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Preface

The purpose of this book is to introduce proceduresfor the analysis of signals
and for the solution of inverse problemsin engineeringand science. Theliterature
on these subjects seldom combines both; however, signal processing and sys-
tem analysis are intimately interconnectedin all rea applications. Furthermore,
many mathematical techniquesare common to both signal processingand inverse
problem solving.

Signals and inverse praoblems are captured in discrete form. The discrete rep-
resentation is compatiblewith current instrumentationand computer technology,
and bringsboth signal processing and inverse problem solving to the same math-
ematical framework of arrays.

Publications on signal processing and inverse problem solving tend to be
mathematically involved. This is an introductory book. Its depth and breadth
reflect our wish to present clearly and concisely the essential concepts that
underlie the most useful procedures readers can implement to address their
needs.

Equations and agorithms are introduced in a conceptual manner, often fol-
lowing logical rather than formal mathematical derivations. The mathematicaly
minded or the computer programmer will readily identify analytical derivationsor
computer-efficientimplementations. Our intent isto highlight the intuitive nature
of procedures and to emphasize the physical interpretation of all solutions.

The information presented in the text is reviewed in pardlel formats. The
numerous figures are designed to facilitate the understanding of main concepts.
Step-by-step implementation procedures outline computation algorithms. Exam-
plesand solved problemsdemonstratethe application of thoseprocedures.Finaly,
the summary at the end of each chapter highlights the most important ideas and
concepts.

Problem solving in engineering and science is hands-on. As you read each
chapter, consider specific problems of your interest. Identify or ssmulate typical
signals, implement equationsand algorithms, study their potentia and limitations,
search the web for similar implementations, explore creative applications. . .,
and havefun!
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Brief Comments

on Notation

The notation selected in this text is intended to facilitate the interpretation of
operations and the encoding of proceduresin mathematical software. A brief
review of the notation follows:

Letter:
Single-underlinedletter:
Double-underlined |etter:

Capital letter:

Bar over capital letter:
Indices (sequenceof data
pointsin an array):
Indexed letters:
Imaginary component:

Magnitude:
Additiona information:

Point-by-point operations:

"time'™:

o
> 1 =
'x AL 4
R

(lles|

-

> P
e e
= 1=

X
i, k

u, v

X; OF Z;
atjb

la+j-b|
CC<~y>

x;°h

scalar
one-dimensional array or vector
two-dimensional array or matrix

acapital letter is used to represent a
quantity in the frequency domain,
which is complex in most cases; it
could be a scalar or an array
complex conjugate of X

indicesin the time domain
indicesin the frequency domain

a specific value within arrays x or z
j?> = =1 indicates the imaginary
component

+/a? + b2 Pythagoreanlength
superscriptsin angular bracketsare
used to provide additional information
on the quantity

point-by-point product; the operation
is defined between specific elements
in the arrays

the term "'time" designatesthe
independent variable, such as time,
space, or any other independent
parameter
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1

Introduction

This chapter begins with a brief discussion of signals, systems, and the types
of problems encountered in engineering and science. Then, selected applications
are described to begin exploring the potential of signal processing and inverse
problem solving. Exercises at the end of the chapter invite the reader to extend
this preview to other areasof interest, and to gather simple hardwarecomponents
to obtain discrete signalsin different applications.

1.1 SIGNALS, SYSTEMS, AND PROBLEMS

Listen.... Touch.... See...! @r senses detect signals that convey important
information we use for survival. We hear the variation of pressure with time, our
fingersfeel thespatial variationof surfaceroughness,and we seethetime-varying
spatial distribution of color. Clearly, each signal is the variation of a parameter
with respect to one or more independent variables.

We take these stimuli (input signals) and respond accordingly (output signal).
Therefore, each of usis a systemthat transforms an input signal into an output
signal. In fact, our response to a given stimulus reveals important information
about us. Likewise, a time-varying wind load (input signal) acts on a building
(system) causing it to oscillate (output signal), and these oscillationscan be used
to infer the mechanica characteristicsof the building.

A system may transform the input energy into another form of energy. For
example, metals dilate (mechanical output) when heated (thermal input). Most
transducersar e energy-transformingsystems:. accel erometersproducean electrica
output from a mechanical input, and photovoltaic cells convert light energy into
electrical energy.

The input signal, the output signal or the system characteristics may be
unknown. @r level of knowledge permits classifying problemsin engineering

Discreted gnal s and Inverse Problems  J. C. Santamarina and D Fratta
© 2005 John Wiley & Sons, Ltd
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Table 1.1 Forward and inverse problems in engineering and science

PROBLEMSIN ENGINEERING AND SCIENCE

Input signal QOutput signal
put sign: System ’ tput sig

Forward Problems Inver se Problems
System design?® Convolution System identification  Deconvolution
Input:  Known Input:  Known  Input: Known Input:  Unknown

System: Tobedesigned System: Known  System: Unknown System: Known
Output:  Predefined Output: Unknown Output: Known  Output: Known

Classical training Chapters 3-7 Chapters 8-11

2 The system isdesigned to satisfy performance criteria: controlled output for estimated input.

and science, as shown in Table 1.1. Typically, engineers are trained to solve
forward problems. Emphasis has been placed on the design of systemsto satisfy
predefined performancecriteria, based on an estimated design load. Typical exam-
plesinclude the design of areactor or atransportation system. The other form of

forward problemsis estimating the response of a system of known characteristics
given a known input. This second class of forward problemsis a convolution of

the input with the characteristic system response, such as computing the signa

coming out of an amplifier, the flood discharge after a rainfall, or numerica

simulationsin general.

A wide range of scientific problems — by definition — and many engineering
tasks are inverse problems whereby the output is known, but either the input or
the system characteristicsare unknown (Table 1.1). In system identification the
input and output signal sare known, and the task is to determinethe characteristics
of the system. For example, a bone specimen is loaded and its deformation is
measured to determine material properties such as Y oung's modulus and Poisson
ratio. The other type of inverse problemsinvolves the determinationof the input
signal knowing the system characteristics and the output signal. This is caled
deconvolution, as opposed to the forward problem of convolution. In all measure-
ments, the true signatureis computed by deconvol utionwith the characteristicsof
the transducer: the earthquakesignatureis obtained by deconvolvingthe recorded
signal from the characteristicsof the seismograph. | nferring the speed of a vehicle
before collision is another example of deconvolutionin the context of forensic
engineering.



SIGNALS AND SIGNAL PROCESSING - APPLICATION EXAMPLES 3

Many inverse problems are complex and involve partial knowledge of the
system and signals. Hence, it may not be possibleto identify a unique solution.
For example, we are still puzzled by multiple plausible hypothesesrelated to the
extinction of dinosaurs, the catastrophicfailure of Teton dam, and the initiation
of various deadly diseases. Even extensivescrutiny may not render enough infor-
mation to falsify hypotheses, particularly when information may have been lost
in the event itself.

12 SIGNALS AND SIGNAL PROCESSING -
APPLICATION EXAMPLES

Signal processingis an integral part of a wide range of devices used in all areas
of science and technology. The following examplesintroduce common concepts
in signal processing within the contexts of our own daily experiences and lead
us towards the development of devices and proceduresthat can have important
practical impact. Cases include active and passive systems. Other examples are
listed in Table 1.2.

1.2.1 Nondestructive Tesfing by Echolocation (Active)

Echolocation consists of emitting a sound and detecting the reflected signal. The
time difference between sound emission and echo detection is proportional to
the distanceto the reflecting surface. Differences between the frequency content
in the reflected signal with respect to the emitted signal are used to discern
characteristicsof the object such asits size.

Bats and dolphins are able to use echolocation to enhance their ability to
comprehend their surroundings. (People have some echol ocation capability, but
it islessdeveloped becauseof our refined vison.) The sound made by bats varies
among species. Some bats emit a sine sweep signal or chirp like the one shown
in Figure 1.1. This input signal has two important advantages: first, it leads to
improved accuracy in travel time determination, and second, it permits assessing
the size of the potential prey (Chapters 3-7).

Thesametechniqueis used in nondestructiveeval uation methods, from medical
diagnosis to geophysical prospecting for resource identification (Figure 1.2a;
see suggested exercises at the end of this chapter). While the input signal can
resemblethe signal emitted by bats, the frequency content is selected to optimize
the trade-off between penetrationdepth and resolution (Figure t.2b).
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Table1l2 Examplesd signals

Time and spatial variations in one dimension (1 D)

e Acoudtics sonar signals; echolocation by bats and dolphins
e Electrical engineering: signal emitted by a transmission antenna

e Chemisgtry — material science: temperature history in a chemical reaction

e Finance: the stock market historical record

e Medicine: dectrocardiogramand electroencephalogram

Two-dimensional (2D) spatial variations

Agricultural engineering: vegetation, evaporation and infiltration in a watershed
Geography - climatology: surface temperatureand pressure maps, GIS maps
Socioeconomics. world distribution of population density and income
Mechanics- tribology: surface roughness; contact pressure distribution

Physics: AFM image of a polymer surface

Traffic engineering: accident rate at intersectionsacross the city

Three-dimensional (3D) volumetric variations

e Physics porous network in a particulate medium

e Fluid mechanics flow—veocity profile around airplane wing
o Geotechnology: pore fluid pressure undernesth a dam

e Biology: CO, distributionin a bioreactor

Note:

The graphical representation of asignal can be simplified if aplaneor axisof symmetry isidentified.
For example, the 4D variation of subsurfacetemperature in space and timecan be captured as a 2D
signal in depth-time coordinatesif the subsurfaceis horizontally homogeneous.

Amplitude

1 | ] ] |
0 0.0002 0.0004 0.0006 0.0008 0.001

Time[s]

Figure 11 A sine sweep signa. The frequency increases with time

1.2.2 Lisfening and Understanding Emissions (Passive)

Many signals are generated without our direct or explicit involvement. In most
cases, " passive' signalsare unwanted and treated as noise. However, passive sig-
nals when car efully analyzed may provide valuableinformation about the system.
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Signal
E generator Geophones
—e—  [1 I I 1 1
PZINN
Py A
T ;
Small ———
target < Large target >
(a)
Direct arrival From small target From large rarget

T

(b)

Figure 12 Thefregquency swesp sgnd is usad in geophysicd and nondestructiveappli-
cations. Low frequencies are nat reflected by amdl objects, wheress large objects reflect
both low and high frequencies

A stethoscope used by a trained physician to listen to the passive emissions
generated by the heart and the lungs remains a valuable diagnostic technique
200yearsafter itsdevelopment. Forensic investigatorscan analyzethe sound track
recorded when a gun was fired, extract time delays and intensitiescorresponding
to the varioussound reflectionsand constrain thelocation of the sniper. Likewise,
there is information encoded in earthquakes, in changes exhibited by bacterial
communities,in economicindicators, and in thedistributionof air pollution above
a city. We just need to observe and learn how to decode the message.

1.2.3 Feedback and Self-calibration

Organisms are particularly adept at accommodatingto changes. Likewise, adap-
tive systems are engineered to attain optimal vibration control of airplane wings
or to minimizetraffic congestion by meansof intelligent traffic signals.
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Natura or computerizedadaptive/learning systemsincludefeedback, and when
the feedback loop is interrupted, adaptation stops. For example, deaf individuals
(the adaptive system in this example) can learn to speak only when aternative
feedback is provided to counteract their inability to hear themselves or others.
Imagine a visua feedback device that permits trainer and trainee to speak into
a microphone and displays their signals on the screen of an oscilloscope as a
variation of sound pressure versus time: this is the time domain representation
(Chapters 3 and 4). This device may also analyze their signals and show the
amount of energy in different frequencies: this is the frequency domain repre-
sentation (Chapters 5 and 6). Figure 1.3 presents simple sounds in the time and
frequency domains. The trainee's goal is to learn how to emit sounds that match
the time domain traces, using frequency domain information to identify needed
emphasis on either high-pitch notes or low-pitch sounds.

1.2.4 Digital Image Processing

We seldom pause to assess the extent of our natural abilitiesto process signals.
However, when researchersin artificial intelligence began studying vision, they
were confronted with a highly sophisticated process. Only thefact that we do see
stopped researchersfrom concluding that vision as we know it is impossible.

The advent of digital photography has opened important possibilitiesfor awide
range of techniquesthat were not envisioned a generation ago. A digital image
is a matrix of numbers. For example, the pixel value p;; at location (i, j) in a
black-and-whiteimage is a number in a matrix (Figure 1.4). The resolution of
digital imagesis selected to optimizeapplicationneedsand storageconsiderations.
Resolution is restricted by the pixel sizein the computer screen — the grain size
in conventional photographic prints is much smaller.

Captured images are displayed on a screen, processed, analyzed, and stored.
Image processing includes operations such as smoothing and contrasting, edge
detection, and recoloring. Image analysis and data extraction can range from
measuring areas and perimeters of objects to the more advanced task of pattern
recognition. Digital image analyzers are complementary components to a wide
range of devices, such as microscopes, tomographers, and video cameras. These
systems are increasingly being used in engineering and science, from materials
research to automated quality control in manufacturing processes.

1.25 Signals and Noise

Noiseis an unwanted signal superimposed on the signal of interest. Eventualy,
thesignal of interest may becomeindistinguishablewhen the signal-to-noiseratio
is low; yet its presence may till have important consequences on the system
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Figure 14 A gray scaleimage and the sored matrix of pixd vaues

response. For example, it is difficult to recognize the small waves caused by an
earthquakein Chile as they propagate across the Pacific Ocean; however, they
can produce devastating tsunamis when they reach Hawaii or Japan.

Thefirst goa in every data collection exercise must be to reduce the level of
noise that affects measurements. Sometimes, simple*'tricks” in the design of the
experiment can render mgjor improvementsin signal-to-noiseratio. For instance, a
work bench made of a massivemarble dab sitting on rubber pads can be designed
to low-passfilter the mechanical noisein buildings, whereas grounded aluminum
foil wrapped around experimental devicesand instrumentationisan effectivefilter
of electromagnetic noise. Once the signal is stored, a number of postprocessing
techniques are availableto separate signal from noise (Chapters4-6).

73 INVERSE PROBLEMS - APPLICATION EXAMPLES

Thegoal of inverseproblemsolvingistoinfer the unknowninput or the unknown
system characteristics(Table 1.1). Instances of deconvolutionand system identi-
fication are described next. Other examplesin engineering and science are listed
in Table 1.3.

1.3.1 Profilometry (Deconvolution)

Many research and application tasks require proper assessment of surface topog-
raphy, including the following: research on crystal growth, scanning probe
microscopy, study of friction, quality assessment of paints and coatings, light
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Table1l3 Examplesd inverse problems

System identification

Condtitutivemodding: materid propertiesfrom experimentd data
Experimentd research: transducers frequency response from calibration data
Medicine and NDT: tomogrgphicimaging

Earth science: earth's mantle structure from earthquake data

Adronomy: origin of the universe from rate of expanson and redshift
Structura engineering: bridge condition from deformation during load testing

Deconvolution

o Expeimenta ressarch: varidble true time hitory from the meesured time series
o Geophysics detection o gravity anomdy from surface messurements

o Forensic enginering: gunman location from sound recordings in newscasts

e Environmenta monitoring: source characterizationfrom remote measurements

scattering control, rock joints and the stability of rock masses. Measured 1D or
2D surface profilesare analyzed to identify spatial scalesor wavelengthsthat are
important to the problem under consideration (see Chapters 5 and 7).

