.2.4 Convergence in Iterative Methods 

Iterations proceed until an acceptable residual is obtained or a convergence crite- 
rion is fulfilled. The simultaneous updating implemented in SIRT results in more 
stable convergence than ART and MART (see Solved Problems at the end of this 
chapter). Data inconsistency prevents standard iterative algorithms from converg- 
ing to a unique solution: once the minimum residual is reached, the estimated 
parameters fluctuate as iterations progress. 

If data are noisy, the amount of updating can be decreased to facilitate con- 
vergence. On the other hand, if the degree of inconsistencies is small, the rate of 
convergence can be "accelerated" by overcorrecting. Acceleration or deceleration 
is controlled by a coefficient imposed on the second term in Equations 10.8 and 
10.9 for the ART and SIRT algorithms. The same effect is achieved in MART by 
adding an exponent to the parentheses in Quation 10.12. Acceleration strategies 
must be cautiously selected. In particular, the final fluctuations when the solution 
converges will be exacerbated if the acceleration coefficient increases with the 
number of iterations "s". 

The rate of convergence in ART can be improved when the sequence of 
equations is arranged so that subsequent equations i and i + 1 are most dissimilar. 
This observation suggests the reordering of equations to optimize convergence. 
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7 0.2.5 Nonlinear Problems 

The solution of nonlinear problems with iterative algorithms faces difficulties 
related to nonconvex error surfaces and multiple minima. Weakly nonlinear prob- 
lems can be linearized using a first-order Taylor approximation within a sequential 
linearization and inversion scheme: (1) compute the coefficients hi:? assuming 
a linear model; (2) solve the system of equations y'"'-' = hX0> - x using the 
selected iterative algorithm, the vector of unknowns 21 is theZfirst estimate of 
x"'; (3) determine the new coefficients h;:' using the nonlinear model and - 
x"'; and, (4) repeat from step 2 until the preestablished convergence criterion - 
is fulfilled. 

70.2.6 Incorporating Additional lnformafion in lfemtive 
Solutions 

Information available to the analyst can be included as additional equations to 
the original system of equations y = h - 3: - - 

where the coefficients r and c capture the additional information or constraints, 
such as solution smoothness. Equations can be weighted. Finally, an initial guess 
% can be incorporated by inverting the system of equations Ay = h .  &i'es" to - - 
obtain where Ay = y'""' - h .  3. When an initial guess is used, the - 
final estimate is x'"" =& 

10.3 SOLUTION BY SUCCESSIVE FORWARD 
SIMULATIONS 

Inverse problems can be solved by trial and error through successive forward 
simulations. This completely general approach is summarized as follows: 

Generate an estimate of the solution x'""". 
Use forward simulation to compute y 'pEd' = f (q<est>). - 

Detennine the residual between y'pd' and y'"aS' using a selected error norm. - - 
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Generate another estimate and repeat. 

Continue until a physically meaningful estimate is found that adequately jus- 
tifies the data. 

The main disadvantage in inverse problem solving by successive forward simula- 
tions is the massive demand for computer resources. Therefore, the applicability 
of this approach is enhanced when considering the following improvements. 
(The algorithm is outlined in Implementation Procedure 10.3.) 

Implementation Procedure 103 Successive forward simulations 

To find a physically meaningful solution 5 given a set of measurements y'""' 
by successive forward simulations with a physical model that relates f to  y. - 

<o> I 1. Make an initial guess of I"' = (x;", . . . . x, , . . . , x;O>). I 1 2. Compute the predicted values of - ye@' using the forward simulator. I 
3. Compute the residuals between the predicted and the measured values of y 

with an error definition that weights measurements equally (Section 8.3). I 
4. Evaluate the norm of residuals. Select the L, norm to lower the sensi- 

tivity to outliers, the if Gaussian conditions are expected, or the L, 
norm when low-noise data are available and the information density is 
uneven. 

5. Generate a new solution and repeat from step 2. A new solution may be 
obtained at random (Monte Carlo) or it can evolve from the previous solution 
guided by some a priori information about the solution or by the local 
gradients in the error norm surface. 

6. Repeat steps 2-5 until the norm of the residuals between the mea- 
sured y<meas> and predicted y'prd' values is acceptable (data are justi- 
fied o r a  minimum is reached) and a physically meaningful solution g is 
obtained. 
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Notes: 

The method is applicable when the number of unknown parameters is small. 

When a minimum is reached, explore the space of the solution in its vicinity 
to verify that the global minimum was found. 

1. Reduce the number of unknowns. The technique can be efficiently combined 
with transformed solution spaces that reduce the number of unknowns, such 
as parametric characterization (Section 10.1). As the number of unknown 
parameters decreases and the model definition increases, the general inverse 
problem turns into parameter identification. 

2. Start from a suitable initial guess. Data preprocessing helps identify an initial 
guess of the solution (details in Chapter 11). When the inverse problem is not 
one of a kind but repetitive, forward simulation permits assembling a library 
of "solved cases". Then, a suitable initial guess is identified by matching the 
measured data y'meBS' against the simulated data in stored cases. - 

3. Use fast forward simulators. The physical model f(x) that is used in the 
forward simulation can be as complex as needed (for example, a nonlinear 
finite element simulation with intricate constitutive equations). However, it is 
often possible to replace complex simulators with effective models that prop- 
erly capture the governing processes and parameters (for example, Green's 
functions). 

4. Implement a meaningful evaluation scheme. The goodness of a given predic- 
tion ye@' can be assessed in relation to y""-> using any e m r  definition 
and norm (Section 8.3). Furthermore, estimated solutions z'~"" can also be 
evaluated in terms of physical significance (this is equivalent to the role of reg- 
ularization in matrix methods - Section 9.4). Select a computational effective 
and physical meaningful evaluation procedure. 

5 .  Adopt eficient search algorithms. Successive estimates of the solution do 
not need to follow a grid-search pattern where the space of the solution 
x is systematically searched. Instead, the solution can be explored with a - 
Monte Carlo approach by generating estimates of the solution x'~"" with a 
random number generator. The Monte Carlo method is completely general and 
it does not get trapped in local minima. Furthermore, it provides information 
that can be used to determine statistical parameters. 
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Grid-search and Monte Carlo methods are computer intensive. Instead, the opti- 
mal solution estimate zqest' can be identified following the steepest descent along 
the error surface until the minimum error is reached. The solution proceeds by 
changing one parameter x, at the time and keeping track of variations in the error 
surface with respect to changes in each parameter to update gradients. Converge 
difficulties arise near local minima and when error surfaces are nonconvex. 

10.4 TECHNIQUES FROM THE FIELD OF ARTIFICIAL 
INTELLIGENCE 

Several techniques from the field of artificial intelligence can be applicable to 
the solution of inverse problems. Selected examples are explored next. 

10.4.1 Arfidcial Neural Networks (Repetitive Problems) 

Artificial neural networks (ANNs) are intended to reproduce cognitive processes 
by simulating the architecture of the brain. An ANN consists of layers of "neu- 
rons" that are mathematically interconnected so that they can relate input to 
output (Figure 10.5a). While each neuron can perform only a simple mathematical 
operation, their combined capability permits solution of complex problems. 

A Neuron 

Consider a neuron in an internal "hidden layer" (Figure 10.5b). The total input 
is a weighted combination of the incoming values vi that were produced by 
neurons in the previous layer, according to the weights wi of the corresponding 
connections: 

input = C vi . wi 
i 

Weights wi establish the relative importance individual input values vi have. The 
"activation function" determines the "neuron response"; the sigmoid function is 
commonly used: 

response = 
1 

1 + e - ' "~~ t  
sigmoid function 

and the response varies between 0 and 1 for any positive or negative input. 
Nonlinear activation functions provide the network with the flexibility that is 
required to model nonlinear transformations between the input and the output. 
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Input: Output: 

c w i .  vi 1 
i j + e-inpll 

layer layer 
Hidden 
layers 

(a) (b) 

Figure 10.5 Artificial neural network. (a) The network consists of a structure of con- 
nected layers of elements or "neurons". The output and input are related through simple 
operations performed at each element. (b) The input of a single neuron is a linear com- 
bination of output values from the previous layer. The output of the neuron is computed 
with the activation function 

Network Design 

The activation function and the architecture of the network are selected first. 
The network is designed with a defined set of layers, neurons, and interconnec- 
tions. The number of elements in the input vector x does not have to be the 
same as the number of parameters in the output y. Typical networks involve 
hundreds of neurons that are distributed among the-input and output layers and 
two or more hidden layers. Such a network includes thousands of connections 
(this is a measure of the number of unknowns). 