Consider the case of tire—pavement interaction: the short wavelength rough-
ness is important for friction and hydroplaning, whereas long wavelength com-
ponents affect riding comfort. Furthermore, surface topography also denounces
pavement distress; therefore, optimal pavement management benefits from fre-
guent pavement profilometry that can be effectively implemented by mounting
an accelerometer on the axis of a wheel riding on the pavement. The measured
accelerationvs. distancesignal is theresponse of the wheel —accel erometer system
to the input surface topography. Therefore, the surface topography is obtained
by deconvolving the characteristic response of the wheel —accelerometer system
from the measured signal.

1.3.2 Model Calibration (System identification)

The analysis of systems always takes place within the framework of assumed
models. Hence, biomechanicians interpret the stress—strain response of bio-
logical tissue from the perspective of elasto-visco-plastic constitutive models;
physicists analyze the electronic polarization of molecules assuming a single
degree of freedom system; and structural engineers probe the seismic response
of water tanks using an inverted pendulum model. Each model has associated
model parameters, such as the mass, damping, and spring constant in vibrating
systems.

Model calibration is an inverse problem. It consists of identifying the model
parameters that minimize the difference between the observed system response
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and the model response for the same input. A poor match suggests either an
inappropriatemodel and/or measurement errors. Once calibrated, modelsare used
to represent the system in subsequent analyses.

1.3.3 Tomographic Imaging (System Identification)

Great advancesin noninvasiveimaging technology have revolutionized medical
diagnosisin the twentieth century. Current imaging systemsinclude computerized
axial tomography (CAT) scan, positron emission tomography (PET) scan, and
magneticresonanceimaging (MRI). In these techniques, boundary measurements
obtai ned with transducersplaced on the periphery of the body are mathematicaly
processed to compute internal local values of material parameters. For example,
boundary measurements of total X-ray absorption across the chest are " inverted"
to determine the attenuation at different points within the body, and these local
values are displayed on a screen using a selected color palette; the resulting
pictureis the tomographicimage. By contrast, the classical X-ray plate collapses
the 3D body onto a 2D image that displaysthe cumulativeabsorptionin the body
along each ray path. Similar tomographi ctechniquesare used to explore materials
from the micron scale to the planet scale!

14 HISTORY - DISCRETE MATHEMATICAL
REPRESENTATION

Thefields of signal processing and inverse problem solving are relatively young.
Whilethe needed mathematical tools were availablebeforethe twentieth century,
severa decisive developmentsin the last 100 years stimulated revolutions in
discrete data processing, in particular (Table 1.4): consumer electronics (1920s),
digital processing (1940s), computers(1960s), and single-chipdigital signal pro-
cessors (1980s).

The scope of this book is restricted to the analysis of discrete signals and
to the solution of inverse problems that are expressed in discrete form. Con-
sequently, classical definitionsin continuous form are restated in discrete form
(e.g. impulse - Chapter 3), operationsthat integratethe product of two functions
become matrix multiplications(e.g. cross-correlation— Chapter 4), and integrals
arereplaced by summations(e.g. Fourier transform- Chapter 5). While the anal-
ysis of discrete data can be more intuitive than the mathematics of continuous
functions, peculiar effects arise in discrete data analysis and must be carefully
understood to avoid misinterpretations.
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Table14 Brief higtory of discretesignals and inverse problem solving

Year

Event

1300

1800s

1910s

1920s

1930s
1940s

1950s

1960s

1970s

1980s

1990s

The philosopher and theologian W. Ockham states the rule of parsmony:
" Plurality should not be assumed without necessity."

The main themes are thermodynamics, mechanics, hydrodynamics, acoustics,
and el ectromagnetics; their solution requires new mathematical tools and con-
cepts. J. B. J Fourier (1768—1830) uses the representation of a function as a
seriesof sinusoidsto solve heat flow problems. J. M. C. Duhamel (1797-1872)
uses convolution to solve the problem of heat conduction with time-varying
boundary conditions. V. Volterra (1860—1940) investigates on integral equa-
tions. Anadog recordersare invented at the end of the century

I. Fredholm introduces the concept of generalized inverse for an integra
operator (1903). Generalizedinversesfor differential operatorsare implied in
D. Hilbert’s discussion of generalized Green's functions (1904)

E. H. Moore presents the generalized inverseof matrices (1920). Thefield of
consumer electronicsstarts with the saledf radiosand electronic phonographs.
Sound is added to motion pictures

Car radiosand portable radios become common

N. Wiener develops statistical methods for linear filters and prediction. Cor-
relation techniques devel op to recover wesk signalsin the presence of noise.
The Singleton's digitd correlator rapidly performs storage, multiplication,and
integration by a binary digital process (1949)

Thetransistorisinvented by J. Bardeen, W. Brattain, and W. Shockley (1947—
48 - Nobe Prize in 1956). Sony brings it to mass production and develops
pocket-sizetransistor radio. R. Penrose shows that the Moore's inverseis the
unique retri X satisfying four matrix equations(1955). Shannon theorizesthat
amessage can be encoded and transmittedin "'bits" (1956)

Computersemergeand thereis arapid growth in the new field of digital signal
processing. Integrated circuits lead to new technology. The development of
signal processingstarts having a strong impact in consumer electronicsrelated
to voice, music and images. J. Tukey and J. Cooley introduce the fast Fourier
transform agorithm (1965)

Microprocessorsare devel oped (1971) and the size of computersdecreasesto a
chip. Consumer electronicsbegin their transitionto digital. A. M. Cormack and
G. Hounsfield receive the Nobel prizein 1979 for computerized tomography

CD playersareintroduced in 1982. Record players vanish from the market in
lessthan adecade. Texas|nstrument brings single-chip digital signal processor
into mass production. Commercia cellular phone service starts

Very few analog consumer electronicsremain in the market. Thereis a rapid
growth in digital memory and storage capabilities




12 INTRODUCTION

75 SUMMARY

e Signal characterization,decoding, and interpretationare important components
of engineering and science tasks.

e There are forward problems (system design and response computation) and
inverse problems (system identification and input estimation).

e The fields of discrete signal processing and inverse problem solving are rel-
aively new. Their growth has been intimately associated with revolutionsin
computer technology and digital electronics.

e Today, discrete signal processing and inverse problem-solving techniques
impact all aspects of daily life, with countless examples in engineering and
science.

e \What about the future? Just, imagine. .. !

SOLVED PROBLEMIS

P1.I Ocean tidesare caused by changesin the gravitational field due to the rota-
tion of the Earth and its relative position with respect to the Moon and the
Sun. A typical dataset is presented in Figure L1 (For moreinformationand

» 28days {
Full Moon New Moon Full Moon
n 122 2/6
0.91 L 14 days | 14 days |
' | - > ™
0.84 Difference in
0.74 maximum tides ;
"é‘ 0.64 |
= 051
® a4/ ;
-E: 0.34
8 0.2
§ 0.1
0 1 :
_014 1day Last Quarter First Quarter . Last Quarter
02 1/15 1/29 213
V172004 /672004 L/IL/2004 171672004 1/21/2004 1/26/2004 1/31/2004 2/5/2004 2/10/2004 2/1572004
Date

Figure P1.l Tide levels at the Honolulu Harbor from January 1 to February 15, 2004.
The sampling interval is one hour
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Weekly NYSE value at closing

SOLVED PROBLEMS 13

data, visit NOAA’s Center for Operational Oceanographic Products and
Services on the Internet.) Determine the main periodicities in the record
and identify the underlying physical phenomenathat cause them.

Solution: The beat function observed in Figure P1.l is the result of con-
current events with three different periods. The one-day period is caused
by the daily rotation of the Exth and the gravitational pull of the Moon
on ocean waters. The 14-day period is related to the alignment of the Sun
and the Moon, causing maximum high tides and minimum low tides for
the New Moon and the opposite for the Full Moon. The 28-day period
is caused by the completion of the Moon cycle. The different periods are
shownin FigureP1.1.

Many have attempted to identify trends in the stock market in order to
improve trading decisions. Consider extrapolating simple polynomial fit-
tings to the New York Stock Exchange (NY SE) weekly closing values. Fit
polynomialsorder 5 and 10 to data from January 1990 until June 2003
(Figure 1.2). Then, extrapolate to predict stock market trends until June
2004. Compare predictions against observed values. Conclude about the
potential use of this techniqueto become a successful stockbroker.
Solution: The polynomial trends are fitted by minimizing the square error
and are superimposed on Figure P1.2. While polynomialsfit past datawell,
the prediction of future trading is poor. Regression methods are analyzed
in Chapters8 and 9.

10" order
polynomial

1.5-10%~

1-10* 4

:

0 100 200 300 400 500 600 700 800
Number of veeks after January 1%, 1990

Figure P1.2 Evolutionof the NYSE weekl y closing values (data downloaded from URL:
http:/lyahoo.com/finance)
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INTRODUCTION

ADDITIONAL PROBLEMS

P1.3 Identify important signals in your field of interest. Briefly describe their

P14
P1.5

P16

P1.7

P1.8

characteristics.
Identify and describeinverse problemsin your field of interest.

Digital image processing. Identify an application of digital image process-
ing in your area of interest, list the information to be extracted from the
image, required resolutionand image size. Then, visit a video camerashop
and a computer store to learn about the hardware. Verify system compat-
ibility. Study specificationsto determine the speed of digitization, which
iscritical for some real-timeapplications. Recognize the trade-off between
object size and resol ution; asageneral guideline, the smallest object must be
at least ~3x3 pixelsin size. Then, download public domain digital image
processing software available at multiple sites on the Internet, test their
capabilities with simulated images, and study the underlying mathematical
procedures.

Nondestructive testing: acoustic source. A versatile sourcefor wave prop-
agation studies in the sound range (20 Hz to 20kHz frequency range) can
be built connecting the sound output from your computer through an audio
power amplifier into an old speaker cone. Visit your local computer and
electronic stores and review specifications. Then design the system and
estimateits cost.

Analog-to-digital conversion: storage. Consider a sensing transducer (pho-
tosensor, accelerometer, thermocouple, linear variable differentia trans-
ducer, or piezocrystal) that providesan analog output. Design a system that
digitizes and stores the signal. Search for available components, read cat-
alogs of electronic suppliers, and carefully review specifications. Describe
the meaning of each of thefollowingterms. samplingfrequency per channel,
memory per channel, stacking capabilities, internal noise, preamplification
capabilities,and input impedance. Note: A digital storageoscilloscopeisthe
most versatiledeviceto prototypea monitoring system; most unitsincludea
computer interfaceto download the discrete time seriesfor postprocessing.

Step response; thermal diffusion. Makeacylindrical specimen out of gelatin
(length-to-diameter ratio —2). Insert one thermometer at the center of the
cylinder and place a second thermometer adjacent to the cylinder. Place the
setup inside a refrigerator and keep overnight to homogenize the specimen
a alow temperature. The following morning, removethe setup and expose
to room temperature. Take temperature readings every five minutes until
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the temperaturein both thermometers equal sthe room temperature. Use the
signals gathered with the two thermometers to determine the "'therma
properties” of gelatin given the imposed step-like thermal change.

Music. Design a musical instrument to produce a 2 kHz frequency sound
{e.g. wind, percussion, string). Understand the underlying physical pro-
cesses and develop an analytical mode to predict the resonant frequency
of the instrument. Use the audio capabilitiesin your computer to digitize
the signal and corroborate the frequency content. What is the shape of the
signal? How can you alter the frequency? Whistle to match the frequency
of sound emitted by the instrument; verify the frequency match using the
same monitoring system.
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2

Mathematical
Concepts

The discrete mathematical representation of signals and transformations lends
itself to transparent storage and processing in the form of matrices and arrays.
Additional mathematical tool srequired for theefficientanalysisof discretesignals
and inverse problems include complex numbers and exponentials. A convenient
review of definitions and salient properties invoked in subsequent chapters is
presented next.

2.1 COMPLEX NUMBERS AND EXPONENTIAL
FUNCTIONS

Sinusoidal signals are among the most frequently used functionsin signal pro-
cessing, system analysis, and transformations. Although the manipulation of
sinusoidalsis often cumbersome, operationscan be efficiently implemented with
complex numbers and exponential functions.

2.1.1 Complex Numbers

The amplitude of the response is not sufficient to characterize a system. For
example, if you shake a car with a sinusoidal varying force x(t) =cos(® . t),
the car vibration y(t) will be a sinusoidal, with the same frequency o, and some
amplitude"A". But the peaks of the input and the output time histories will not
occur at the same time. In other words, there will be a phase angle ¢ and the
response will be y(t) = A - cos(w.t — ¢).

Discrete Signals and Inverse Problems 1. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd



18 MATHEMATICAL CONCEPTS

The shifted sinusoid y(t) is equivalent to the sum of a cosine (in-phase) and
a sine (90° out-of-phase). The amplitude of each of these two components is
determined using trigonometric identities:

y=A-cos(w-t—¢)
=[A. cos(p)].cos(®-t) +[A . sin()]-sin(w - t)
(- N, ttnr?

=a-cos(w-t) +b-sin(w-t)

2.1)

Therefore, the amplitudes of the cosine and sine components are (Figure 2.1)
a=A-cos(¢p) (2.2)
b=Asin(¢) (2.3)

Complex numbers facilitate the mathematical representation and solution of
this type of problem. In complex number notation, the signal y(t) is represented
as a construct that captures the two values, aand b:

Y= a+j b corresponds to frequencym 24)
Imaginary A
(out of phase)
b Y=a+j'b
1yl
¢
a o
f“P Real (in phase)
¥l "
b, Y=a-j.b
Equations Y=atj.b Y=a-j'b
b
[y|=+/a%+b? j=tan‘1(;)
a=|Y|.cos() b=|Y|.sin(p)

Figure 21 Complex numbers The graphicd representationd a complex number is a
vector in a complex plane with ared in-phasecomponent and an imaginary out-of-phase
component. A complex number and its conjugate have the same magnitude but opposite
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where the imaginary unit is j2 = —1. The numbers aand b are known as the real
and imaginary parts of the complex number (yet, both are very real numbers!).
The amplitude A and the phase ¢ of the original sinusoid y(t) are recovered as

A=]Y|= Va4 = /Re(Y) + Im(Y)’ 2.5)
b o [Im(Y)
R R

This graphical representation of a complex number is shown in Figure 2.1, where
both rectangular (a* jb) and polar coordinates (A, ¢) are indicated.
The complex conjugate Y of the complex number Y is defined as follows:

Y=a—j-b @7

Figure 2.1 also shows the representation of a complex conjugatein the complex
plane. The amplitude of the complex conjugate is the same as the amplitude of
the original complex number, but the phase angle ¢ has opposite sign.

Mathematical operations with complex numbers are implemented by treating
them as binomials:

addition (a+j-b)+(c+j-d)=(@+c)+j - (b+d) (2.8)
multiplication (a+j-b)-(c+j-d)=(a-c—b-d)+j-(a-d+b-c) (2.9)
The trick required to compute the division of two complex humbersisto leavea

real quantity in the denominator. Thisis achieved by multiplying the numerator
and the denominator by the complex conjugate of the denominator:

(a+j-b) _(a+j-b)-(c—j-d) (a-c+b-d)+j-(-a-d+b-c)
(c+j-d) ~ (c+j-d)-(c—j-d) ~ 2 Td?

division
(2.10)

Operations with complex numbers satisfy the commutative, associative, and dis-
tributiverules.

2.1.2 Exponential Functions

The exponential function is defined by

y=ax (2.11)
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where "d" is a constant. A special exponentia function is the Napierian expo-
nential where a=e=2.718.. .. The exponent x may be complex. Common
operationswith exponential functionsinclude

multiplication €*-e' =¢e**Y (2.12)
division € e (213)
ey
power (e*) =¥ (2.149)
I~ de) du |
derivative dx ~dx© (2.15)
, duy | N
integral f(-d;)e -du=¢e"+cte (2.16)

The importance of exponential functionsis partially alluded to in these expres-
sions. First, they convert multiplicationinto addition (Equations 2.12 and 2.13).
Second, thederivativeof an exponential function isthefunctionitself timesafac-
tor (Equation 2.15); therefore, exponential functions are solutions of differential
equationsof the form dy/dx =y, such as the motion of harmonic oscillators.
In addition, complex exponentials are linked to trigonometric functions, as
captured in Euler's identities,
ei® =cos(p) Tj.sin(e) (2.17)

e ? =cos(p) —j.sn(y) (2.18)
Thus, the following equalities hold (Equations 2.1-2.6):

Y=a+j-b

=Y].[cos(p) Fjsin(¢)] (2.19)
=|Y|.eH*

where a=|Y| - cos(y) and b = |Y| - cos(¢p). From Euler's identity, and for any
integer k,

0™ = [F DT = [cos (2m) +j - sin 2m)]< = 1 (2.20)
and trigonometric periodicity in exponential form becomes

eI (@+2m1) _ o0 (2.21)
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Given: the complex number X and operator H
X =atj.b=|X|.[cos(a) Tj.sin(a)] = |X]| .
H=ctj.d=|H] [cos@®tj.sn@)]=n-e* | XL d
Compute: Y=X.H o p
1) Procedurewith complex numbers: a c
Y=X-H=(a+j-b)-(c+j-d)y=(a-c—b-d)+j-(a-d+b-c)
[X-H|=+/a%.c2+b?.d2+a2-d*+b2.c2  magnitude
8 = tan-! a-d+b-c)

a-c—b-d
2) Procedurein polar notation with magnitude and phase:

X.H=|X|-[cos(e) Tj .sin(e)] . [H] . [cos(B) T - sin(B)]
X.H=|X].H]. [cos(a) T] .sin(a)]- [cos(B) T] - sin(B)]
X-H=[X|.|H|. [cos(x +B)] T-sin(atB)]

3) Procedurewith exponential functions:
X.H=[X|.[H|.e'+®

phase

Figure 22 Multiplication of two complex quantities

2.1.3 Example

The addition and multiplication of two quantities, each with its own magnitude
and phase, are common operations in signal processing and system analysis.
The rectangular representationis more convenient for addition (Equation 2.8)
whereas the exponential notation facilitates multiplication (Equation 2.12). The
multiplication of two complex quantities is demonstrated in Figure 2.2 using
complex, polar, and exponential forms. Note the efficient implementation using
exponentials.

2.2 MATRIX ALGEBRA

A matrix is an arrangement of numbers in columns and rows. A review of
fundamental matrix operationsfollows.

2.2.1 Definitions and Fundamental Operations

The following notation is used to designatethe matrix a by its elements:

al’l e al,N
=| . a; . (2.22)
aM’l eee aM,N

114
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wheretheindex i refersto the row number and variesfrom 1 to M, and k indicates
column number and variesfrom 1 to N, where M and N are integers. Sometimes
it is more convenient to vary i from 0 to M — 1, and k from 0 to N—1. For
example, thisisthe case when thefirst entry refersto zero time or zero frequency.
A matrix a is

e squareif M =N

e real when al its elementsare real numbers

e complex if one or more of its elements are complex numbers

e nonnegativeif al a;; >0

e positiveif al a;, >0

Negative and nonpositive matricesare similarly defined.

The trace of a sguare matrix is the sum of the elementsin the main diagonal,
a;;. The identity matrix I is a square matrix where all its elements are zeros,
except for the elementsin the main diagonal, which are ones: I, = 1.0 if i =k,

elsel,, = 0. Typical operationswith matricesinclude the following:

e addition: c=a+b Cix =2, +biy (2.23)

e subtraction: d=a—b dix =2 — by (2.24)

e scalar multiplication : e=a-a g =% 2, (2.25)

e matrix multiplication: f=a-b fo=2 a, by, (2.26)
P

Note that matrix multiplication is a summation of binary products; this type of
expressionis frequently encounteredin signal processing (Chapter 4).
The transpose gT of the matrix a is obtained by switching columns and rows:

a.;inaisequa toa, ina’ (2.27)

A square matrix a is symmetric if it is identical to its transpose (a¥ =a or
a;, = a;). The matrices (27 -a) and (a-2") are square and symmetric for—any
matrix a.

The Hermitian adjoint a® of amatrix is the transpose of the complex conjugates
of the individual elements. For example, if anelementin aisa, = b+j.c, the
correspondingelement in the Hermitian adjoint isa, ; = b—j-c. A square matrix
is Hermitian if it isidentical to its Hermitian adjoint; the real symmetric matrix
is aspecial case.
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The matrix g"' is the inverse of the square matrix a if and only if

—Q -1

1
un:
e
f
1]

A matrix is said to be orthogonal if gT —1. then

il
1LY

1Y)
e

il
1) b

23

(2.28)

(2.29)

Finally, amatrix is called unitary if the Hermitian adjoint is equal to theinverse,

al=al

The determinant of the square matrix a denoted as |a| is the number whose

computation can be defined in recursive form as

la| = 3 (=1)** - a,. |minor

(2.30)

wherethe minor is the submatrix obtai ned by suppressing row i and columnk. The
determinant of asingleelementisthevalueof theelementitsalf. If the determinant
of the matrix is zero, the matrix is singular and noninvertible. Conversely, if

|a| # O the matrix is invertible.
Thefollowing relations hold:

(2.31)
(2.32)
(233)
(2.34)
(2.35)

(2.36)

(2.37)
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A row in a matrix is linearly independent if it cannot be computed as a linear
combination of the other rows. The same applies to the columnsin the matrix.
The rank of a matrix r[a] is the number of linearly independent rows or columns
in a. If rfla] =S, then thereis a square submatrix size S X S whose determinantis
nonzero.

2.2.2 Matrices as Transformations

So far, matrices have been described as isolated rectangular arrays of red or
complex numbers. Consider now the matrix a as an operator that transforms an
"input™ vector x into an "output" vector y:

y= (2.38)

(11
1>

Computationdly, the transformation y =a-x is a linear combination of the
columns of a according to the entriesin x.

If matrix a NxN is noninvertible, there will be vectors x that are norma to
the columns-of a and map to y =a - x =0; those vectors are the subspace of x
called the null space (Figure 2.3). On the other hand, not al the space of y is
reachable from x; the range of a is the subset of the space of y reachable by
the transformation (Equation 2.38). The fact that a is noninvertibleindicatesthat
some of the columnsin a are linearly dependent, and they will not contribute
to the dimensionality of-the range. Hence, the dimension of the range is the
rank rfa]:

dim(range) = rfa] (2.39)

It follows from these definitions that the sum of the dimensions of the null
space and the rangeis N:

dim(null space) * dim(range) = N (2.40)

If a isinvertible, y=a-x=40 only if x=0, and the dimension of the null
space is zero. For a simple visualizationof these concepts, consider the transfor-
mation matrix a = [(1, 0, 0), (0, 1,0), (0, 0, 0)], with rank r[a] = 2. All vectors
x=(0,0,x) map toy=a-x=(0,0,0); therefore, they are in the null space of
the transformation. On the other hand, only vectorsy = (y,, y,, 0) are reachable
by the transformation; thisis the range.
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Space o alf vectors x Spaced all vectors y
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Figure 23 Definitionof null spaceand rangeof atransformationa [N x N]. Thedimen-
son of therangeis equd to therank of a. Thedimensiondf the range plus the dimension
of the null spaceisequal to N

The transformation matrix a is positive definite if

XT ‘a-x> 0 (241)

e

for all nonzerovectorsx. If xT.a-x > 0 then a ispositivesemidefinite. Typically,
the matrix a is positive definite when the elementsalong the main diagonal of a
are positive and when they are also the largest elementsin the matrix.

2.2.3 Eigenvalues and Eigenvectors

If aisasquare matrix, and y is obtained either as matrix multiplicationa - x or
asscalar multiplication Ax,

(2.42)

I<
Il
s
I3
Il

>
154
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then x is an eigenvector of a and A is its corresponding eigenvalue. The eigen-
values of a are obtained by solving the polynomial

lg—A-;' =0 (2.43)

where] is the identity matrix. For each eigenvalue A, the corresponding eigen-
vector —59 is computed by replacing A, in Equation 2.42,

(_g_—)tp-g) %,=0 (2.44)

where 0 is an array of zeros. The eigenvectors corresponding to distinct eigen-
values of a Hermitian or symmetric matrix are orthogonal vectors; that is, the dot
product is equal to zero. The eigenvalues of a Hermitian or symmetric matrix
are real. The eigenvalues of a symmetric, positive-definitematrix are real and
positive A, > 0, and the matrix isinvertible. Last, for any given matrixa [M x N]J,
the eigenvalues of (aTa) and (a'a”) are nonnegative and their nonzero values
are equal. T -

2.24 Matrix Decomposition

The solution of systems of equations, including matrix inversion, can be more
effectively implemented by decomposing the matrix into factors.

Eigen Decomposition

A invertible square matrix a with distinct eigenvalues can be expressed as the
multiplicationof three matrices

-1 (2.45)

1Y
(>

(%<

where the columns of X are the eigenvectorsof a, and A is a diagonal matrix
that contains the eigenvalues of a. The order of-the eigenvectors in matrix X
must be the same as the order of the eigenvaluesin matrix A. The inverse of a
is (Equation 2.31) o -

e (@ax) = (ax) K =x At st e
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The elementsin the diagonal matrix é“ are theinverse of the eigenvalues 1/A;.
If a is symmetric, then é“ = §T.

Singular Value Decomposition (SVD)
Any real matrix a [IMxN] with M > N, and rank r < N, can be expressed as

T (2.47)

s
il
lic
IS
<

where
U[M xM] Orthogonal matrix
Its columns areagenvectorsof a-aT (in order asin A)
Vectors U,. .. u, span therange of a a
A[MXN] Diagonal matrix A;, =0 fori # Kk

Values A;; = A; are the singular valuesin descending order
A; are the nonnegative square root of eigenvaluesof a-a’

ora’-a
Singular values A, > ... A, > 0 and singular values
Ag=... =A=0

v [N x N]  Orthogona matrix
Its columns are eigenvectorsof gT -a (insameorder asA in A)
The null space of a is spanned by vectors v,,,. .. vy

For a real, the resulting three matricesare also real. The SVD is generalized to
complex matrices using the Hermitian instead of the transpose. The method is
equally applicable when the size of the matrixisM < N, with proper changesin
indexes.

Other Decompositions

Two efficient algorithms are used to solve systems of equations that involve
square matricesa [N x NJ]. The LU decomposition convertsa into the multiplica-
tion of alower triangular matrix L (L;; = 0if i < j) and an upper triangular matrix
U (U;;=0ifi > j), suchthata = —L- U Furthermore,if the matrix a is symmetric
and postlvedeﬁmte the Cholesky decompositionresultsin a= UT U, whereU
iS upper triangular.
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2.3 DERIVATIVES = CONSTRAINED OPTIMIZATION

A linear function of multiplevariablesf = a, .x, +a, .x, +... can beexpressed
in matrix form as

X
f=a,-x1+a2-x2+...=[a]a2...]-[x2]=gT-§ (2.48)
L]

(Note that for a family of functions f;...fy, the array a becomes matrix g.)
Likewise, the partial derivativesaf/ax; are organized into an array

of
ox. a
of ! !
P f | = l:a2:| =a (2.49)
X —
axz ‘o

The following set of equations facilitates the derivation of explicit solutionsin
optimization problems that are captured in matrix form (Chapter 9):

Ty o

f=a -x = =a (asshown above) (2.50)
f=xs =2 @51)
f=x"-x %:2 X (2.52)
f=x"-ax % =2-a.x for a symmetric (2.53)

In each case, the function is written in explicit form, partid derivatives are
computed, and the result is once again expressed in matrix form.

Given M-measurements y; that depend on N-parametersx,, the partial deriva-
tive dy,/0x, indicatesthe sensitivity of thei-th measurement to the k-th parameter.
The Jacobian matrix isthe arrangementof theM x N partial derivativesin matrix
form. The Jacobian matrix is useful to identify extremaand to guide optimization
agorithms,

The extremum of a function is tested for minimum or maximum with the
Hessian matrix Hes formed with the second derivativesof f(x):

o*f

54
9x; - 0%, (2.54)

HeSi,k =
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The function has a minimum if Hes is positive definite.

The extremum of a function of N-variables f(x,,...,%y) = O subject to
V-congtraintsé (X,, ... ,Xy) = 0 can be obtained using Lagrange multipliersA.
Fird, a new objectivefunction I" is formed,

F(xpyeoonxg)=f(Xpoo o, X)) F A Gy (x50 X))+
+Ay by (X, ..., Xy) (2.55)

that involves N+ V unknowns (X, « e -y XNs A, 00 Ay). These unknowns are
found by solving the following system of N+ V simultaneousequations:

o o . 3;‘91_'_'_ 3,

N— tl -—=0=— A ‘+)l .
equations ax, ox, + A ox; VX

V-equations 0=¢,(x;,-+,Xy) (2.56)

2.4 SUMMARY

Theanaysisof signalsand systems makesextensive use of sinusoidal functions.
The mathematical manipulation of sinusoids is effectively implemented with
complex numbers and exponential functions.

The representationof discrete signalsand transformationsinvolvesarrays and
matrices. The inversionof a transformationimplies matrix inversion. A symmet-
ric, positive-definite matrix is invertible.

FURTHER READING

Golub, G. H,, and Van Loan, C. F. (1989). Matrix Computations. Johns Hopkins University Press,
Baltimore. 642 pages.

Goult, R. J, Hoskins, R. F., Milner, J. A., and Pratt, M. J. (1974). Computational Methods in Linear
Alpebra. John Wiley & Sons, New York. 204 pages.

Horn, R. A, and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press, London.
561 pages.

Press, W. H., Teukolsky, S. A., Betterling, W. T., and Flannery, B. P. (1992). Numerical Recipesin
FORTRAN. The Art of Scientific Computing. CambridgeUniversity Press, New York. 963 pages.