Training 

A critical step in the ANN methodology is the "assimilation" of the network to the 
nonlinear transformation that is intrinsically embedded in available input--output 
data. These data are the training set. During "network training", the weights wi 
are determined for all connections. The training procedure is an inversion exercise 
itself: compute the output for a given input, compare with the known output, 
compute the residual for each parameter, and "back-propagate" the difference 
onto the network readjusting the weights; repeat for all case histories. Once 
trained, the network is used to process new cases outside the training set. 
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Trade-offs 

ANNs are versatile. The power of an ANN is evidenced in the solution of 
nonlinear problems when the underlying transformation is unknown or time- 
variant, or when the event takes place in a noisy environment. However, the 
methodology provides no physical or mathematical insight into the underlying 
transformation. 

Multiple similar cases are needed to train the network; therefore, this approach 
is reserved to inverse problems involved in repetitive tasks, for example the 
identification/characterization of objects on a conveyor belt in a production line. 

The network's ability to capture the transformation and to match the training 
set increases with the number of hidden layers and connections. However, large 
networks are less reliable when addressing problems outside the scope of the 
training set. In other words, an ANN does not escape the trade-off between 
accurate fitting prior data and credible prediction of new data (Section 8.4). 

10.4.2 Genetic Algorifhms 

Genetic algorithms combine a constrained Monte Carlo generator of new potential 
estimates of the solution zest> with a forward simulator to compute Y'P'~~'. 

Although the method does not seem different from those discussed in section 10.3, 
it is unique in the way it generates potential solutions z'~"". 

In this context, the vector of unknown parameters & is the gene. Then, given a 
couple of initial estimates of the solution, the goal of the algorithm is to gradually 
enhance the estimate x'"'" by "reproduction" and "natural selection". There are 
five sequential and repetitive stages (Figure 10.6): 

The algorithm starts with two guessed solutions (genes C'' and f2'). 

The combination operator generates new solution alternatives (genotypes) by 
randomly cutting existing solutions (parents 5"' and xC2') and forming new 
ones (offspring z'~' and z'~'). 

As in natural genetics, mutations are needed to introduce genetic variety. 
Mutation is implemented by randomly changing a site x, in a new solution, 
with some probability "p". The new value for a mutated site x, is selected 
within a physically possible predefined range. 

Evolution may get trapped in local minima because many mutations must occur 
at specific sites in order to improve the solution. The probability of getting 
out of this stage is very small. To help overcome this difficulty, a pennutation 
operator is added. This operator exchanges sites on the gene; for example, the 
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Figure 10.6 Genetic algorithm. A genetic algorithm starts with guessed solutions or 
"genes" x. These genes are manipulated by repeating combination, mutation, permutation, 
evaluation, and selection, until an acceptable solution is obtained 

Selection 

The best two genes 
are selected 

value xi is placed in location r and the value x, is placed in location i. This 
operation is done with its own probability. 

i 

Genes (&"', f2', f3', zC4') are evaluated to identify the fittest ones. This 
operation starts by computing the values y'pmd' for each gene by forward 
simulation (the transformation may be line& or nonlinear). Then, the fitness 
of each gene is assessed by computing the residual e = y'pRd' - Y <meas' (any 
error definition and norm may be used). The evaluation criterion may also 
consider the physical meaningfulness of genes 2Cck'. Forward simulation and 
evaluation are the most computationally expensive steps in the algorithm. 

i 
A i 11 

i 
Evaluation 

The residual and some property of the 
solution are evaluated to select the best 
(This step involves forward modeling) 

Combination 

Gene 3: x,<'>--x,~"; x,~*--x,* 
Gene 4: x ~ < " - ~ ~ > ;  x,,~<"-~<~' 

i 
i 1, 
I ................... 
I : Permutation i 
: . 
I i with probability i 
I : P(pe.rmutation) i 
j .................. 

11 

i 
i Mutation 

A site in either Gene 3 or [-> - 4  probability ismutatedwith P(mutation) some ' 
If residual is acceptable 
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The fittest genes survive, and the process is repeated. Eventually, the solution 
x<k> - of the inverse problem gradually evolves towards the optimal solution. 

In summary, the genetic algorithm approach to inverse problem solving is a 
semianchored Monte Carlo forward simulation where the search is conducted by 
hopping in the solution space 21 guided by the Darwinian process. 

Evolution or convergence towards the optimal solution may stop when a very 
low mutation rate is used. However, when the mutation rate is too high, offspring 
are not selected and the convergence rate decreases because genetic information 
becomes easily corrupted; anchoring is lost, and the approach becomes the stan- 
dard Monte Carlo. The probability of mutation for a given site in a gene near 
the optimum solution is about p = 1/N (where N is the number of elements in 
a gene). At intermediate solutions away from optimum, other rates of mutation 
may be preferred. In general, the probability of permutation is smaller than the 
probability of mutation. Mutation and permutation probabilities are selected in 
an attempt to minimize the number of solutions x'eSt' that are forward simulated 
and evaluated, while preventing entrapment in local minima. 

Trade-offs 

The solution progresses relatively fast in early iterations, even when many 
unknowns are involved. However, the algorithm does not guarantee reaching 
the optimal solution. Still, a "near optimal" solution may be sufficient for many 
inverse problems, for example when there is high uncertainty in the input param- 
eters and in the transformation. 

10.4.3 Heuristic Methods - Fuw Logic 

Recall the problem of finding a buzzer in a dark room (Section 10.1). Our brain 
does not perform a formal inversion in terms of voxels or even with a parametric 
representation. Instead, we identify the possible position of the buzzer following 
simple heuristics and fuzzy logic. 

Let us explore our natural ability to solve inverse problems further. Consider 
the study of projectile penetration in an opaque body using X-ray plates, as shown 
in Figure 10.7. Where is the projectile? The shadow detected on each plate is 
back-projected towards the source to constrain the volume where the projectile 
may be, and more importantly, where the projectile cannot be. Therefore, the 
location of the projectile becomes better defined as additional shadows are taken 
into consideration. 

This heuristic approach can be computerized assuming that each projection p is 
a fuzzy set. Membership values are back-projected onto the space of the problgm. 
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Source 

I The anom!,. connot he here I 

(b) 

Source 

shadow Shadow 

Figure 10.7 Fuzzy logic. Two flashlights illuminate the medium in different directions. 
(a) The presence of an anomaly causes shadows. (b) These shadows are back-projected to 
constrain the region in the space where the anomaly cannot be 

The membership value of the i-th pixel pi to the set "background medium" is 
obtained as the minimum membership value of the back-propagated projections. 
Conversely, the membership value of the i-th pixel to the set "projectile" is 
obtained as the maximum of back-projected membership values. Finally, voxels in 
the body can be colored according to their membership values. If there are limited 
illumination angles, the location of the projectile would not be fully constrained 
and it would appear elongated in the direction of prevailing illumination. The 
algorithm can be expressed in the context of matrix data structures, as described 
in Implementation Procedure 10.4. 

Implementation Procedure 10.4 Fuzzy logic for anomaly detection in 
tomographic imaging 

Goal 

To constrain the regions of the image where the anomaly cannot be. 
Procedure 

1. Divide the medium into a discrete set of N pixels. 

2. Compute the length traveled by each of the M rays in each of the N pixels. 
Store these values in a matrix 4 [M x N], as shown in Section 8.1.3. - 
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3. Convert travel times to ~ay-average slowness (ras) for each i-th ray: 

4. Compute the matrix P (M x N) of "touched pixels": divide each entry hi,k by 
the pixels size w, a d  round to either 0 or 1. If h,,, is much smaller than w, 
the ray touches the pixel but the travel time is not significantly affected by it. 