Strang, G. (1980). Linear Algebraand Its Applications. Academic Press, New York. 414 pages.

Trefethen, L. N. and Bau, I, D. (1997). Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, Philadelphia. 361 pages.




30 MATHEMATICAL CONCEPTS
SOLVED PROBLEMS
P2.1 Given two complex numbers A=3-4j and B=3% 3j, compute:

(& Magnitude and phase of A:

Al = [Re (AP + [Im (A)] = 3+ (—4)° = 55 = 5

—atn| PO e[ 2] < —0.9281ad = —53.1°
¢= ReA) | = an| —- | = —0.928rad = —53.

(b) Magnitude and phase of C=A +B:
C=A+B=(3—4j)+B3+3)=6—1j

IC] = /[Re (OO + [Re (O)F + /62 + (1) = v37 = 6.08

¢ =atan [g%%] =atan [%1] =—0.165rad = —946"

(¢c) D=A-B and E = A/B:

D=A-B=(3-4j)(3+3j)
=3.343-3j-4j-3-4j-3j=949)— 12j+12=21-3;
A 3-4j 3-4j 3-3j

B 3+3 3+3j 3-3j
_9-9-12j-12 -3-21j 1 7.

—=—7

9+9 18 6 6

(d D=A.B and E= A/B usding the exponentias:

A =3—-4j=|3-4j elj‘am( 3 ) — Se-0.928i

e
B =3+3j=]3+3j| el"“'““(3) = 4.24¢0785i
D=A.-B= (56—0-9281') . (4_2430-7853') = 21.2e014%

A 5e—0.928;

B= = = Sy = L1817
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P2.2 Given the square matrix a, calculate b= gagT, the determinant of a, the
inversematrix a~',a-a™', and the determinant of a~l.

1]

g:

bea.at|? 3].[2 1]_[22+33 2:143-17_[13 5

2=2:2 =17 913 1|T|1-24+1-3 1-141-1|7|5 2
2 3

’%‘=‘[1 1]‘:2-1-1-3:-1

Inverse: thematrix a isreduced by rowsand the sameoper ationi sperformed
on the identity matrix I:

[ 2 11T 1 0'_I
2=l 1 1|l o 172
- 1 1 oo
i 1f|Lo 1]

[ 1 1117-1

| 1 1| o 1}

[ 1 11[-1 3'_31_1
| 1L —2]°=

et =[] 7] [T 3
S se Bt acd B FI

P2.3 Given matrix b, show that 1/|b| is equal to |l=>"| (Equation 2.37).

_12 3 .. _|-1 15
b—[2 2] by row reduction b —[1 —l]

2 3
2 2
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| -1 15
2 1

_1|=(—1)~(—1)—1~1.5=1~1.5=—0.5

P2.4 Determinethe eigenvaluesand eigenvectorsof matrix

_]2 3
111
Evaluation of eigenvaluesA:

2-1 3
52

2=2)-(1=A)—1-3=2-2A—A+A2=3=A2—3A—1=0

1

—(DEJ(3P—4-1-(-1) 3103
2.1 -2
A, =3.303and A, = -0.303

Solving for theroots: A =

Eigenvector sassociated with eigenvalue A

(g~/\1-;)-51=0

2 3 10
(TR O
2-A, 3 f2-n 3 ] (=]
[ 1 1—A1:|'-’$1—[ 1 1—A1] I:xz,l =0

[(2—3.303)-;(,,1 +3~x2,1i| {—1-303«1,1 +3-x2v1:| o

xl,l + (1 - 3303) - x2’1 xl,l — 2_303 . xl,l

Assuming that x, , = 1 the eigenvector is

X | __]2.303
0] | 1
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Eigenvectorsassociated with eigenvalue A,:

(g—)tz-;)-zﬁo

2 3 1 0
G 3-rls 2w
(2~ A, 3 7. _[2-x 3 1 [x2]
L 1 1—A2] Z‘l—[ 1 I—AZ X2’2 _0

[(2+0.303) - X, ,+3 %, 2303-x,+3 %, | 0
| X+ (140303) %, | | Xip+1.303-x,,

Assuming that x, , = 1 the eigenvector is

'xL2 _ -1.303
| X2 1

ADDITIONAL PROBLEMS

P25 Write the following matrix operationsin the subindex format:
T .

1o
il
-]

neo

-9
i
7

(s
o
N
+

He

P26 Demonstrate:

(@) Operations with complex numbers satisfy commutative, associative,
and distributiverules.

(b) Equality (g-g)‘l =h".a"

(c) Equality (g-lg)TZ_T. T

(d) f=x"-x then

@ Iff=x"ax

[
w
—
=
3

=2-a-x for a symmetric
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P2.7 Compute:

P2.9

(& Given complex numbers X =1 + 3jandH=2-7j,computeY =H.X
using complex numbers, polar notationand exponential notation. Verify
that the three results are identical .

(b) The determinant, eigenvectors, and eigenvaluesof matrices A and B:

4 2 7 6 2 1
A=|3 1 3| and B=|3 7
5 4 4 1 5

(c) Thedeterminantof A . B given

4 2 7 6
A=[|3 1 3 and B=|3
5 4 4 1

-1
(d) The value of x I:g +A. g) ]-gT~¥given
3
1
4

2 1 00 4
a=|[3 2 = 1 0f y=|1| A=10"
B 1 5 0 1 7

Note: This operation is similar to the regularized least square solution
(RLSS) of inverse problems (Chapter 9).

What is the determinant of a triangular matrix (lower or upper triangular)?
What areits eigenvalues?Try 2x 2, 3x 3, and 4x4 matrices. Conclude.

L S\

2NN
W ] -
|

ke

llll'-‘

(=
c o~

Singular value decomposition and image compression. Generatea 128 x 128
pixel image showing a block amplitude 1.0 at the center of the image
amplitude 0.0. This is done by creating a 128 x128 matrix a, assigning
values a,, = 0 for the background and a,, = 1.0 wherever the block is.
Determinethe singular value decompositionof the image a and regenerate
the image using the largest 8, 16, 32, 64, and 128 singular values. Repeat
the exercise adding random noise to the image a. Draw conclusions.



3
Signals and Systems

Signal processing and inverse problem solving are common tasks in engineer-
ing and science applications (Chapter 1). This chapter focuses on the essentia
characteristicsof signalsand systems, highlightsimportant implicationsof analog-
to-digital conversion, describes elemental signals that are used to analyze all
other signals, and redefines the superposition principle in the context of linear
time-invariant systems.

3.1 SIGNALS: TYPES AND CHARACTERISTICS

A signd is information encoded as the variation of a parameter with respect to
one or moreindependent variables (Section 1.1). Time or spatial coordinates are
the most frequently used independent variables. Consider, for example, the spatial
variation of annual precipitation in aregion, or the daily fluctuations of the Dow
Jonesindex in one year.

The independentvariable that represents either the temporal or spatial coordi-
nateis herein called "time" and denoted by the letter t. Furthermore, the period
of any eventisdenoted by theletter T, in spite of thefact that the event may take
placein space with "' spatia period" or wavelengthA. In thesamespirit, the Greek
letter « is generically used to refer to angular frequency (w =2=/T) in either
time or space domains, even though the spatia frequency is the wavenumber
K=2m/\.

3.1.1 Continuous and Discrete Signals

A continuous signd is the ceaseless and uninterrupted observation of a param-
eter in time or space. A discrete signa, on the other hand, is the intermittent

Discrete Signals and | nverse Problems  J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons. Ltd
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observationof the parameter, that is, a sequence of values separatedin time (or
space). A mercury thermometer senses temperaturecontinuously, yet the record-
ing of temperatureevery five minutesproducesa discrete signal that corresponds
to the continuous variation of temperaturein time. Likewise, the evaluation d
brightness at different locationson awall resultsin a matrix of values, leadingto
adigital image that correspondsto the true continuousimage. Figure 3.1 shows
a continuoussignal and its discrete counterpart.

A continuous sinusoid exists for all values of the continuous independent
variable t

x(t) = sin(w -t ) continous signal 3.1

Conversely, discretesignal sare defined at discretevaluest,. Thesampling interval
At is the separation between two contiguous discretetimes. Then, thei-th timeis

t=i-At discrete time (3:2)

Each entry x; is adiscrete value of the parameter x being monitored. Theindex i
indicates the order or location of x; in the array of values. For example, the
discretesignal obtained by sampling the continuoussignal definedin Equation 3.1
becomes

X, = sin (0 -i- At + ¢) discrete signal (33)

where the subindex denotes the sequence of discrete data points in the array.
Consider the case of water flowing through an irrigation channel. The flow rate
is sampled every 18 hours, that is At = 18 h. The recorded discrete signal is:

(@) Continuous (b) Discrete
4+ ] 41 .
*
x(t) X
21 ¢ 24 LI
[ ] [ ]
. ) At
] [ ]
: ' : — ey :
-2 -1 0 1 2 -2 -1 0 1 2
& L

Figure 3.1 (a) A continuous signal; (b) a digital version of the signal obtained with a
sampling interval At
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Index i of(1/2|3(4{5|6|7({8|9]|10]11
Time t, =i-At[h]| O | 18 |36 | 54 | 72| 90 | 108|126 144|162 | 180|198
Signal x, [m*/min] |2.2|2.8|3.4|5.0(4.7(3.5]3.7(3.2 |34 (43|83 |35

Because the sampling interval is 18 h, daily pesks and valleys in demand may
go undetected. And if detected by coincidence, they will bias the interpretation
of measurements.

Digital technology facilitates capturing, storing, and postprocessingsignalsin
discrete form. Digital storage oscilloscopesstore signals as arrays of individual
voltagevalues that are equally spaced by a constant samplinginterval At. Optical
disks use a laser to "burn” digital information onto a flat substrate; the disk
geometry permitsfast access without having to wind long tapes.

3.1.2 One-dimensional (ID) and Multidimensional Signals

The dimension of asignal is the number of independent variablesused to define
it. When a stone falls on a quiet pond, the ripples define a three-dimensiona
(3D) signal where the surfacedisplacementvariesin the two dimensionsof space
and in time. Figure 3.2a showsthe instantaneousposition of the surfaceat agiven
time. Thisis atwo-dimensional (2D) signal where displacement variesin space;
itisstored asa 2D array or matrix. A slice of thisinstantaneoussignal along the
radial line A-A isthe 1D signal shownin Figure3.2b. In genera, the time series
produced by a single transduceris a 1D signal, e.g. accelerometers, strain gages,
or photosensors.

3.1.3 Even and Odd Signals

The symmetry of signals with respect to the origin of the independent variable
determines whether the signa is even or odd. An even signa satisfies
(Figure 3.3a)

X =X even signal (3.4)

whereasin an odd signa (Figure 3.3b)

odd signal (3.5)
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Figure 32 Ripplesin apond - 2D and 1D signds: (a) ingtantaneous surface displace-
ment; (b) water surface displacement along the plane A-A
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Figure 33 Signa symmetry: (a) even signd; (b) odd signal

3.1.4 Periodic and Aperiodic Signals
(and Transformations)

A periodic signal is arepetitive sequenceof values with a well-defined timescale
or period T = p. At, so that

Xi = Xi-l—p (3.6)
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This genera definition of periodicity applies as wel to periodicity in space, in
which the characteristic scale would be the wavelength A. However, as indi-
cated earlier, "time" is the generic term used to name the independent variable.
A periodic Sgnd is shown in Figure 3.4a. An gperiodic signal is a one-of-a-kind
variationof a parameter that does not repesat itsdf at least within the duration of
the observation D (see Figure 3.4b).

It is often convenient to consider an gperiodic sSignd as a periodic sgnd
that repests itself with periodicity D. In other words, even though there are
no observations outside the interval 0 to D, it is assumed that the same signd
repeats beforet = 0 and after t = D, with a periodicity T =D (see Figure 3.4¢).

Th ]
SN

1
® 'OU 100 V2000 300
-1

T Ty
l /\ /-\ /\ h /\ \ / '[Af‘/ﬁv‘}
© _ /) 1007 l 1bd Vzoo 'ﬁDI | 403 V5007 600
\
-1

Figure 34 Signal periodicity - transformation: (a) periodic signal; (b) aperiodic signal;
(c) periodicity assumption in common transformations
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The presumption of periodicity for aperiodic signals is tacitly made in many
analyses (Chapter 5). Its implicationsare important and often misleading.

All signalscan be decomposedinto a sum of aperiodicor periodiccomponents,
or into asum of even and odd components (Chapters4 and 5).

3.1.5 Stationary and Ergodic Signals

A physical event can be capturedin multipletime segmentsthat form an ensemble
of signals (Figure 3.5). Statistical parameters such as mean and variance can be
computed for each record. In addition, ensembl e statistics can be determined for
the set of valuesformed by the k-th element in each signal. Signals are stationary
if the ensemble statistics at two different times are the same (for example at
timest, and t, in Figure 3.5). The signal is ergodic if ensemblestatisticsare the
sameas the statisticsfor any record. Ergodic signalsare stationary, but stationary
signals need not be ergodic.

3.2 IMPLICATIONS OF DIGITIZATION - ALIASING

Sampling a signal at discrete time intervals may cause profound effects that
must be either avoided or accounted for. These implicationsare discussedin this
section using numerical examples.

Consider the periodic signal shown in Figure 3.6a. Figure 3.6b shows the
signal digitized with a samplinginterval T,/At = 25 (integer). Figure 3.6¢ shows
the same signal digitized with T,/At =8.33 (noninteger). In the latter case, the
original periodicity of the signal is lost, becausethereis no value of p for which
xi =xi+p for dl i (Equation 3.6).

Time shift 8t and phase shift 8¢ are related when a periodic continuoussignal
of period T is considered:

6t _ S¢ ot
—=—— th do=2m— 3.7
T = om o0 0= 37

However, atimeshift in the sasmpled signal resultsin another signal, till periodic,
but with different entriesin the array (see Figure 3.7 and notice the numerical
values in the arrays). In discrete signals, the correspondence 8t <> 8¢ is only
satisfied when 8t = k. At, where k is an integer and At is the sampling interval.
The most often discussed consequenceof digitizationis frequency aliasing by
undersampling. (Thesemanticmeaning refersto'dias™ or pseudo.) Thecontinuous
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Figure 35 Ensembleof signals ar " ssgments'. A sgnal is dationary if the ensemble
datigticsa timest, and t, are equal. A signal is ergodic if the ensemble statisticsat a

given time are the same as the tatisticsof any segment
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(2

Figure 3.6 Implications of digitization - effect of periodicity: (a) continuous signal;
(b) signal digitized with sampling interval T,/At = integer; (c) sgnal digitized with Sam-
pling interval To/At # integer. Notice the position of points

sinusoid of period T, shown in Figure 3.8a is digitized in Figures 3.8b-d with
different samplingintervals. When the samplinginterval isgreater or equal to half
the period, At = T,/2 (Figure3.8d), thesignal is undersampled and its periodicity
appears'diased" into asignal of lower frequency content.

Consider the following mental experiment. A white disk with a black radial
lineis turned clockwiseat 600 rpm. A stroboscopiclight is aimed at the disk and
used to ""sample” the position of theline:

o |f thefrequency of thelight is 600 times per minute (it flashesat 10 Hz), the
line appears till. For this reason, fluorescent lights must not be used when
operating turning machinery.

o If it flashes dightly faster than 10 Hz, the next flash will illuminate the line
dlightly before the still position. Therefore, the disk will appear as if it were
spinning counterclockwise, with some " negative frequency"'; this accountsfor
what 10oks like wheels turning backwardsin movies.
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x4

x=sin@EE)  — ¢ {

xT ={0 0.71 1 071 0 071 -1 -0.71 0 071 1 071 0 -071 -1 —0.71}

.=8in 2_"'+£l
RSV \/

xT=[-0.5 0.26 0.87 0.97 0.5 -0.26 —0.87 —0.97 -0.5 0.26 0.87 0.97 0.5 —0.26 —0.87 -0.97]

Figure 37 Implicationsof digitization - time shift. A time shift St =T/12 (owing to
8¢ =m/6) in adiscrete periodic sgnal sampled with At =T/8 leadsto ancther discrete
periodic signal. The periodsdf both signals are the same, but the elementsin the arrays
aedifferent

o |f thefrequency is 20 Hz, theline will be seen twicein each cycle, on opposite
sides, and both lines will appear till.

It can be shown that the frequency of the continuous periodic signal is properly
identified from the discrete signal if the sampling frequency f,,, exceeds the
Nyquist frequency f,,

1 2

f,=—
> 1 T,

f (3.8)

samp — 'A_t'

In practice, a minimum of —10 points per cycle is recommended. The high-
est expected frequency should be considered when selecting the sampling rate.
Analog antialiasing filters must be placed in series before digitization to remove
frequency components higher than 1/(2-At). Engineered devices such as oscillo-
scopesand signal analyzerstypicaly includeantiaiasingfilters built-in; however,
this may not be the case with ssimple A/D boards.
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Figure 3.8 Sampling interval and aliasing — numerical example: (a) continuoussignal;
(b) sampling interval At = T,/25; (c) sampling interval At =T,/10; (d) sampling interval
At =T,/1.25. The original periodicity T, is lost as the sampling interval exceeds the
Nyquist criterion and the signal is aliased into a lower frequency sinusoid
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It is not necessary to associate the concept of Nyquist frequency with periodic
signals. In more genera terms, the sampling theorem states that the sampling
interval must be significantly smaller than the scale of interest. Consider the
determination of the stress—strain curve for a steel specimen. If the sampling
interval in strain As is too large, the initial yielding of the material is under-
sampled, informationis lost, and the wrong conclusion about the behavior of the
material could be drawn. Fractal systems - such as surface roughness - lack a
characteristicscale and the digital signal will continuegathering new information
as the sampling interval decreases.

The undersampled signal in Figure 3.8d is not random: it reflects the informa-
tion in the continuous sinusoid in Figure 3.8a, but folded onto a new predictable
frequency that is determined by the frequency of the sinusoid and the sampling
frequency. This observation suggeststhat undersampling i s an effective approach
to capture, process, and store signals as long as the continuous signal does not
contain information in the folded frequency. Hence, narrow bandwidth signals
can be undersampled; for example, a 100 Mz center frequency communications
signal may have a 5MHz bandwidth (see problems at the end of this Chapter).

3.3 ELEMENTAL SIGNALS AND OTHER
IMPORTANT SIGNALS

Several "elementd" signals play an essential role in the analysisof signalsand
systems in engineering and science applications. Their importance results from
their simplicity, information content, or physical interaction with the systems
under study. The definition of these elemental signalsin discrete time follows.

3.3.1 Impulse

The impulse signal §, is defined at the origin of timei = 0 and it is the sudden
changein the valueof the signal from x; = 0 everywhereelsetox,=1ati=0:

5 =1 ifi=0
5,=0 ifi#0 3.9)
The graphical representation of an impulse in discrete form is shown in
Figure3.9a. The impulsecan be shifted to any other location. However, in order
to fulfill the mathematical expression that defines it, the shifted impulse must be
denoted by the amount of shift. For example, an impulse at location i =10 is
defined as §,_,,. When i = 10, the subindex becomes 10—-10=0 and §,=11in
agreement with the definitionin Equation 3.9.
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Figure 3.9 Elemental signals. (a) impulse; (b) step; (¢) sinusoid; (d and €) exponential;
(f) wavelet

332 Step

A step signd v, is the sudden changein value of the signal from a constant value
of 0 toaconstant valueof 1. It is defined at time zero; therefore,

w=0 ifi<0
w=1 ifi>0 (3.10)

The step signal in discretetimeis shown in Figure 3.9b. Note that the step can
also be obtained by accumulating the impulsesignal from left to right:

=35, @3.11)

j=—00



ELEMENTAL SIGNALS AND OTHER IMPORTANT SIGNALS 47

Conversdly, the impulse is obtained by differentiating the step in time, 8; =
u; — u;_,. Thestepsigna can also be shifted in time, following thesameguidelines
described above for the shifting of the impulsesignal.

3.3.3 Sinusoid

A sinusoidal sgnd is defined by the trlgonometrlc functions sine and cosine,
as indicated in Equation 33, x; = A.sin(w-t;tq). For a signd with period
T = N. At, the frequency is

2
feio ' ad e=2mf=T (3.12)
T N-At N At
Then theargument o the sinusoid when samplesare determined at discrete times
t;, = i. At becomes

20 2w
o- (N-At) (i-At) N1 (3.13)
Findly, the expresson of asnusoid in discretetimeis
2
%, = A-sin (§i+(p) (3.14)

whereQ isthe phase angle. Whereas the step and impul sesignal sare nonperiodic,
snusoids are inherently periodic signals. A discrete time sinusoid is shown in
Figure3.9¢. This could be the response of an undamped harmonic oscillator.

3.3.4 Exponential

The exponentia functionisone o the most important functionsin mathematics
and science. It isdescribed as

X, =Ae"d (3.15)
There are several important cases of exponential functions:

o |f the parameter b isared number, the resulting Signd either increasesb > O,
or decreasesb < 0 with theindependent variable(growth and decay processes).

e If the parameter b is imaginary, b=j.w =j-2m/(N. At), the exponential
signa represents a sinusoid (from Euler's identities — Chapter 2):

% =A-dF =A [cos( i) +j-sin (%“1)] (3.16)

where “i” identifies theindex or counter of the discrete signd, and 4 denotes
the imaginary component of a complex number (j2= —1).
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e And, if the parameter b is complex, b:a+j . w, the resulting signd is a
sinusoid with either increasing or decreasing amplitude, depending on the sign
of the real component a:

x; = A . gletioyia (3.17)

For example, Equation 3.17 is used to represent the response of a damped single
degree of freedom oscillator. In the most general case A is aso complex and
permits changing the phase of sinusoids. Exponential signals are sketched in
Figures3.9d and e.

3.3.5 Wavelets

Waveletsare signalswith relatively short duration. The''snc” signal is defined as

_ ﬁ (3.18)

T 2m,
—1
M
wherethe frequency content i s determined by the parameter M. Another example

is the Morlet wavelet defined as

X = ei-(v-ne“"’“(”'(ﬁ)z (3.19)

where the central frequency is w = v/At, the width of the wavelet is M-At, and
v < I1. Thiswavelet is sketched in Figure 3.91.

3.3.6 Random Noise

Random noise or white noiseis not an "'elementd signal’ in the sense that it is
not used to analyze or decompose other signals. Yet, it isaconvenient signa in
testing and simulation. Random noise is characterized by a sequence of values
that are uncorrelated in any scale of the independent time variable:

x; = random(a) (3.20)

whereais the amplitudeof the noise. There are different types of random noise.
The amplitudedistributioncan be uniform or Gaussian, typically with zero mean.
Theenergy distributionin frequency determinesthe color' of noise: white noise
carries equal energy in all frequency bins, while pink noise has equal energy in
bins defined in "'log-frequency™. Pink noise is preferred for perception-related
studies.
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3.4 SIGNAL ANALYSIS WITH ELEMENTAL SIGNALS

Complex sgnads may be decomposed or “analyzed” into dementa signds.
Conversdly, the signd is synthesized by summing across an ensemble of scaled
demental sgnas.

3.4.1 Signal Analysis with Impulses

The mogt evident decomposition of a discretesignal isin terms of "'scaed and
shifted" impulses. For example, the step function u; defined in Equation 3.10 is
obtained as (see Figure 3.10)

u=) 98 (3.21)

k=0
wherethei-th valued thestep u; & discrete timet; is obtained asasum acrossthe
ensembleof shifted impulses 3;_,, as sketchedin Figure 3.10; thisisasummation
in “k”. Note that there is a subtle yet important difference between this equation

i

Hgure 310 Thesep signal can be synthesized as a sum of shifted impulses
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and Equation 3.11, where the step was obtained as a time accumulationalong a
singleimpulse; that is a summationin “i”.

Any discretesignal x can berepresented in termsof scaled and shifted impulses.
The amplitude of x at position i = k is x,. Then x, is used to scale the shifted
impulse 8,_,. For a discrete signal x with N entries, the summation involves N
scaled and shifted impulsesfromi =0 to N—1:

N-1
x=Y X8y (3.22)
k=0

This is the synthesis equation. The summation of binary products implied in
Equation 3.22 is equivalent to matrix multiplication. Each shifted impulse is
an array of Os except for an entry of 1 at the time of the impulse. If these
arraysare assembled into a matrix, each column representsa shifted impul se, and
Equation 3.22is written as

X 1 0 0 0 X
X, 0 1 0 0 X,
X2 - 0 O 1 0 ' X2 (3 .23)
XN 0 0 0 1 XN

Indeed, x = I-x, where I [NxN] is the identity matrix! While these expressions
are self-evident, expressing a discrete signal in the form of Equations 3.22 or
3.23 facilitates understanding the convolution operation in Chapter 4.

The signal x could also be analyzed in terms of step functions placed at each
discretetimet;. Theamplitudeof each stepis equal to the changein theamplitude
of the signal at that discrete time interval x; — x;,_;. In this case, the synthesis
equationis a summation of scaled and shifted steps, similar to Equation 3.22.

3.4.2 Signal Analysis with Sinusoids

Consider the square wave shown in Figure 3.11. It is readily synthesized as the
sum of scaled and shifted impulses, as shown previously. But, it can aso be
decomposed into sinusoids, whereby the signal x is expressed as a sum of scaled
sines and cosines:

%= 3" [a.cos (a,-1) b, .5 (0, . )]
u=0 (3.24)

N-1 2
= u‘éo [a .cos(u%"i) +b,.sn (u-NEI)]
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The scaling factors a, and b, indicate the participation of frequency ®, in the
signal x. Once again, this synthesisequation is a summation of productsand is
rewritten as matrix multiplication, but in this case, the columns are the discrete
values of sinusoids at times t,. Each column corresponds to a different angu-
lar frequency w,. The assembled matrix multiplies the vector that contains the
corresponding scaling coefficientsg, and b,,

cos sin cos sin by
u=0 u=0 u=n u=n

=11 T N I )

ay

Coefficientsa, and b, can be determined following standard least squares curve-
fitting procedures(Chapters5 and 9).

34.3 Summary of Decomposition Methods = Domain
of Analysis

The decomposition of signalsinto elemental signalsis the starting point for signa
processing and system characterization. The choiceof the elementd signd defines
the type of "transformation™ and affects subsequent operations (Figure 3.11):

o If the signal x is decomposed into scaled and shifted impulses (or steps), the
anaysiswill take placein the time domain (Chapter 4).

e If the signa x is decomposed into scaled sinusoids of different frequency,
subsequent operationswill be conducted in the frequency domain. Thisis the
Fourier transform of the signal (Chapter 5).

Signals could also be decomposed in terms of other elementa signds:

e The wavelet transform consists of expressing signals as a summation of
wavelets (Figure 3.11, Chapter 7).

e The Laplace transform consists of decomposing signalsin terms of growing
or decaying sinusoids (complex exponentials).

e TheWalsh transformconsistsof analyzing signalsin termsof elemental square
signals made of 1 and —1 values (see problemsin Chapter 5).



SYSTEVIS. CHARACTERISTICS AND PROPERTES 53

Anaysis and synthesis operations are linear combinations. Therefore, the same
signal-process ngoperation can beimplemented with any of thesetransformations
as long as the operation preserveslinearity. In particular, time domain operations
are implemented in the frequency domain, and vice versa. Then, what domain
should be preferred? Computation efficiency and ease of data interpretation will

affect this decision.

3.5 SYSTEMS: CHARACTERISTICS AND PROPERTIES

A system transforms an input signal x into the output signa y (Figure 3.12).
Condgder thefollowing examples (see also Table 1.1):

e A rubber band dretches when a load is applied, a metal rod contracts when
cooled, and the electrical current in a conductor increases when the applied
voltage difference increases.

e A lamp swings after a house is shaken by a tremor.

e A sharp sound is reflected from various objects and the multiple reflections
arive a a microphone like distinct echoes, each with its own time delay,
amplitude, and frequency content.

Output
Input x System h tput y
= =volta;

A = temperature Thermocouple J=votage
X=water head Hydraulic y =energy output
e L ) =—e
turbine
x=nutrients Bacteria y =reproduction

Figure 312 Definition of a system. Examples of systems with different degrees of
complexity
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o Water flows into a reservoir with a certain chemical composition and leaves
the reservoir with a different chemistry after a delay time.

e Voiceisencoded by a cellular phoneto be transmitted through the airwaves.

These systems are characterized according to some salient aspects of the trans-
formationsthey impose on the input signal, as described next.

3.5.1 Causality

A system satisfies causality if the responseat timei =k is only becauseof input
at timei < k. Causdlity is the fundamental hypothesisof science: the search for
an explanationto a given event presumes the existenceof acause. A system that
appears to violate causality must be reassessed to identify undetected inputs or
improper system definition, or incorrect anaysis.

3.5.2 Linearity

A system is linear when the output is proportional to the input. Consider two
springs: oneisthe standardcylindrical spring with linear el asticforce-deformation
response, and the other is a conical spring with nonlinear elastic response
(Figure 3.13). Loads F, and F, cause deformationsd, and 8, in each spring. If
the linear spring is loaded with a force F; =F, +F2, then the measured defor-
mation is 3; = §, +82. Thisis not the case in the conical spring as seen in the
figure. Likewise, a k-fold load produces a k-fold deformation only in the linear

spring.

y |*

F 4 §,+8, <> F+F 8+ F,+F
1+8; 11F, st F 1+8, </ F1+F, st
F+F,
?
F2 3 “
F, E
3 ——
F] —— i
3 & 6+ 8 8,+d
@ 1 O 1+8, 5 ® ) 170 o

Figure 3.13 Linearity: (a) linear system; (b) nonlinear system
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These two observations combine in the superposition principle: " sum of
causes — sum of effects’ .Given two signalsx<!> and x<2>

it  x<"” causes y<'>
and x<%¥ causes y*%¥ (3.26)

then a-x<'>+Db.x* causes a.y' to.y®

Therefore, the linearity of a system is tested by verifying the superposition
principle. " True linearity" is not a property of real systems, yet it is a valid
hypothesisfor small amplitudeinput signals or perturbations. Furthermore, it is
often possibleto identify an equivalent linear system that resemblesthe response
of the nonlinear systemfor a certaininput level.