Shaded pixels are 
'kignificanrly" rnrtched 

by rhe i-rh ray 

5. Back-project the ray-average slowness: replace the nonzero entries in the 
i-th row of P by the corresponding average slowness rasi computed for the 
i-th ray. ll-& is the matrix Q. - - 

6. High slowness regions: extract the minimum value of each column of Q 

= I 
7. Low slowness regions: extract the maximum value of each column of Q 

= I 
8. Plot a tomogram by coloring pixels with the computed vectors of maximum 

or minimum average slowness. 

Trade-offs 

Heuristic methods often permit the identification of salient characteristics of the 
solution with minimum effort; however, they fail to provide the full solution 
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(such as the true voxel values in the example above). The result can be used to 
generate an initial guess x"' for other algorithms (Section 9.5.2). 

10.5 SUMMARY 

Various strategies can be applied to solve inverse problems, including those 
outlined in this and the previous chapters and suggested as exercises at the end 
of this chapter. 

The selected method reflects the analyst's perception of a viable approach. It 
must be compatible with the problem at hand, data availability, and computer 
resources. 

The Monte Carlo generation of possible solutions x, combined with successive 
forward simulations, is the most flexible inversion approach. It is also the most 
computer intensive. It can be applied to solve any type of inverse problem 
and it can involve complex physical models. Furthermore, this approach may 
accommodate any error definition, error norm, and additional evaluation crite- 
ria. Therefore, one can test the ability of the solution x'""" to justify the data 
Y '""' - as well as the physical meaningfulness of the solution. 

Monte Carlo searches can be guided to limit the number of possible solutions 
that are run through the simulator and evaluation functions. Guiding criteria 
should prevent entrapment in local minima. 

The parametric representation of the problem in terms of a small number of 
unknowns leads to robust inversions. 

Efficient algorithms can be developed when the problem is carefully ana- 
lyzed. Examples range from Green's functions for forward simulators, heuristic 
approaches, and solutions in transformed domains. 

Increased efficiency is often accompanied by lessened flexibility and more 
restrictive assumptions. 

The trade-off between variance and resolution is inherent to all methods. 
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SOLVED PROBLEMS 

P1O.l Iterative solution of system of equations. Use ART, SIRT, and h4ART to 
solve the system of equations y"'-' = h - X, where - - 

ART solution (Equation 10.8): The first few iterations are 

01, 
I I I I I I I I 

20 40 60 80 100 120 140 
Iteration numbers [ ] 

8 
S i 5 0 ~  OO 20 40 60 80 100 120 140 
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- x < ~ >  + 2 eT . A - gcS' where SIRT solution (Equation 10.10): &'"+" - - - -  A 

MART Solution (Equation 10.12). Update if hi,, # 0. First few iterations, 

1 
2 
3 
4 
5 
6 

i 

1 
2 
3 
4 
1 
2 

x ~ >  

1.000 
1.667 
1.923 
1.923 
2.457 
1.965 

x;~> 

l.m 
1.WO 
1.154 
1.125 
1.438 
1.438 

x ~ >  

l.m 
1.667 
1.923 
1.875 
2.3% 
1.653 

cOrrecfi = 
y. <meas> 
I 
Y,<@> 

1.667 
1.154 
0.975 
1.278 
0.690 
1.050 

yi<meas> 

5 
10 
9 
13 
5 
10 

y i < ~ d >  = 

:hi., 'xk 

3 
8.667 
9.231 
10.173 
7.250 
9.528 

New values xkcS+" = 

(xk-). c o m f i  

.<$+I> 
I 

1.667 
1.923 
1.923 
2.457 
1.695 
1.779 

=<$+I> 
2 

1.000 
1.154 
1.125 
1.438 
1.438 
1.509 

x<s+l> 
3 
1.667 
1.923 
1.875 
2.3% 
1.653 
1.734 
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Note typical early oscillations in ART and MART algorithms. 

P10.2 Successive forward simulations. Solve problem P1O.l using successive 
forward simulations and the b-norm. 
Solution: Let us fix x, and x, and vary x,. We find the value of x, that 
minimizes the L, norm, and then x2 while keeping x, and x3 fixed, and 
so on. Let us start at the initial guess: x, = x, = x, = 2. The following 
sequence of slices summarizes the search: 
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Note: The final result is x, = 3, x, = 2, x, = 1. 

ADDITIONAL PROBLEMS 

P10.3 Iterative solution. Invert the following system of equations using iterative 
algorithms. (a) Compare the evolution of the solution with ART and SIRT. 
(b) How many iterations are needed to reach 5% error? (c) Compare the 
results with the least squares solution (LSS). (d) Attempt the solution with 
MART. Discuss! 

P10.4 Transform methods: reducing the number of unknowns. Study the ill- 
conditioning of sT .hT -h.S for different numbers of terms c (Equa- 
tion 10.3). ~ o d i f j r  tKe eiuction to improve frequency control. Discuss. 
Relate to RLSS. 

P10.5 Other methods. Investigate other methods that can be used for the solu- 
tion of inverse problems. Include: (a) linear programming and SIMPLEX 
algorithm, and (b) graph-search strategies. Outline the solution strategy in 
each case. 

P10.6 Application: parametric representation. Consider a problem in your area 
of interest. Following Ockham's recommendation, cast the problem in 
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parametric form using the smallest number of unknowns while still cap- 
turing the most important characteristics of the problem. Simulate data 
with noise for a given set of parameters z < ~ ' .  Explore the invertibility 
of the unknowns around &'*' for different levels of noise. Plot slices of 
error surfaces computed with the L, L, and L, norms. Recast the problem 
in terms of dimensionless IT ratios and compare against the dimensional 
approach. Draw conclusions. 

P10.7 Application: solutions by forward simulations. Consider a simple inverse 
problem in your area of interest. Program the forward simulator and time 
it. Detail the algorithm to solve the inverse problem using Monte Carlo, 
genetic algorithms, and ANNs. 

P10.8 Application: transformation methods. Consider a problem in your area of 
interest. Can the inverse problem be inverted through a transformation? 
(Review the Fourier slice theorem in this chapter.) 
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Strategy for Inverse 
Problem Solving 

Inverse problems are frequently encountered in engineering practice and scientific 
tasks. The solution of an inverse problem requires adequate understanding of the 
physics of the problem, proper experimental design, and a good grasp of the 
mathematics of inverse problem solving to recognize its inherent effects. 

This chapter brings together knowledge gained in previous chapters to develop 
a comprehensive approach to inverse problem solving (review Implementation 
Procedure 9.3). The case of tomographic imaging is used to demonstrate concepts 
and methods. The experience gained from this example is readily transferable to 
other inverse problems in engineering and science. 

I I .  I STEP I:  ANALME THE PROBLEM 

Successful inverse problem solving starts long before data inversion. In fact, 
the first and most important step is to develop a detailed understanding of the 
underlying physical processes and constraints, the measurement procedures, and 
inherent inversion-related difficulties. Then one must establish clear and realizable 
expectations and goals. 

Let us analyze the inverse problem of tomographic imaging (recall 
Section 8.1.4). The following restrictions and difficulties must be considered. 

7 1.1.1 Identify Physical Processes and Constraints 

Tomograms can be generated with different physical processes and forms of 
energy. Commercially available devices include X-ray CAT scan, radar and 

Discrete Signals ond Inverse Problems J. C. Santamarina and D. Fmtta 
O 2005 John Wiley & Sons, Ltd 
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seismic tomography, ultrasonic imaging, positron emission tomography (PET), 
magnetic resonant imaging (MRI), and electrical resistivity tomography (ERT). 
The decision to use one form of energy determines the type of information that 
can be obtained from the tomographic image. For example, a tomogram gen- 
erated with mechanical wave measurements captures the spatial distribution of 
elastic and inertial properties in the medium; on the other hand, a tomogram 
developed with electromagnetic wave propagation measurements reflects the 
spatial variability in electrical resistivity, dielectric permittivity, and magnetic 
permeability. 