3.5.3 Time Invariance

A systemistime-invariantif its responseto a given input does not vary with time,
but only experiencesa time shift equal to theinput time shift. All systems evolve
in time: electronicdevices changetheir response while warming up, the response
of a building varies as damage accumulates during an earthquake, materials
age throughout the years, and the propertiesof the atmosphere experience daily
and seasonal fluctuations. These examples suggest that systems encountered in
engineering and science are inherently time-variant or dynamic™. However, the
systems in these examples may be considered time-invariant for a very short,
one-millisecond-long input. In other words, time invariance must be assessed in
reference to the duration of signals and events of interest. Then, it is correct
to assume that the atmosphere is ""time-invariant™ during the passage of a short
laser signal that is used to remotely explore changes in chemical composition
throughout the day. In general, phenomena with very different timescales are
independently studied.

3.5.4 Stability

System stability implies” bounded input — bounded output” . System stability is
also apparent in the magnification of input uncertainty. The uncertainty in the
initial location of the bal in Figure 3.14a is not relevant for the final location
after it is freed; this is a stable system. By contrast, any uncertainty in the
initial location will be magnified in the unstablesystem sketchedin Figure 3.14b.
Systemsthat manifest chaotic behavior are unstable, asin the case of a thin ruler
that suddenly buckles when subjected to compressiveloading at the ends.
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J

Figure 314 Sability. (a) The output of a stable sysem diminishesthe uncertainty of the
input: the final postion of the ball isnat sengtiveto the initial position. (b) An unstable
system s characterized by the magnification of initial uncertainties:a small uncertainty in
theinitial position of the ball has an important effect on itsfinal postion

(a)

3.5.5 Invertibility

A systemisinvertibleif thereis an inverse transformationthat rendersthe input
from the output (inverse problem)

i nverse
it x2XZTy then yXDx (3.27)

An anal ogtelephonesystem consistsof a microphone, atransmissionline, and the
earpiece on the other end. The voice spokeninto the microphone is encoded into
the electromagneticwave that is transmitted, and later converted back into sound
at the other end. In this case, the speaker inverts the transformation imposed at
the microphone, and although the inversion is not perfect, it is acceptable for
communication purposes. Invertibility is the central themein Chapters 8-11.

3.5.6 LinearTime-invariant (LTl) Systems

The analysis of a system is considerably ssmpler when it is linear and time-
invariant. A salient characteristic of this type of system is that it preserves the
statistics of the input signal onto the output signa. For example, if the input
signal has Gaussian statistics, the output signal will aso have Gaussian statistics.
Thisimportant observationleads to a possible procedure to test whether a system
isLTI:

e Input a signal with known statistics. The signa duration must be relevant to
signals and events of interest.

e Measure the output signal and compute the statistics.

e Compareinput and output statistics.
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The superposition principle applicableto linear systemsis now extended to LTI

systems. "'sum of time-shifted causes — sum o time-shifted effects”". Deviations
from linear time invariance and implicationsfor signa processing and system
analysisare discussedin Chapter 7.

3.6 COMBINATION CF SYSTEMS

Engineering tasks and scientific studies often involve systemswith multiplecom-
ponents. Thesesystemsare anayzed into a sequenceof interconnectedsubsystems
(Figure 3.15). Consider the following two systems used to measure materia
properties:

e Sound veocity. The measurement systeminvolvesseveral subsystemsin series:
signal generator — cable — source transducer — coupler — specimen —
coupler — receivingtransducer — signal conditioner — cable— A/D converter
and storage(asimpler systemissketchedin Figure3.16).

X Y1 X2 Y2
—_— h, hz >
(a)

X1 y
h, ! »-

) Y

X2 Y2

h,
()
X X Yi y
> h >

Feedback loop

© e Feedbackloop |+——

Figure 3.15 Combination of systems. (a) sysems in series; (b) systems in paralld;
(c) system with feedback loop
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Sgd gagdaar

Source transduoe
] and coupling

Specimen

V || Receiver transducer
C:l S and coupling
Oscilloscope y

Figure 316 A messurement sydem is the combination d severd subsysems The
response of peripherd mugt be ramoved from the totd response to obtain the specimen

properties

Complex permittivity. The material is placed in a capacitor-typecell and the
compleximpedanceis measured with animpedanceanalyzer. Stray capacitance
and induction develop both in series as well as in parallel with the material,
in addition to the resistancein series contributed by the connecting cables.

In both cases, the effectsof dl peripheral subsystems must be removed from the
measured signal to recover the sought material response.

Many mechanica and electronic devices may aso include feedback loops.
Feedback in el ectromechani cal systemsisfacilitated by the high speed of electrical
signals and computer processors compared to the speed of mechanical events.
For example, audio amplifiers include feedback to enhance fidelity, airplanes
are equipped with computer-controlledstabilizers, and feedback is used to damp
ringing effectsin accelerometersand large amplitude oscillationsin buildings.

The global system response is obtained by combining the individual subsys-
tems response according to their interconnectivity. Let us consider the simplest
case of linear springs, with transformation F = k - 8. The equivalent stiffness of
M springsis

Kequv =k +ky 4., .. +ky connected in parallel  (3.28)
-1
11 1 o
and kg =|+g-+... 4+ — connected in series  (3.29)
k ok Ky

The sequentia order of the components does not affect the equivaent global
responsein each case. Thisis generalized to al LTI subsystems (Chapter 5).
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3.7 SUMMARY

e Signalsmay be periodic or aperiodic, even or odd, one-dimensiona or multi-
dimensional, stationary-ergodic, or nonstationary.

e Signal digitizationmay alter the periodicity of the signal and causeinformation
loss and aiasing of undersampled frequencies. The Nyquist criterion must be
fulfilled during digitization of baseband signals with energy from DC to the
maximum signal frequency.

e There are several elemental signalsincluding steps, impulses, sinusoids, and
exponentias. Other important signalsinclude wavelets and random noise.

Any discrete signal can be decomposed into alinear combinationof elemental
signas.

e The selection of the elemental signal determinesthe type of analysis and the
domain of operation. The analysisof signalsinto scaled and shifted impulses
leads to "'time domain" operations, whereas the decomposition of signalsinto
scaled sinusoidsconducesto the " frequency domain”. Equivaent linear signd
processing operations can be defined in either domain.

e A system enforces a transformation on the input signal. Linear time-invariant
(LTI) systems are the most tractable. The generalized superposition principle
"sum of time-shifted causes — sum of time-shifted effects” applies to LTI
systems. LTI systems preserve the statistics of the input signal in the output
signal.

e Any rea system consists of several subsystems connected in series or
in paralel. The sequential order of LTI subsystems does not affect the
global output. Subsystems may include a feedback loop to help control the
response.

e The measurement of a system characteristicsalwaysinvolves other periphera
subsystems; their response must be removed from the measured values.
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SOLVED PROBLEMS

P3.1 Linear system. Assume a Gaussian distributed input signal x; =random.
Show that the distribution of the input is preserved in the output when the
systemis linear but that it is not preserved when the system is nonlinear.
Solution: Let us generatea vector x of N = 512 normal distributed random
numbers and compute the responsesy and z for a linear and a nonlin-
ear transformation. In each case we verify the histogram and compute
skewnesss.

x,=Gaussian random
120

s=-0.11
60
0 05 1 1.5 2
y;=2+3x%; Linear
120
s=-0.11
60
0 256 512 2 3 4 s 6 7 8
—34x2 .
z;=3+x" Nonlinear
150
100 $=137
50
2 4 6 8

The histograms correspondingto x and y approach Gaussian distributions;
however, the histogramfor z showsthat the nonlinear transformation alters
the Gaussian nature of the input.
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P3.2 Elemental signals. Define an impulse at location i = —15 and a step
functionat locationi = —15. Implement these definitionsnumerically and
plot the signas.

Solution:

Impulseat locationi=-15:

xi=8,, 5

Sep at locationi=-15:

Xi=Uisss » + —t -

P3.3 Signal analysis and synthesis. Consider a periodic triangular time history
x=(3,2,1,0,-1,-2,-3,-2,-1,0,1,2,-..). Approximate this array
asasum of discretetimecosinesignalsy; = a, - cos[u- (27/N).i], where
N isthe number of points N = 12, and uisan integer u > 0. Thegod is
to determinethe coefficientsay, a,, a,,..- that minimize the total square
error E between the array x and the approximation y, where E is computed
as E=3(x; —y;)®. What is the residua E when—only the u=1 cosine
functionisincluded, and when thef i t four cosinefunctionsareincluded?
Solution: The single frequency cosine y; =a, - cos[(2w/N)-i] that fits
the triangular signal closest is determined by iteratively fixing a, and
computing the total error E. The valueof a, that renders E minimum is
the sought value:

Error norm
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The coefficient a can now be determined using the same approach, and
the procedureis repeated to obtain al other higher terms. The first four
coefficientsare a; = 0, a, = 248, a, =0, and 3 =0.34. The triangular
signal and the signal synthesized with thesefirst four terms are:

How many terms are needed in the summation to obtain E = 0?

P3.4 Stationary and ergodic signals. Form an ensemble of sinusoidals (four
cycles in each segment) with additive zero-mean Gaussian noise. Verify
stationary and ergodic criteria.

Solution: The ensembleisformed with 512 random signalsor ** segments’.
Each signal is 512 pointslong.

Time 1 Time2
N Segment 1
Segment 2
Segment 3
l Segment 4
| !
T t t - + —
0 128 256 384 512

Histogramsfor selected ensemble values at selected times and segments:
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Time 1 Time 2
Ensemble
histograms
-1 05 6 05 1 -1 05 0 05 1
Segment 1 Segment 4
Segments
histograms
-1 05 0 05 1 -1 -05 0 05 1

Ensemblestatisticsvary in timeand are not the same as segment statistics:
the signal is nonstationary and nonergodic.

ADDITIONAL PROBLEMS

P3.5

P3.6

P3.7

P3.8

Signals and systems. Identify stationary and nonstationary signas, linear
and nonlinear systems, and time-varying and time-invariant systems in
your area of interest.

Amplitude modulation. The multiplicationof a sinusoidal signal with an
exponential decaying signal yields a sinusoidal signal that decays with
time (Figure 3.9¢). What type of signal results from the multiplication
of two sinusoidals of different frequencies? Plot the two signals and the
product.

Signal digitization — undersampling. A sinusoid frequency f is undersam-
pled with a sampling frequency £, < fy,- Derive an expression for the
frequency it folds into, as a function of the original frequency « and the
sampling frequency f,,,. Use numerical simulation to verify the equation
for a single-frequency sinusoid. Then extend the study to explore under-
sampling effects for a beat function composed of two signals. Vary the
frequency gap between thetwo signal srel ativeto thesamplingfrequency.

Photography. Explore the application of photography in your field of
interest (engineering, science, sports, ec.):

(& Explorecommercially available camerasand flashes.
(b) What is the highest shutter speed and rewind rate?
(c) What is the shortest flash duration and the highest repetition rate?



64 SIGNALS AND SYSTEVIS

(d) What type of events can you study with these " sampling rates"?
(e) Can you design your experiment to undersample?

(f) Exploreways to use a stroboscopiclight with your photographicsys-
tem.

P3.9 Signal analysis and synthesis. Repeat problem P3.3 by fitting a polynomia
functioninstead of sinusoids. What order polynomial is needed? What is
the totd error when only thefirst four termsare included?

P3.10 Stationary and ergodic signals. Use the audio systemin your computer to
gather multiple records (segments) of background noise in your working
environment. Analyze the ensemble to determine whether stationary and
ergodic conditionsare satisfied.

P3.11 Combination of systems. The electrical impedance Z=V/I of the three
fundamental circuit elements R, C, and L are;

Resistor R Z=R+j0
Indudor L —@@— Z=0+jolL

capacitor C —— Z=0—j1E

Complex Z valuesindicate a phase shift between current | and voltageV
(Chapter 2). The inverse of the impedance is called the admittance Y.
Accordingto Equations3.28 and 3.29, theequivalentimpedanceZ,, of ele-
mentsin seriesin thesum of theimpedances,and the equival entadmittance
Y., of elementsin parallelisthesumof their admittances. Given threeele-
mentsR = 10° ohm, C = 25-10~'°farad, and L = 10* henry, computethe
equivalent impedance and plot admittance (amplitude and phase) versus
frequency for (a) series and (b) parallel connection of the three elements.

P3.12 Application: birds singing. Knowing that a single tune lasts about 2s and
that you can whistle at the same frequency as the birds (about 2Wz),
select the sampling frequency and buffer memory for a portable A/D
system.
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Time Domain
Analyses of Signals
and Systems

Signal processing and system analysis operations are frequently encounteredin
most engineering and science applications. The fundamenta signal processing
operationsar e related to noise control to improve signal interpretation, and cross-
correlation to identify similarities between signals. When a system is involved,
data processing operations are devel oped to assess the system characteristicsand
to "convolve" a given input signal with the characteristicresponse of the system
to compute the output signal.

4.1 SIGNALS AND NOISE

The presenceof noiseisone of the most pervasivedifficultiesin measurements.
Given a signd amplitude Vg and noise amplitude Vy (same units as V), the
signal-to-noise ratio is SNR =Vg/Vy. In applications where SNR varies in a
wide range, decibel notation is used:
SNR = Vs or SNR[dB] = 20-log,, (E) 4.1)
A\’ Vx
A value of SNR =1=0dB means that the amplitude of the signal Vs is the
same as the amplitude of noise Vy and the signal is amost indistinguishable.
The process of digitizing an analog signal adds noise. The analog-to-digital
converter can resolve a limited number of discrete values related to the number
of bits"n'". For example, an n = 8bit A/D board can map an analog valueto one

Discrete Signals and Inverse Problems  J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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of 28 = 256 discretevalues; hence, the potential noiselevel isonestep. In general,
if the signal amplitude occupiesthe n-bits, then, V4 = 2" steps, V = 1 step, and
the signal-to-noiseratio associated with digitizationis SNR = 2' =6.02-ndB.
Thefirst and most important step to increase SNR is to design a proper exper-
iment to minimize noise before signals are recorded. Consider the careful selec-
tion of transducers, peripherd electronicsand A/D converter; the proper control
of boundary conditions,includinggroundingand shielding; vibrationisolation and
thermal noi sereduction, which may requirecoolingcircuitry to near absol utezero.
Oncerecorded, versatilesignal processingalgorithmscan be used to enhancethe
signal-to-noiseratio. Timedomain signal processingal gorithmsarediscussed next.

4.1.1 Signal Defrending and Spike Removal

There are some known and undesired signal components that can be removed
prior to processing. Low-frequency noise can be removed by signal detrendingin
the time domain. This operation consistsof least squaresfitting alow-frequency
functiontr to the noisy signal x, and subtractingthe trend from the measurements
to obtain the detrended signal y; = x; — tr;. Selected functionstypically include a
constant value, astraight line, or along period sinusoid. Guidelinesand procedures
to fit atrend to a signal by least squares are presented in Chapter 9. Figure 4.1
shows examples of detrended signals.

(@ (b)

© T
X l |
-~ V

i i

Detrended signal without spi kes

Figure 4.1 Detrending and spike removal: (a and b) signal riding on a low-frequency
trend; (c) signal with spikes; (d) detrended signal without spikes
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The signa mean value is known as the DC component or the static zero-
frequency offset. The detrended signal without the DC offset is

1 i=N—I

i=X-g 2% “4.2)
i=0

Spikes are impulses randomly distributed along the signal (Figure 4.1c). Spikes
can be "clipped", or removed and replaced by localy compatible signa values.
For example, given a signal x with spikes, the signal y without spikes can be
obtained with the following agorithm that compares the current value of x;
with the previous despiked value y,_,: if |x; —y,_;| < 'threshold' then y; =x,,
otherwisey, = (x,_, Tx, +1)/2, where the ""threshold"” value s selected to remove
the spikes with minimal effect on the signa. Spike removal is demonstratedin
Figure4.1d.

4.1.2 Stacking: Improving \R and Resolution

Signal stacking is an effective aternativeto gather clear signals above the level
of background noise. The operation consists of measuring the signal multiple
times and averaging across the ensemble: the i-th element in the mean signal is
the average of dl thei-th elementsin the measured signals.

The underlying assumption is that noise has zero mean, so that averaging
reduces the noiselevel in the mean signal and increasesthe SNR of the correlated
component. Figure 4.2 shows a noisy signal that is simulated by adding random
noiseto a decaying periodic sinusoid. The fluctuation of the background noiseis
the sameas the amplitudeof the periodicsignal (SNR = 1). Thedifferent frames
show the effect of stacking for an increasing number of signals.

Thefollowing two theorems from statisticshel p analyze the effects of stacking
on signal-to-noiseratio for zero-mean noise:

1. Thei-thvalueof the mean signal x; "> isagood predictor of the true value

<true>
x>,

2. The mean vaue of averaged noise has Gaussian statistics, fluctuates around
zero, and the standard deviation is proportional to the standard deviation of
noise o> and decreases with the square root of the number of stacked
signalsM, o<wi> /. /M.

Therefore, the signal-to-noiseratio SNR increases with +/M.
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Figure 42 Noise control by signal stacking in the time domain. The SNR increases as

the number of stacked signalsincreases

Number of Required Signals

One can expect with a certain probability p that the average value x™*"> does
not deviatefrom the true valuemorethan a prefixed quantity “E”, which isrelated
to the standard deviation of mean noise |E| < ao<"> //M. Furthermore, the
error E should be a small part B of the mean signa amplitude| E | <B.X <m>,
Combining these two expressions, the required number of signalsM to be stacked

can be estimated as

i 2
ol - g <noise>
M= (——
B . X <max>

The value of « isafunction of the probability p:

(4.3)

probability p p = 80% p = 90% p = 95% p = 99%
coefficient o a=128 a=1.65 o= 1.96 a =258
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For example, consider a signal with an estimated mean peak amplitudex<™*> =
10 and a measured background noise standard deviation a<™> =2 If one
expectswith a90%probability( a = 1.65) that the mean peak value of the stacked
signal will deviate from the true value within 5% (8 = 0.05), then the required
number of signalsin the ensembleis M = 44. (This analysisis revisited in the
frequency domain, Chapter 6.)

Improved Resolution and Dynamic Range

The best resolution an n-bit A/D converter can attain is when the input signal

is preamplified to the maximum input value in the converter without saturating
it, so that the available 2" discrete values are utilized. Signal stacking enhances
resolutionand the dynamic range between thelargest and smallest recorded value
when noisy signals are recorded. Thisis readily demonstratedwith the following
A/D conversion simulation:

e analog valuesx(t) < 0.5 aredigitized into discrete valuesx; =0, and

e anaog vauesx(t) = 05 aredigitized into discrete valuesx; = 1.

Then, an incoming noiseless analog signal vaue x(t) =0.6 is stored as x, =1
in all theindividual signalsin the ensemble. Therefore, the stacked mean signa
valuewill bex; ™" = 1, and thereis no advantageon resol ution. However, when
the incoming analog signal valueis noisy, x(t) = 0.6 + noise, the digitized value
will bex; = 1linsomecasesandx; = 0inothers:100101111000111...

The mean valuein the stacked signal approachesx™*"> =2 0.6 if the noiselevel
is at least one digitizing step and a sufficient number of signalsis stacked.

Likewise, noiseless signal values smaller than one digitization step remain
undetected and signal stacking does not enhance the dynamic range of the AID
converter. Yet, noise adds to small signal amplitudes so that their values are
registered with some probability, and the average value in the stacked signa
asymptotically convergesto the true value given adequate noise level and suffi-
cient number of stacked signals.

It follows from the previous discussion that there is some "most favorable
noiselevel"' for which one can attain optimal detectability and n@xi numdynamic
range. The effect of noiseon A/D conversionresemblesthe physical phenomenon
of *'stochastic resonance™.

Restrictions

Signal stacking presumes that the signal can be repeated. This implies that the
source must be identical, that the system must remain time-invariant from one
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signal to the other, and that the triggering of the recording devicecan be synchro-
nized with the signal to avoid random time shifting of successivesignals. These
are not readily attainable conditionsin many situations. Consider, for example, a
source of seismic signalsfor subsurface characterization consisting of a hammer
and an aluminum plate resting on the ground. Successivehammer blows gradually
sink the plate into the ground, change the stiffness of the soil beneath the plate,
causedifferencesin triggering times (inertial switch response), and progressively
change the frequency content in each signal.

4.1.3 Moving Kernels

Moving kernels are used to transform a signal x into a signal y. For example,
high-frequency noise can be reduced by running a moving average: thei-th value
in the smoothed signal y is computed as an averageof neighboringvaluesaround
thei-th entry in the original noisy signal x. The m-coefficientsused in computing
the weighted averageare storedin the"kernd" k = (k,, Ky, ..., K,). Typicaly,
the kernel is symmetric, mis an odd number, and the sum of all weights equals
3k, = L Mathematically, the smoothed signal y is obtained as

p=m

%= Xk Xy (44)
p=1

The noisy signal in Figure 4.3a is smoothed using the kernelsin Figures 4.3b
and ¢ (m = 11 elements). Smoothing permits enhancing signals obtained from
one-of-a-kind eventsor that contain coherent high-frequency noisewherestacking
cannot be applied.

Kernel length mand the weightsk,, determinetheeffect of moving kernels. The
study of frequency domain operationsin Chapter 5 facilitates kernel designing
(see also related discussion in Chapter 9 in the context of regularization). In the
meantime, a few guiding criteriafollow .

Kernel Length

Very short kernels remove only very high-frequency noise. On the other hand,
very long kernels may remove frequency components that are relevant to the
signal. Thus, the effective kernel time span, m-At, should be shorter than the
shortest relevant period in the signal T; as a practical guideline, keep m <
T/(10-At). Noise components in the same frequency as the signal of interest
cannot be filtered with moving kernels, yet the signal-to-noiseratio can still be
improved by stacking.
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(2)Noisy signal: X

(b) Central kernd: Yi

(c¢) Even kernel:

Figure 4.3 Noise control by moving average in the time doman: (a) noisy signd,;
(b and c) sgnd obtained after runni ng the moving average kernds shown

Kernel Values

Physicd criteria may guide kernel selection. For example, a kernel could be
designed to set the second derivative equal to zero if the signal correspondsto
a physical process modeled by a zero Laplacian, such as steady-state conduc-
tion phenomena. Expressing the second derivative in finite differences, a zero
L aplacian becomes

AZx 1
Az = 3p %~ 2%+ %) =0 (4.5)

Then, the smoothed value of the signal at locationi is computed as
X1 tX
yi = ——-—1 2 +1 (46)

and the corresponding kernel for one-dimensional signalsis

12 0 172
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Moving kernels can be used to perform other discrete operations. For example,
it follows from Equation 4.5 that the kernel k = (1, —2, 1) is a "second-order
differentiator*. Then, when signal x is processed with this moving kernel, the
resultingsignal y is the discrete second derivative of x.

Adaptive filters

If the noisy signal x is nonstationary, the kernd length and weights may be
adapted to the time-varying characteristicsof the signal, whether the signal has
been stored or it is streaming in real time, such as in adaptive feedback control.
In this case, the kernel to be applied to the current entry x; depends on x; and
the prior m-valuesof the signa: x;, x;_;, ... X_,- A Simpleadaptation strategy
consistsof selectingthekernel lengthni®  at locationi asafunctionof thesigna
variance around x;. Other strategi esassume zero-mean Gaussian noiseand locally
fit a presumed smooth signal behavior to the measured signal by minimizing
the sguare error; thisis a form of inverse problem (see also ARMA models -
Chapters 7 and 8). In general, adaptivefiltering is a nonlinear operation.

Kernels for Two-dimensional Signals

The concept of moving kernels is readily extended to two-dimensional sig-
nals, such as digital images. For example, the Laplacian in finite differencesis
expressed in termsof the values corresponding to the pixels abovex; ., below
X; x-1, tO theleft x;_, , and to theright x;,, , of the current pixel x;:

(Xi+1,k — 2%+ xi—l,k) + (xi,k+l = 2%, + xi,k—l) =0 4.7)
where i and k are the position indices in the two normal directions, and the

sampling interval or pixel size is equa in both directions. Then, the Laplacian-
smoothing kernel becomes

e Laplaciansmoothing

|
o

Other kernelsfor 2D signals are summarizedin Figure 4.4. The smoothed pixel
veluey,, is obtained as a weighted average of pixel valuesin the original noisy
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Figure 44 Filtering 2D dgndsin the time domain. Conoeptud dgorithm for convolu-
tiond 2D filters and typicd 2D filters and typicd 2D kernds

image around x;, according to the coefficients in the 2D kernel k, and the
operationis repeated for al i and k positions.

Values on Boundaries?

When the moving kernel approachesthe signal boundaries, it requires vaues that
are outside the signd. There are several alternativesto overcomethis difficulty:
external values are disregarded in the weighted average, special boundary kernels
are defined, or imaginary signal values are assumed outside the boundary follow-
ing symmetric or antisymmetric criteria, depending on physical considerations
(see related discussion in Chapter 9 under regularization).

4.1.4 Nonlinear Signal Enhancement

A weighted averageisalinear operation; therefore, signal processingwith moving
kernels is a linear operation, except when the kernel varies, such as in adaptive
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filtering. There are other nonlinear operators frequently used in noise control.
The following common proceduresare reviewed in the context of digital image
processing:

e Median smoothing. For each (i, k) position of the analysiswindow, sort pixel
values within the window, and select the median as the (i, k) value in the
filtered image.

e Selective smoothing. For each (i, k) position of the analysis window, con-
sider "neighbors” those pixels that have similar value to the central pixel
"'c", that is when |(x,-x.)|/%. is less than some threshold "t". Then, compute
the weighted average, taking into consideration only the accepted neighbors.
Selective smoothingis capable of removing noise without blurring contrast.

e Thresholding and recoloring. Compute and display the histogram of pixel val-
ues to guide the selection of a threshold value. Then, repaint the image by
assigning the same color to pixel values above the threshold and another color
to pixels with values below the threshold. Thresholding is a powerful trick
to enhance the visual display of a homogeneous parameter with an anoma-
lous region. The underlying assumption s that cells with similar pixel values
correspond either to the background or to the anomaly.

These operationsare nonlinear. When nonlinear proceduresare part of asequence
of signal processing operations, thefinal result will depend on the order in which
they are implemented. Linear and nonlinear filter effects are demonstrated in
Figure4.5.

4.1.5 Recommendations on Datfa Gathering

The best approach to noise control is to improve the data at the lowest possible
level. Start with a proper experimental design:

e Carefully design the experimental procedure to attain the best raw data.
Explore various testing methodologies and select the most robust procedure
you can implement within the avail ablefacilities. Whenever possibleand rele-
vant, select variable ranges where the phenomenon has a clear responsedistin-
guishable from random response. Explore different excitations and boundary
conditions. For example, a materid with low-strain dynamic stiffness and
damping can be characterized using pul se propagation, resonance, logarithmic
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Original image Smoothing L aplacian smoothing
Vertical edge detection ~ Horizontal edge detection Thresholding

Figure 45 Examplesd digitd image processng ©@ MIT. Printed with permission

decrement, and quasi - statichysteric behavior; each of thesetechniquespresents
advantagesand limitations.

e Sdect the transducers that are best fitted to sense the parameter under
study. For example: if theintent isto monitorlow-frequency oscillations, avoid
accelerometersbecausetheir responseis proportional to the displacement mul-
tiplied by w?; therefore, high-frequency noise will be magnifiedin the signal.

e Match the impedance between the transducer and the medium. Improper
impedancematching reducesthe detected signal amplitudeand aggravatespoor
signal-to-noise situations.

® |ncrease signal level whenever possible, but avoid amplitude-related effects
such as unwanted nonlinearities.

* Noise level. Reduce the noise level by isolating the system. Consider noise in
al formsof energy: electromagnetic(shield and ground), mechanical (vibration
isolation), thermal and chemical (environmental chamber), and biol ogical (prior
decontamination).

e Use quality peripheral electronics and match electrical impedances.

The Implementation Procedure 4.1 summarizesthe techniques for noise control
in the time domain.
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Implementation Procedure4.1  Noise control in the time domain
Firg and most important

e Attempt to reduce noise before measurements are obtained.

e Consider proper grounding and shielding (including the use of coaxial and
twisted cables), careful selection of transducersand electronics, enhanced
vibrationisolation, adequate control of boundary conditions, enhanced qual-
ity of connections.

Stacking

e Measure the background noise and determineits statistics.

e Edtimate the number M of signalsto be stacked (Equation 4.3). The error
in the stacked measurement decreases with the square root of the number
of stacked signals M.

e Detrend individual signals and remove spikes.

¢ Arrangethe M stored signalsin matrix form x;, where the index i relates
to the discretetime and Kk is the label of each record.

e Compute the average signal x;**"*>

1
<avr> __
Xi - M in,k
k

Moving average
¢ Select akerndl. Defineitslength m (and odd number) and weightsk,. Recall
that if T is the shortest relevant period in the signal, then m < T/(10-At).

¢ Convolvethe kernel k, with the signal x;:

p=m

yi = E KP'X(. m—l)
- +p
p=1

e When using this equation, the sum of al weights in a smoothing kernel
must equal Zx,=1.

e Kernels must be redefined at the boundariesof the arrays, wherei—p<0 or
i+ p>N—1 (where the array x contains N elements 0. .. N—1). Physical
principles must be taken into consideration (see Chapter 9).
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Example

Signal enhancement by noise control underlies al measurement and signal
processing tasks. Theeffectiveness of stackingand moving averageis demon-
drated in Figures 4.2 and 4.3.

Note: Noise control with frequency domain operations is presented in
Chapter 6. That discussion vill facilitate the design of filtering kernels.