Wave propagation involves various intricate, albeit information-rich, pheno- 
mena that can be easily overlooked or misinterpreted. The most relevant com- 
plications related to the nature of wave propagation follow (see sketches in 
Figure 1 1.1): 

(c) 

Source 

Figure 11.1 Tomographic imaging: (a) problem representation; (b-d) wave phenomena: 
ray bending, diffraction and Fresnel's ellipse 
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Attenuation. Geometric spreading and material attenuation cause amplitude 
decay. Typically, high-frequency components are attenuated at higher rates. 
Low-pass material filtering incrementally rounds the wave train and biases the 
interpretation of signals with increasing travel distance. 

Attenuation and noise. Noise restricts the size of the body that can be imaged 
or demands higher input energy. Signal stacking and postprocessing may be 
required to improve the signal-to-noise ratio. 

Trade-08: skin depth vs. resolution. Long wavelengths are needed to penetrate 
large objects; however, long wavelengths provide lower spatial resolution. 

Ray curvature. Linear inversion presumes straight ray propagation. Spatial 
variability (the purpose of tomographic imaging) causes reflections, refractions, 
and ray bending (Figure 1 1.1 b). 

Anisotropy. Materials such as wood, laminates, fiber-reinforced polymers, and 
rock masses can exhibit significant degree of anisotropy, which causes energy 
splitting or birefringence. 

Difiaction. Diffraction hides the presence of low-velocity anomalies 
(Figure 11.1~). 

Fresnel's ellipse. Wave propagation samples a region of the medium, not just 
the ray path. This region is related to the wavelength and the distance between 
the source and the receiver (Figure 1 l.ld). A "thick ray" may be preferred as 
a propagation model. 

1 1.1.2 Address Measurement and Trcmsducer-related 
Difficulties 

Deficiencies during data gathering result in noisy data. Common testing difficul- 
ties in wave-based tomographic imaging include: 

Source energy and frequency content. In general, the frequency of emitted 
signals decreases with increasing source size and delivered energy. 

Transducer directivity (sources and receivers). A receiver positioned outside 
the radiation field of the source (and vice versa) will not detect the wanted 
signal. 

Nearfield. Sources and receivers in close proximity may operate in their near 
fields. Physical models for data interpretation are typically derived for far-field 
conditions and fail to explain data gathered in the near field. 
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Measurement precision st and transducer separation. Neighboring transduc- 
ers need not be closer than $2. L . V,, st, where L is the distance across 
instrumented sides, V,, is the wave propagation velocity in the medium, and 
E, is the precision in travel time measurements. 

Fresnel's ellipse and transducer separation. There is no significant advantage 
in placing neighboring sources and transducers closer to each other than the 

width of the Fresnel's region: J2 . L . V, . E, + (V,,,., . s,/4)'. 

Detectability. The travel time in the medium, across a distance L is t, = L/V,,,,. 
The change in travel time 6t due to the presence of an inclusion size din, and 
velocity V,, is 

The value 6t must exceed the precision in travel time measurements E, (aver- 
aging and error cancellation may improve this requirement). 

Noise. In most cases, background noise can be reduced with proper electrical, 
mechanical, and thermal isolation. Transducers and peripheral devices may 
add noise. 

Systematic triggering error. It cannot be corrected by stacking, but through 
calibration (it may be detected during data preprocessing). 

Precision in travel time determination st. Travel time determination is 
enhanced in high-frequency signals. Automatic detection is fast, repetitive, and 
precise, but not necessarily accurate. 

1 1.1.3 Keep in Mind Inversion-related Issues 

Number of unknowns. The number of unknown pixel values is N = L - H /  
(Ax . Az), where Ax and Az define the pixel size (refer to Figure 11. la). Even a 
low-resolution tomographic image made of 30 x 40 pixels involves N = 1200 
unknown pixel values. 

Number of measurements. Assuming that transducers are mounted on each 
boundary pixel along vertical sides and a measurement is conducted between 
each source and receiver, the number of measurements is M = (H/Az)'. Such 
a transducer configuration in the 30 x 40 image discussed above results in 
M = 40 x 40 = 1600 measurements or equations. 

Available information. A large number of rays (equations) does not necessarily 
imply an overdetermined condition when M > N. Many measurements may 
eventually provide the same information, effectively reducing the number of 
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Figure 11.2 Experimental design: analysis of the transformation matrix. Generalized 
inverse: h-g = bT . h + A. gT . RJ1 . where A = 0.645 m2. Number of singular values - - - -  - 
(sv's) correspond to condition number K > lo4. The quantity tr(Q is the trace of the data 
resolution matrix. Dark regions correspond to low values (eitheaow information density 
or low error propagation) 
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independent observations. The availability of information can be studied with 
singular value decomposition (SVD), as discussed in Section 9.2. Figure 11.2 
shows two configurations of sources and receivers; each ray represents a 
measurement. The singular values for the matrix of travel lengths h are shown - 
for each configuration. 

Large and sparse matrices. The matrix h [M x N] in tomographic imaging 
problems is large and sparse (Equation 8. la). In the previous example of a low- 
resolution 30 x 40-pixel tomogram, the matrix h is [I600 x 12001. However, 
each ray touches between one and two times th; number of pixels across the 
image; therefore, only 30-60 out of the 1200 elements in each row are nonzero. 
Therefore, the transformation matrix h is decisively sparse. - 
Uneven spatial coverage. Measurements do not sample the properties of the 
medium evenly, as shown in Figure 11.2. 

Inversion parameters. Inversion parameters (such as type and degree of regu- 
larization) should not determine the results of the inversion. 

Nonlinearity. When significant ray bending takes place, the tomographic prob- 
lem becomes nonlinear: the estimate x'est' is computed knowing h, whose 
entries hi,, are determined with the ray paths that are controlled by t6e spatial 
distribution of pixel values 5. The straight ray assumption applies to medical 
X-ray applications, but it is deficient in geotomography. 

7 7.2 STEP 2: PAY CLOSE ArrENTlON TO EXPERIMENTAL 
DESIGN 

The viability of a solution and the attainable resolution are determined at this 
stage. Experimental design should address two critical aspects: distribution of 
measurements to attain a good coverage of the solution space, and instrumentation 
selection to gather high-quality data (Implementation Procedure 9.2). In addition, 
keep in mind that inverse problems can be data-intensive and costly; therefore, 
the selected test configuration should avoid unnecessary measurement duplication 
while preventing aliasing. 

1 1.2.1 Design the Distribution Measurements to Aifain 
Good Spatial Coverage 

Available information, the even or uneven coverage of the solution space, the 
degree of ill-conditioning, and the potential for error propagation can be explored 
as soon as the matrix h is formed, and before any data are gathered. - 
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Let us apply guidelines in Implementation Procedure 9.2 to the tomo- 
graphic inverse problem. Figure 11.2 shows results for two source and receiver 
configurations, including: (a) tabulated number of measurements, number of 
unknowns, and the trace of the data resolution matrix D = h - hPg; (b) a plot of 
sorted singular values; (c) the vector of column-sums lT-Kfiesented as a 2D 
image to gain a preliminary assessment of spatial coverage 3 the solution space; 
and (d) the vectors h-g - f and &-g that contain the row-sums in matrices h-g 
and &-g (also presGted as 2~ymages to identify pixels with highest potentialTor 
errormagnification). Similar plots are generated for various test configurations 
until a realizable test design is identified to obtain adequate data. 

Illumination anisotropy, particularly in the cross-wall configuration, will elon- 
gate the shape of inverted anomalies in the direction of prevailing illumination. 

1 1.2.2 Design the Experiment to Obtain High-quality Data 

Low-noise high-quality data are needed to reduce the effects of error magnifica- 
tion during inversion (Sections 9.6 and 9.8). The general tenet of experimentation 
"improve the test at the lowest possible level" gains even higher significance in 
inverse problems. Select appropriate transducers and peripheral electronics, shield 
them from external noise, and implement proper signal recording and processing 
methods. Correct measurements for the frequency response of the measurement 
system (review Implementation Procedures 4.1, 5.2 and 6.6). 

1 1.3 STEP 3: GATHER HIGH-QUALITY DATA 

Look at the raw data while they are being generated. Identify a suitable display that 
permits diagnosing test problems and even helps identify salient characteristics of 
the system. The simultaneous display of signals gathered at neighboring locations 
or time steps is particularly convenient to spot sudden changes in the system, to 
diagnose and remediate testing difficulties, and to identify possible outliers that 
can be retested. 

1 1.4 STEP 4: PREPROCESS THE DATA 

Data preprocessing refers to simple computations and graphical display strategies 
that are implemented to gain insight about the measurements (noise level, outliers, 
spatial coverage) and a priori characteristics of the solution (mean properties, 
spatial trends, presence of anomalies). These results facilitate the selection of the 
physical model, provide valuable information to guide and stabilize the inversion, 
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and can be used to generate a viable initial guess of the solution 5"'. Several 
preprocessing strategies aimed at tomographic inversion are presented next. 

1 7.4.1 Evaluate the Measured Data - vrnm 
Data errors are magnified during inverse problem solving, affect the rate of con- 
vergence, and increase the presence of ghosts in the final images. Error magnifica- 
tion can be controlled with regularization, but it is often at the expense of resolution. 

Systematic Error 

A constant shift in travel time is most likely caused by the acquisition system, 
for example, trigger delay. This systematic error in the data can be identified by 
plotting travel time vs. travel length. If the medium is homogeneous and isotropic, 
measurements should plot on a straight line with zero time intercept; the inverse of 
the slope is the wave propagation velocity in the medium. A nonzero time intercept 
is the systematic error, and it can be removed from the data set before inversion. 

Accidental Errors 

Random errors in travel times are often associated with the determination of first 
arrivals. Accidental errors can be detected on average velocity plots. The average 
velocity for a ray is computed as the Pythagorean distance between the source 
and the receiver divided by the measured travel time. 

Outliers 

Gross measurement errors can be identified in average velocity plots and corre- 
spond to points that deviate few standard deviations away from the mean value. 
Obvious outliers should be removed from the data set. An equation is lost in 
y = h .  x, but the solution becomes more robust. - - 

Case History: Kosciusko Bridge Pier 

Tomographic data were obtained for a massive concrete pier underneath the 
Kosciusko bridge in New York City, under very noisy operating conditions. The 
cross-section of the pier and the location of sources and receivers are shown in 
Figure 11.3a. Travel time and mean ray velocity are plotted versus ray length in 
Figures 11.3b and c. A systematic triggering error, accidental errors, and outliers 
are evident. 
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Sources 
0 Receivers 

Ray length [m] 

Figure 113 Kosciusko bridge pier - New York. Inspecting the data for systematic and 
accidental errors: (a) test setup; (b) systematic errors become evident in the travel time 
versus ray length plot; (c) average velocity versus travel length (after systematic error 
removal). These measurements were obtained under high ambient noise 
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1 1.4.2 Infer Outstanding Characteristics 
of the Solution gat' 

A glimpse at the characteristics of the  solution^'""", including general background 
characteristics and the presence of anomalies, can be gained by plotting projections 
of ray-average velocities versus position or direction. The compilation of all pro- 
jections forms a 3D array called a sinogram; in parallel projections, the 3D array 
consists of the measured value vs. the projection direction and the sensor position. 
Anomalies that do not detectably affect projections or sinograms cannot be inverted. 

Case History: Korean Tunnel 

A cross-hole geotomographic study was conducted to detect a tunnel in Korea. 
Travel times were measured between two parallel boreholes. Measurements were 
repeated every 0.2 m for each of seven ensonification angles: +45", +30", + 15", 
0°, -15", -30°, and -45", for a total of M = 1050 measurements (see sketch 
in Figure 11.4a). The ray-average velocity projection in Figure 11.4b shows the 
increase in background velocity with depth. On the other hand the variation of the 
ray-average velocity with ray angle in Figure 1 1 . 4 ~  indicates global anisotropy 
in the host medium. All 1050 measurements are shown - the scatter reflects the 
variation of ray-average velocity with depth identified in Figure 11.4b. 

Case History: Balloon in Air - Transillumination 

A balloon filled with helium was fixed at the center of an instrumented frame 
in air and cross-hole travel time data were obtained using 16 sources mounted 
on one side of the frame, and 16 microphones mounted on the opposite side, 
for a total of M = 256 measurements (Figure 11.5a - the velocity of sound in 
air is 343 mls; the velocity in helium is greater than air; the gas mixture and 
pressure inside the balloon are unknown). The complete sinogram and selected 
ray-average velocity projections or "shadows" are shown in Figures 11.5b and c. 
They clearly denote the high-velocity inclusion. Apparently accidental errors in 
the projections are actually coherent time shifts when all projections are seen 
together in the sinogram. 

1 1.4.3 Hypothesize Physical Models that Can Explain 
the Data 

Data preprocessing should also be implemented to gain information that can be 
used to select the physical model that relates the unknowns 5 to the measured 
data - Y'""" '. 
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Ngure 11.4 Tunnel in Korea: (a) source and receiver locations. Data were generated 
with seven ensonification angles: +4S0, +30", +ISo, 0", -ISo, -30°, -45" (i.e. seven rays 
per source); (b) gradual increase in velocity with depth (ray-average velocity projection 
at +IS0); (c) the effect of anisotropy: ray-average velocity versus ray inclination (Data 
courtesy of Dr R. Rechtien and Dr R. Ballard) 

Case History: Concrete Monolith with Open Crack 

Ultrasound transillumination data were gathered for a concrete monolith with 
an open crack cut across the block (Figure 11.6a). Travel time and ray-average 
velocity are plotted vs. ray length in Figures 11.6b and c. There are two distinct 
trends. Points on the linear trend in Figure 11.6b plot with constant ray-average 
velocity -4700m/s in Figure 11.6~; these points correspond to measurements 
where the source and the receiver are both either above or below the open crack. 
How is energy propagating when the source and the receiver are on opposite sides 
of the crack? Virtually no energy goes across the open crack, and the detected 
signals correspond to wave propagation paths that go around the crack. The extra 
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System parameters: Medium velocity: V me, = 343 d s  
Background medium: Air Inclusion velocity: V hc > V m, 
Inclusion: Helium balloon Inclusion radius: Rim = 0.23 m 

Inclusion coordinates: x inc = 0.75 m and y = 0.75 m 
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Figure 11.5 Large helium balloon in air. Transmission data: (a) test setup; (b) sinogram 
of ray-average velocities; (c) profiles of ray-average velocity help constrain the location 
of the balloon 
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Figure 11.6 Concrete block data: (a) location of sources and receivers; (b) the travel 
time versus ray length plot suggests two definite propagation modes; (c) the average 
velocity versus ray length plot confirms that one mode of propagation takes place through 
a medium of constant velocity. The other trend approaches the constant velocity data as 
the ray length increases (Data courtesy of Ontario Hydro) 

length in the out-of-plane path affects short rays more than long rays, according to 
the Pythagorean relation, and causes the trends observed in Figures 11.6b and c. 

1 1.5 STEP 5: SELECT AN ADEQUATE PHYSICAL MODEL 

The physical model selected to relate the measurements y'""' and the unknown 
parameters x must capture the essential features of the An inappropriate 
model adds model error and hinders the inversion of a meaningful solution. In 
addition, the time required to compute the model is most important if a massive 
forward simulation strategy will be implemented for data inversion. 
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The simplest wave propagation model for travel time tomography is a straight- 
ray and it can be selected when ray theory applies and the spatial variation in 
velocity is small. The entries in the matrix h are computed as the Pythagorean 
length between the intersections of the raywith the pixel boundaries. A sim- 
ple example is shown in Figure 11.7. If the number of pixels is very large, the 
computation of accurate travel lengths loses relevance, and the Pythagorean com- 
putation can be reduced to "touched = 1" and "not touched = 0" (the row-sum 
of h is then matched to the ray length). 

Ray bending in heterogeneous media requires the development of efficient 
ray-tracing algorithms. Ray-tracing is a two-point boundary value problem: the 

- 
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end points of the ray are the known source and receiver positions, and the goal 
is to determine the ray path that satisfies Fennat's principle of minimum travel 
time. Close-form solutions for the ray path can be derived for simple velocity 
fields; an example is summarized in Table 1 1.1. 

Table 11.1 Ray paths in a heterogeneous and anisotropic velocity field 

Velocity field. It is defined as: 
Vertical wave velocity V,: linear with depth q: V,(q) = a + b q 

Constant anisotropy between V, and V,: c,U 
vh (P) 

Elliptical variation of velocity with ray angle q' : V(q, q') = V,(q) - ,&$ 
The a, b, and c parameters define the wave velocity field V(q, q'). 

Ray path: The source and the receiver are at horizontal positions P'~' and P'~', 
and their vertical positions are such that the vertical velocities are V:R' and 
V,'S' respectively. The depth q of the ray at position p'R'cpcp'S' is 

this i's the ray path. 

Travel time. A differential of the ray length "dl" is d l  = dp .J=, where. the 
slope q' of the ray at position p is obtained by differentiating the ray path, 

Finally, the travel time is obtained by numerical integration along the ray path: 

Examples: 

Receiver 

b=5.0 r1 

Distance p [m] Distance p [ml 

Note: Derived using calculus of variation - collaboration with M. Cesare. 
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Diffraction takes place when the wavelength approaches the size of the anoma- 
lies. In this case, full-wave solutions are preferred. Diffraction around low- 
velocity anomalies "heals" the wave front and hinders their tomographic detection 
(Figure 1 1.1 c). 

When diffraction or ray bending take place, the selection of a straight ray model 
for tomographic inversion results in poor quality images due to the amplification 
of model error. 

7 1.6 STEP 6: EXPLORE DIFFERENT INVERSION METHODS 

Invert the data using different inversion methods. Guided by Ockham's criterion, 
attempt to reduce the number of unknowns. Consider the parametric representation 
of the problem and invert the data by forward simulations. Then, explore less 
constrained representations, for example within the framework of matrix-based 
inversion. For repetitive problems, run multiple forward simulations and assemble 
a library of "solved cases" that can be used to identify an initial guess by data 
matching. Do not hesitate to explore other inversion strategies that may result 
from a detailed mathematical analysis of the problem or even heuristic criteria. 
The result should reflect a balance between justifying the data y'"""' (low - 
error norm) and the physical meaningfulness of the solution 5'""". 

1 1.6.1 Heuristic Methods 

Heuristic inversion procedures are demonstrated next for data gathered in tran- 
sillurnination and reflection modes. 

Case History: Steel Pipe in Air - Echolocation 

Echolocation is extensively used by bats and dolphins, and in applications such 
as radar, sonar, and ultrasonic nondestructive material evaluation; the underlying 
physical concepts led to ultrasound imaging in medical diagnosis. Laboratory 
data were gathered using a hollow steel cylinder as an anomaly in air, short sound 
signals were emitted with a speaker and microphones detected the reflections. 
The source and receiver positions for each measurement are the foci of an ellipse 
that constrains the possible location of the reflecting anomaly: the length of the 
string that is used to draw the ellipse is the velocity of the medium times the 
measured travel time. Ellipses for all measurements are shown in Figure 11.8 for 
three different positions of the anomaly. The true location of the anomaly is also 
shown. This is the most rudimentary form of a geophysical technique known as 
migration! The graphical solution readily shows uncertainty in the inversion of 
Et,, (see Solved Problems at the end of this chapter for more details). 
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Transducers 

Figure 11.8 Constraining the position and size of the reflector with ellipses. The foci of 
each ellipse are at the source and the receiver locations for the corresponding measurement 
(along the centerline). Note the enhanced delineation of the first anomaly which is closest 
to the string of transducers (Data courtesy of S. Sloka) 
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Case History: Balloon in Air - Transillumination 

The 16 ray-average velocity projections (Figure 11.5) are back-projected to con- 
strain the location of the high-velocity anomaly following the fuzzy-logic proce- 
dure introduced in Section 10.4 (Implementation Procedure 10.4). The resulting 
image presented in Figure 11.9 clearly denotes the anomaly, which appears elon- 
gated in the direction of prevailing illumination. 

1 1.6.2 Parametric Representation - Successive Forward 
Simulations 

Data for three case histories are inverted next. The first example is the Korean 
tunnel and it is used to invert for the velocity field of the host medium. The 
other two examples address the detection of an anomaly using either reflection 
or transillumination data. 

Case History: Korean Tunnel 

The 1050 measurements in Figure 11.4 are analyzed using the close-form solu- 
tion in Table 11.1. The goal is to identify the parameters of the velocity field 
by successive forward simulations guided by the L, and L, error norms. Four 
possible media are considered: homogeneous-isotropic (a # 0, b = 0, c = 1.0), 
homogeneous-anisotropic (a # 0, b = 0, c # 1.0), vertically heterogeneous and 
isotropic (a # 0, b # 0, c = 1.0), and vertically heterogeneous and anisotropic 
(a # 0, b # 0, c # 1.0). The comparisons between calculated and measured travel 
times and inverted velocity parameters are summarized in Figure 11.10. The 
heterogeneous-anisotropic medium fits the data with the least residual; although 

Figure 11.9 Tomographic study with helium ballon (laboratory data - Figure 11.5). 
Image generated with fuzzy-logic solution 
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Assumed medium a b c Squares error Absolute error 

(a) Homogeneous - isotropic 4510 0 1.00 3.49 2.79 
(b) Homogeneous - anisotropic 4890 0 1.12 2.78 2.35 
(c) Heterogeneous - isotropic 3270 12.0 1.00 2.73 2.42 
(d) Heterogeneous - anisotropic 3560 13.0 1.12 1.62 1.26 

Figure 11.10 Tunnel in Korea - assessing the host medium (refer to Figure 11.4). 
Inversion by successive forward simulations. Assumed model: close-form solution for the 
ray path in vertically heterogeneous, anisotropic media (Table 11.1). Plots show travel 
time versus ray number. (Note the seven data sets for different illumination angles; there 
are N = 1050measurem~nts.) The continuous and dotted lines correspond to measured 
and predicted travel times, respectively 
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this material model has more degrees of freedom, data preprocessing results in 
Figure 1 1.4 clearly support it. 

Case History: Steel Pipe in Air - Echolocation 

The inverse problem in Figure 11.8 is cast in terms of four unknown parameters: 
the inclusion position and size p,, q,,, size R,, and the velocity of the medium 
Vd. A straight ray model is used for forward simulation, and convergence is 
guided with the L, norm. The optimal solution for each of the three tests is 
summarized in Table 1 1.2 (additional insight is gained by analyzing results in the 
solved problem at the end of this chapter). The distance to the anomaly from the 
string of transducers qinc is resolved better than the anomaly position pin, parallel 
to the string of transducers. The anomaly size is poorly resolved, and there is a 
strong interplay between the size R,, and the distance qinc so that the value that 
is resolved best is qinc-L. A careful analysis of the heuristic solution in Figure 
1 1.8 elucidates these observations. 

Table 11.2 Inversion of reflection data by successive forward simulations 

Field setup Solution vmed 

Case 1 Experiment 343 
Inverted (L,) 381 

Case 2 Experiment 343 
Inverted (L,) 385 

Case 3 Experiment 343 
Inverted (b) 389 

Pinc 

0.80 
0.86 

Note: 
Test setups are shown in Figure 11.8. 
Inversions are based on travel times - no additional data. 
Convergence is driven to minimize L, norm. 
Data and model errors enhance the trade-off between q,,,, and RinC. 
The point on the anomaly closest to the line of transducers is (qinc-Rim) away. 

Case History: Anomaly in Air - Transillumination Data 

The parametric representation involves five unknowns: the velocity of the medium 
Vd, and the properties of the inclusion incluQng position p,, and q,, size 4, 
and velocity V,,. A straight-ray forward simulator is used first. Slices of the error 
surfaces obtained with L, , L,, and L, norms are presented in Figure 1 1.1 1. 

Two important observations follow from these results. First, the resolvability 
of the vertical position of the inclusion qinc parallel to the instrumented sides is 
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Figure 11.11 Inversion of transmission data by successive forward simulations. Para- 
metric representation. Helium ballon in air (details in Figure 11.5): P,, %,,, kc, V,, 
V,. Slices of the error surface near optimum. (0) L, norm; (a) norm; (0) L, norm. 
(Data courtesy of A. Reed) 

significantly better than for the horizontal position p,. The incorrect location of 
the anomaly in the horizontal direction affects mostly the same rays as the true 
location (this is equivalent to the elongation of the anomaly in the direction of 
illumination observed in Figure 11.9). By contrast, the incorrect q-location affects 
a significant number of rays: originally untouched rays become touched by the 
inclusion, and several of the rays that traverse the inclusion in the true location 
are not touched in the new assumed position. 

Second, L, and L, error surfaces are nonconvex in the q-direction, and inversion 
may diverge from the minimum. Why does this occur? As discussed above, when 
the anomaly is displaced upward, many rays will be affected, either because they 
used to traverse the anomaly or because they did not. But if the anomaly is 
considered totally outside the region, only those rays that traverse the anomaly 
in its true position contribute to the residual, and the total misfit measured by the 
L, and L2 norms decreases. However, the L, norm is only concerned with the 
worst residual for any ray, so it remains convex. This con f i i s  that the L, norm 
is insensitive to uneven information density, as noted in Section 8.3. 

The minimum value of the error surface is a measure of model and data errors 
(Section 8.6). Errors raise the error surface, reduce convergence gradients, round 
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the error surface near the minimum, and hinder the unequivocal identification of 
the unknowns. Data noise may also cause local minima. 

The straight-ray model predicts a significantly larger inclusion size 
(Figure 11.1 1) because the inclusion is a high-velocity anomaly and acts as a 
divergent lens. The inclusion size is correctly predicted with curved rays (not 
presented here). 

7 1.6.3 Matrix-based Inversion 

Case History: Balloon in Air - Transillumination 

The data are inverted using the regularized least-squares solution. The selected 
regularization criterion is the minimization of variability. Therefore, the regular- 
ization matrix is constructed with the Laplacian kernel and imaginary boundary 
points satisfy zero gradient across the boundary. Results for different regulariza- 
tion coefficients A are summarized in Figure 11.12. To facilitate the comparison, 
tomograms are thresholded at a mean measured velocity of 370 mls. The follow- 
ing observations can be made: 

Normalized errors (Fmea" - y~just ' ) /~measz decrease towards zero when the 
inversion is underregularized (lowA). Therefore, the data are better justified 
when A is low. 

The spread in pixel values is small when a smoothness criterion is imposed 
and the inversion becomes overregularized (highA). Eventually, a featureless 
image is obtained when a very high regularization coefficient is used. 

Data and model errors are high. (Results shown in the figure are computed 
with straight rays.) The spread in prediction errors remains f 1% even as the 
problem becomes ill-conditioned for low A values. 

Clearly, the inversion cannot be data-driven only. Instead, the characteristics of 
the solution must be taken into consideration as well. 

1 1.6.4 Investigate Other Inversion Methods 

Physical insight and mathematical analysis may help identify exceptional inver- 
sion strategies besides those explored in this book. The solution of tomographic 
imaging in the frequency domain using the Fourier slice theorem is an excellent 
example (Section 10.1). Its extension to the diffraction regime provides further 
evidence of the benefits that insightful inversion approaches can have when 
combined with a detailed analysis of the problem (Fourier diffraction theorem). 
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Figure 11.12 Regularized least squares solution -helium ballon. Tomograms are thresh- 
olded at 370 mls. Notice the trade-off between data justification (ei histogram) and image 
quality (histogram of pixel values and tomograrns) 
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7 7.7 STEP 7: ANALYZE THE FINAL SOLUTION 

Inverse problem solving may appear simple at first glance, but there are plenty 
of potential pitfalls along the way. The solution may be completely wrong even 
when the data y'""' are well justified and the residuals are small. Indeed, this 
is very likely t6e case in ill-conditioned and underregularized problems. Remain 
skeptical! 

Reanalyze the procedure that was followed to obtain the measurements: did you 
measure what you think you measured, or are measurements determined by the 
measurement system (instrumentation and distribution of information density)? 
Reassess the underlying physical processes assumed for inversion in light of the 
results that were obtained. Consider all information at your disposal. 

Plot the solution estimate against the following vectors: column-sums 
lT h indicative of information content, row-sums hPg .1 indicative of systematic - 
error propagation, and row-sums Epg I indicative of accidental error magnifi- 
cation. Scrutinize any correlationxn the case of tomographic images, no clear 
correlation should be observed between tomograms in Figure 11.12 and the 2D 
plots in Figure 1 1.2. 

Finally, the well-solved inverse problem can convey unprecedented infor- 
mation, from subatomic phenomena, to the core of the earth and distant galaxies. 
In all cases, the physics of the problem rather than numerical or computer nuances 
should lead the way. 

71.8 SUMMARY 

Inverse problem solving may appear deceptively simple at first; however, there 
are plenty of traps along the way. To stay on course, retain a clear understanding 
of the problem at all times and stay in touch with its physical reality. 

Successful inverse problem solving starts before data collection. The following 
steps provide a robust framework for the solution of inverse problems: 

1. Analyze the problem. Develop an acute understanding of the underlying 
physical processes and constraints, measurement and transducer-related 
issues and inherent inversion difficulties. Establish clear and realizable 
expectations and goals. 

2. Pay close attention to experimental design. The viability of a solution is 
determined at this stage. Design the distribution of measurements to attain a 
proper coverage of the solution space, and select transducer and electronics 
to gather high-quality data. 



SOLVED PROBLEMS 339 

3. Gather high-quality data. 

4. Preprocess the data to assess their quality, to gain a glimpse of the solution, 
and to hypothesize physical models. Data preprocessing permits identifi- 
cation and removal of obvious outliers and provides valuable information 
that is used to guide and stabilize the inversion. 

5 .  Select an adequate physical model that properly captures all essential 
aspects of the problem. Fast model computation is crucial if the inverse 
problem is solved by successive forward simulations. 

6. Invert the data using different inversion methods. Consider a parametric 
representation of the problem combined with successive forward simula- 
tions, as well as less constrained discrete representations in the context of 
matrix-based inversion strategies. Do not hesitate to explore other inver- 
sion strategies that may result from a detailed mathematical analysis of the 
problem or heuristic criteria. 

7. Analyze the physical meaning of the solution. 

Discrete signal processing and inverse problem solving combine with today's 
digital technology to create exceptional opportunities for the development of 
previously unthinkable engineering solutions and to probe unsolved scientific 
questions with innovative approaches. Just . . . image! 

SOLVED PROBLEMS 

P1l.l Study with simulated transmission data: parametric representation. Con- 
sider the helium balloon problem in Figure 11.5. Simulate noiseless data 
assuming a straight-ray propagation model. Then, explore the error sur- 
faces corresponding to L,, L, and L, error norms. 
Solution: Assumed model parameters: velocity of the host medium V,,, = 
343m/s, velocity of the helium balloon V,, =410m/s, radius of the 
balloon Kn, = 0.23 m, and the coordinates of the balloon p, = 0.75 m 
and hc = 0.75 m. Travel times are computed. Then, the simulated travel 
times are inverted as if they have been measured t'meas'. Slices of the 
error surfaces across optimum are generated as follows: (1) perturb one 
model parameter at the time; (2) compute the travel time t[Fd> and the 
residual ei = (t:me"s' - for all N rays, and (4) evaluate the norm 
of the residual. Results are plotted next (L, and L, norms are divided by 
the number of rays N to obtain the "average residual error per ray"): 
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Results allow the following observations to be drawn (compare to 
Figure 1 1.1 1 - review text): 

The cross-section of the error surface along different variables shows 
different gradients. The L, norm presents the highest gradients for all 
five parameters. In the absence of model and measurement error, all 
norms reach zero at the optimum. 

The velocity of the host medium affects all rays, and for most of their 
length. Hence, the convergence of the background velocity is very steep. 



SOLVED PROBLEMS 341 

The resolvability of the vertical position of the inclusion q,, parallel to 
the instrumented boreholes is significantly better than for the horizontal 
position p,,. The incorrect location of the anomaly in the horizontal 
direction mostly affects the same rays when the inclusion is horizon- 
tally shifted. By contrast, the incorrect q-location affects a significant 
number of rays. 

The striking feature is that the L, and L, error surfaces are nonconvex. 
This is critical to inversion because algorithms may converge to local 
minima, thus rendering inadequate tomographic images (see discussion 
in text). 

Repeat the exercise adding systematic and then accidental errors, and 
outliers to the "measurements". 

P11.2 Study with simulated reflection data: parametric representation. Recall 
the reflection problem in Figure 11.8. Simulate noiseless data for the 
following test configurations, assuming a straight-ray propagation model, 
and explore the L, error surface in each case. 

Setup 1 Setup 2 

Source and 
receiver 

Source Receiver 

9 
Receiver 

Solution: Travel times are computed by identifying the point on the reflect- 
ing surface that renders the minimum travel time. It can be shown that the 
reflection point is approximately located at an angle a x (a, + a2)/2 (see 
sketch above). The L,-norm error surface is studied near the optimum, 
following the methodology in Problem P1l.l .  Slices of the error surfaces 
are shown next: 
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p-inclusion [m] q-inclusion [m] R-inclusion [m] 

Velocity medium [mls] q-inclusion [m] 

Results indicate that there is no major difference in invertibility given the 
data from the different field test setups. The invertibility of the size of the 
anomaly is poor compared to the position of the anomaly. Furthermore, 
there is a strong interplay between the size R, and the depth q, of the 
anomaly, as shown in the last figure. Therefore, it is difficult to conclude 
using travel time alone whether the reflector is a distant large anomaly or 
a closer anomaly of smaller size. The value that is best resolved is the 
distance from the line of transducers to the closest point in the anomaly, 
q, - Kc. Compare these results and observations and those presented in 
Table 11.2 and related text. 

A DDlTlONA L PROBLEMS 

P11.3 Graphical solution. Back-project the average velocity shadows plotted in 
Figure 11.5 to delineate the position of the helium balloon. 

P11.4 Transformation matrix. Complete the matrix of travel lengths in 
Figure 1 1.7. 

P11.5 Attenuation tomography. Express the attenuation relation in standard 
matrix form so that the field of material attenuation can be inverted from 
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a set of amplitude measurements (correct measurements for geometric 
spreading first). 

Attenuation equation: A(k) = A, . (:). . e-'.h 

P11.6 Experimental design. Design a tomographic experiment to identify anoma- 
lies in a block size 2 m  x 2m. Expect a wave velocity between 4000 
and 5000 mfs. Follow the step-by-step procedure outlined in this chapter; 
simulate data and explore different simulation strategies. 

P11.7 Application of tomographic imaging. Travel time data are gathered for 
three different locations of a single helium balloon in air. A total of 49 
measurements are obtained in each case with seven sources and seven 
receivers (Table P1l.l). 

Preprocess the data to determine the characteristics of the background 
medium. Assess accidental and systematic errors in the data. 

Plot average velocity shadows. Constrain the position of the anomaly 
using the fuzzy logic technique. 

Capture the problem in parametric form, and solve by successive for- 
ward simulations. 

Then use a pixel-based representation and solve with LSS, DLSS, RLSS, 
and SVDS. Identify optimal damping and regularization coefficients 
and the optimal number of singular values. Add an initial guess obtained 
from previous studies. 

7 
Swrccs Receivers 

Hclium balloon 

L 

Background 
medium: Air f 



STRATEGY FOR INVERSE PROBLEM SOLVING 

Table P1l.l Travel time tomographic data for the imaging of a helium ballon 

Source positions [m] Receiver positions [m] Travel times [ms] 

P 9 P 4 Case l Case 2 Case 3 

0 0.0762 
0 0.0762 
0 0.0762 
0 0.0762 
0 0.0762 
0 0.0762 
0 0.0762 
0 0.3048 
0 0.0348 
0 0.3048 
0 0.3048 
0 0.3048 
0 0.3048 
0 0.3048 
0 0.5334 
0 0.5334 
0 0.5334 
0 0.5334 
0 0.5334 
0 0.5334 
0 0.5334 
0 0.7620 
0 0.7620 
0 0.7620 
0 0.7620 
0 0.7620 
0 0.7620 
0 0.7620 
0 0.9906 
0 0.9906 
0 0.9906 
0 0.9906 
0 0.9906 
0 0.9906 
0 0.9906 
0 1.2190 
0 1.2190 
0 1.2190 
0 1.2190 
Source positions [m] 

1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
1.5320 
Receiver po! 

0.0762 
0.3048 
0.5334 
0.7620 
0.9906 
1.2190 
1.4480 
0.0762 
0.3048 
0.5334 
0.7620 
0.9906 
1.2190 
1.4480 
0.0762 
0.3048 
0.5334 
0.7620 
0.9906 
1.2190 
1.4480 
0.0762 
0.3048 
0.5334 
0.7620 
0.9906 
1.2190 
1.4480 
0.0762 
0.3048 
0.5334 
0.7620 
0.9906 
1.2190 
1.4480 
0.0762 
0.3048 
0.5334 
0.7620 

ritions [m] 

4.52 
4.56 
4.58 
4.74 
5.06 
5.50 
5.90 
4.54 
4.30 
4.18 
4.32 
4.60 
5.00 
5.56 
4.50 
4.24 
4.12 
4.28 
4.54 
4.82 
5.24 
4.62 
4.38 
4.24 
4.36 
4.46 
4.62 
4.90 
4.92 
4.68 
4.56 
4.52 
4.48 
4.50 
4.60 
5.32 
5.08 
4.92 
4.70 

Travel times [ms] 

P 4 P 4 Case 1 Case 2 Case 3 
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P11.8 Application: gravity anomalies. Consider the problem of the local gravity 
field caused by a 0.5 m3 gold nugget cube hidden 1.5 munder a sandy beach. 

Study the problem. Evaluate its physical characteristics, measurement 
issues, transducer difficulties. 

Design the experiment to gather adequate data, consider the spatial and 
temporal distribution of data and procedures to obtain high-quality data. 

Simulate data for the gravity anomaly (search for Bouguer equations). 

Develop versatile and insightful strategies for data preprocessing to gain 
information about the data (including biases, error level, outliers) and 
a priori characteristics of the solution. 

Identify the most convenient inversion method, include if possible reg- 
ularization criteria and other additional information. 

Prepare guidelines for the physical interpretation of the final results. 

P11.8 Application: strategy for inverse problem solving in yourjeld of interest. 
Consider a problem in your field of interest and approach its solution as 
follows: 

Analyze the problem in detail: physical processes and constraints, mea- 
surement and transducer-related issues. Establish clear goals. 

Design the experiment. Include: transducers, electronics, and the tem- 
poral andlor spatial distribution of measurements. Identify realizable 
and economically feasible configurations that provide the best possible 
spatial coverage. 

Gather high-quality data. If you do not have access to data yet, simulate 
data with a realistic model. Explore the effect of data errors by adding 
a constant shift, random noise, and outliers. 

Develop insightful preprocessing strategies to assess data quality, to 
gain a glimpse of the solution, and to hypothesize physical models. 

Select an adequate physical model that properly captures all essential 
aspects of the problem. Fast model computation is crucial if the inverse 
problem is solved by successive forward simulations. 

Invert the data using difSerent problem representations and inversion 
methods. Explore other inversion strategies that may result from a 
detailed mathematical analysis of the problem or heuristic criteria. 

Identify guidelines for the physical interpretation of the solution. 
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symmetric matrix 22 
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system identification 2, 9, 88, 95,219 
systematic error 271, 322 

tail-reverse 94, 147, 169 
Taylor expansion 227, 267 
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tide 12 
TiMonov-Miller 256 (see regularization) 
time domain 51 
time invariance 55 
time-varying system 204 
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truncation 121 
Tukey 11, 112 
two-dimensional Fourier transform 127, 133 
two-sided Fourier transform 115, 149, 180 
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window 121, 188 