4.2 CROSS- AND AUTOCORRELATION: IDENTIFYING
SIMILARITIES

Cross-correlationis a very robust signal processing operation that permits iden-
tifying similarities between signals even in the presence of noise. How can a
computer be trained to identify similarities between two arrays of discrete val-
ues? Consider the two similar but time-shifted signals x and z in Figure4.6. The
cross-correlation operation gradually time-shifts the second signal z to the left.
For each time shift k-At, the pair of valuesfacing each other in thetwo arraysare
multiplied x;.z;,, and summed for all i-entries. Thisresult is the cross-correlation
between x and z for the k-shift:

oot =3 K 2y (4.8)

<X,2>

The processis repeated for different k-shifts, and cross-correlation valuesce,
are assembled in the array cc<%%>. !

The cross-correlation between signas x and z in Figure 4.6 when the time
shiftis zero, i.e. k = 0, leads to the multiplication of nonzero x amplitudes with
zero z amplitudes at low values of t;; the opposite happens at high values of t;.
Therefore, the cross-correlation of x with z when k = 0 is equal to zero. As the
signal z is shifted relative to x, k > O, the cross-correlation sum begins to show
nonzero vaues. Thebest matchisobtained when thesignal x issufficiently shifted
to superimpose with signa z, and the cross-correlation reaches its maximum
value.

! The cross-corrdation in continuous time is a function of the time shift 7:

oo

cc M (1) = / x(t)-z(t+7)-dt.

—00
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Figure 46 Cross-corrdation. The sgnd z shiftsto theleft as k increases The pesk in
the cross-correlaion sum takes place when k = 32 and the two Sgnds are superimposed

As the signa z is shifted past signal x, vaues on the right end of x face
empty sites. Thesesitesarefilled with " imaginary entries”. If thetwo arrayshave
N entries each x = (X,,X;,..Xy_1) and z = (2,,2,,..2y_; ), and cross-correlationis
explored for the full length of the signals, the signal z will be tail-padded from
i=Ntoi=2N — 1so that it can be shifted past x fromk =0tok =N — 1. The
imaginary entries can be either zeros (when signalshave been detrended), values
compatiblewith the signal trend, or the same " circular'* signal z wrapped around
so that zy =z, zy,; =2, €tC. (This requires a detrended signal). The selected
padding alternative must be compatible with the physical reality under study.

For clarity, the computation of cross-correlationin the form of a spreadsheet
isshownin Figure4.7. Each columnin the central block showsthe shifted signal
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Figure 47 Spreadshedt for the computetion of cross-corrdation

z;,, for increasing values of k. The signal x remains unshifted in all columns.
The sum of each column is equal to the cross-correlation of x and z for each
shift k: thefirst column correspondsto zero shift, k = 0, the second column for a
shift of onetimeinterval, k = 1, etc. Implementation Procedure 4.2 presentsthe
step-by-step computation of the cross-correlationbetween two signals.

Implementation Procedure42  Cross-correlation sum

1. Arrangesignalsx and z in vector form. The length of array x is N.
2. Tail-pack signal z so that it can be shifted along the N entriesin signal x.

3. For a given k-shift in z, the k-th element of the cross-correlationsum is
equal to

Z X;  Zitx
i

4. Continuewith next k until k = N — 1.

5. The resultingarray of N entriesisthe cross-correlationsum between signals
X and z.



80 TIME DOMAIN ANALYSES OF SIGNALS AND SYSTEVIS

If the signal z has reversed polarity, the peak of the cross-correlation is
negative. A plot of the absolute value of the cross-correlation |cc<*#>] often
facilitates comparing the magnitude of positive and negative peaks.

Examples

Figures4.6, 4.8, and 4.9 show several numerical examplesaf cross-correlation.

Note: The crosscorrelation can be efficiently computed in the frequency
domain (see Chapter 6).

4.2.1 Examples and Observations
Identifying Similarities

Thefirst signal x in Figure4.8a isa single-frequency sinusoid whereasthe second
signal z consists of x plus a high-frequency sinusoid. The cross-correlationis
plotted on the right-hand side of Figure 4.8a. It was obtained by tail-duplicating
signal z, given the periodicity of these signals. The cross-correlationof x and z
depictsthelower-frequencycomponent, whichiscommon to both signalsx and z.

Theeffectsof positive and negative high-frequency fluctuationsin signal z cancel

each other in the cross-correlation sum.

Determining Travel Time

Consider the nondestructiveevaluation of some materia of interest. In this par-
ticular case, the intent is to measure the sound wave velocity to characterizethe
low-strainstiffnessof the material. Sent and received noiselesssignalsare shown
in Figure 4.8b. Visual observation indicatesthat the received signal is an atten-
uated version of the input signal but shifted 64 time intervals; hence, the travel
time across the specimen is 64-At. When the cross-correlationis computed, the
peak in the cross-correlationtakes place at k = 64. (Note: if the received signa
z had opposite amplitude, the cross-correl ationpeak would be a negative vaue -
Figure4.8c.)

Identifying Replicas in Noisy Signhals

Cross-correlationis very robust with respect to noise. Figure4.8d showsthe same
received signal z as Figure 4.8b but masked in noise. The cross-correlation of
signal x with the noisy signal z is shown in Figure 4.8d. Once again, the peak
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Figure 48 Examples of cross-corrdation: (a) identifying similarities; (b) determining
trave time; (c) effect of reverse polarization; (d) identifying replicas in noisy signals;
(e) lossy and dispersve media
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of the cross-correlationtakes place at k = 64. The clarity of the cross-correlation
peak in the noisy signd is surprising and most relevant to laboratory and field
testing. Based on observations made in relation to Figure 4.8a, the effect of
random fluctuations between the two signals tends to cancel each other in the
cross-correlationsum.

Biases: Lossy Media, Dispersive Media and Multiple Peths

A wave experiencesfairly complex transformations asit traversesa materia. For
example, different frequency components travel with different phase velocities
and aresubjectedto differentlevelsof attenuation. Consider thetwo signalsshown
in Figure4.8e. Thedifferencein thefirst arrival correspondsto k = 64. However,
the cross-correlation reaches its maximum when the energy peaks in the two
signalsare aligned, k = 74 (group velocity). If the mediumis not homogeneous,
there will be more than one path for energy propagation (due to reflectionsand
refractions). The maximum value of cross-correlationwill correspond to the path
that conducted most energy, not necessarily the shortest time path.

Observations

These examples allows us to make the following observations:

e The cross-correlation procedureis able to identify replicas of asignal in other
signals, even in the presence of significant background noise.

e Thevaue d the shift k for the peak cross-correlationindicatesthe time delay
between replicas, t<da> = k<reak> At Changesin frequency content between
input x and output z require the reinterpretation of cross-correlation when
determining time shift between signals.

e |f thesignal and itsreplicawere of opposite polarity, for examplez; = —x;, the
largest value of cc<**> would be negative. A positive peak valueindicatesthat
both signals have the same polarity. Polarity reversa can be equipment related
such as the wiring of transducers, or it can be of physical nature and provide
important information about the system, such as the reflection of sound from
a free boundary versus a fixed boundary.

e Periodic components common to both signals x and z manifest in the cross-
correlation cc<**. Therefore, cross-correlation can be used to assess the
presence of selected frequency components.

® The cross-correlationaf two infinitely long sinusoids of different frequency is

<X,Z>

null, cc; =0 for al k. Thisis also the case for the cross-correlationof any
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signal with zero-mean random noise. Cancellationis not complete when the
number of pointsis small because there are not enough termsin the summation
to attain statistical equilibrium.

4.2.2 Aufocorrelation

Autocorrelationis the cross-correlationof a signal with itself.

ac;x> — CC;X’X> — in > (49)
i

Autocorrelation permits identifying internal timescales (or length scales) within
a signal such as the repetitive appearance of a pattern or feature. These interna
scales manifest as peaks in the autocorrelationarray ac<*>.

The highest autocorrelationvalue occursfor zero shift k = 0 and it is equal to
ac®> = Zx?. The autocorrelationof a finite-length array of zero-mean Gaussian
noise tends to zero everywhereelse but at the origin, that is acg*> = 0 for k>0.

Example

Consider a long sted rod excited with a short signal. An accelerometer is
mounted at one end of the rod (Figure 4.9a). The excitation travelsin the rod
back and forth with velocity V, The signal detected with the accelerometer
shows successive passes of the excitation signal, changing polarity each time,
with a well-defined interval that corresponds to the travel time for twice the
length L of the rod, t=2-L/V, 4 (Figure 4.9b). Successive repetitions of the
signal have lower amplitude due to attenuation and become gradualy masked
in the background noise. The autocorrelation of this signal depicts the multiple
reflectionsand the characteristictime of the process, in this case: k-At = 180At
(Figure 4.9c). The result is clear even in the presence of significant background
noise.

4.2.3 Digital Images - 2D Signals

Correlation studies with digital images help identify the location(s) of a selected
pattern z in an image x (cross-correlation)or discover repetitiveinternal scalesin

2 Thedefinition of autocorrelation in continuoustime is

ac<*> (M) = [ X (t) ~x(t+T) -dt.

—80
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Figure 49 Autocorrelation: (a) experimental setup to detect multiple reflectionsin a
steel rod, (b) anoisy signal with several reflections; (c) autocorrelation.Theautocorreation
sum hasthe largest peak a k =0, then a negativepesk at k = 180, and a smaller positive
peak a k = 360. Peaks point to the time when the signal " finds" itself

asingleimage x (autocorrelation). In 2D correlation studies, one array is sequen-
tially shifted relative to the other in both directions; therefore, the correlation
arrays are two-dimensiona in terms of the k and g shifts:

cck,;x‘z> = Z Z Xy * Zu+k,v+q (4 10)
v u

A similar expressionis written for autocorrelationac=*. Two-dimensional cor-
relation i sa computationallyintensive operation. In many applications, the image
zisasmall imageand it is shifted only within some predefined subregion of x.
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4.2.4 Properties of the Cross-correlation
and Aufocorrelation

The cross-correlation sum is not commutative. In fact, in terms of 1D signals,
ce, M =cc " (4.11)

which meansthat it is the same to shift signal z to the left as to shift signal x to
theright. A salient relationship between the cross-correl ationand autocorrelation
operatorsis

(cc:x,z>)2 < aC0<x> -ac;” for all k (412)

4.3 THE IMPULSE RESPONSE - SYSTEM IDENTIFICATION

The impulse response h is the output signal generated by a linear time-invariant
(LTI system when the input signal is an impulse. By definition, the units of h;
are [output/input]. The impulse response contains al needed information about
the system.

4.3.1 The Impulse Response of a Linear Oscillator

L et usdevel op theseideas within the context of a singledegree of freedom (DoF)
oscillator with mass m supported on a spring k and a dashpot ¢ (Figure 4.10a).
The single DoF system is an LTI system. This model can be used to ssimulate or
analyzeawide range of dynamic systems, fromionic polarizationat the molecular
level (Figure 4.10b), to the response of experimental devices such as isolation
tables and resonant instruments (Figure 4.10c), and the vibration of atrailer and
the seismic responseof buildings (Figure 4.10d).

The equation of motion representsthe dynamic balanceof participatingforces
acting on the mass when subjected to forced vibrations x(t):

m-y+c-y+k-y=x (4.13)

where

X is the time history of theinput force,
y is thetime history of the displacement response, and
dotson y denote first and second derivatives (velocity and acceleration).
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Figure 410 The equivalent single DoF oscillator is commonly used in the analyss
of engineering and science systems. (a) damped linear oscillator; (b) ionic polarization
in AC fidd; (c) dectrical RCL amplifier; (d) seismic response of buildings with active
dampers

Imagine impacting the mass of the oscillator with an "'impulse”. The oscillator
will be set in motion and the amplitude of the impulse response h; at discrete
timet, = i. At will be (for underdamped systems, D < 1.0):

e—D-wn-i-At

m-o,-v1-D?

where system damping D and naturd frequency o, are determined by the oscil-
lator parametersm, k and c:

b = At. .sin(wn-«/l—D2-i -At) (4.14)

D=—— damping (4.15)
2 . m

k
0, =4/ natural angular frequency (4.16)

The natural period T, is related to the angular frequency w, as T =2w/w,.
Impulseresponsesh for single DoF systems with the same natural frequency but
varying damping levels are shown in Figure 4.11.
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Figure 411 Single DoF ostillator. Impulse responseh for different vauesdf thedamp
ing coefficient D. The sampling rate is sdected S0 thet T, /At =12

The unitsof theimpulseresponsefor the single DoF system are [output/input],
that is [displacement/force]. This agrees with the units of the impulse response
predicted in Equation 4.14: [time?/mass).

Notethat the amplitudeof theimpulseresponsein discretetimeh is not unique,
but it is proportional to the selected sampling interval At (Equation 4.16 - for
comparison, the impulse responsein continuoustimeis presented in the footnote
below).? Thejustificationbecomesapparent when theroleof theimpul seresponse
in discrete time convolutionis recognized in the next section. For now, let us
just say that the impulse response will be repeated at every discrete time t; so
that a smaller sampling interval At means more freguent repetitionsof smaller b,
values and the effects cancel out in the summation. Thus, convolutionresultswill
be independent of the selected At. (Note: At must satisfy the Nyquist criterion,
Chapter 3.)

3 Theresponseof a single DoF system to an impulsein continuoustimeis

-sin m,,-«/ﬁ)?-:
( )

e—D""n't
ht)= ——F——
© m-w,-v1—D?
The impulse response h(t) corresponds to an ideal impulsesignal that lasts At—0 and has infinite
amplitude, yet its area is 1. The function h(t) only depends on w, and D. The units of h(t) are
[output/(input-time)].
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4.3.2 Determination of the Impulse Response

The impulse and impulse response are mathematical constructs, and they depart
form physical reality and immediate experimental determination. Difficultiesare
overcome by measuring input and output signals, and processing them in the
frequency domain (Chapter 6) or through formal deconvolutionin thetimedomain
(Chapters 8 and 9). Still, simple tests can be performed to gain insight into the
characteristicsof the system and the nature of its impulse response.

The operational definition of an impul se-typeexcitation impliesa signal with
much shorter duration than any inherent timescale in the system under study.
From the point of view of discrete signals, the duration of a physical impulse
should be about the sampling interval At. Once these conditionsare satisfied, the
amplitude of the response must be related to the energy delivered to the system
through the applied physical impulse.

An aternativeand often simpler approachis to use a step function u as input.
The impulse 3 is the derivative of a step, 8; =u;,, —u; (Chapter 3). Therefore,
system linearity impliesthat the impulse responseh is the derivative of the step
response st, and h; = sr;,; — sr;. There may be some subtletiesin this approach.
For example, consider the implementation of this method with a single DoF
oscillator; there are two possibilities:

e A positive gep: bring a small mass m* onto contact with the oscillator mass
m and release it at once. (Note: the mass m* should not be dropped!) The
amplitudeof the stepisg. m*.

o A negative step: enforceaquasi-staticdeformation (aconstantforceisapplied),
then release the system at once.

In both cases, the mass m will oscillate about the final position, gradualy con-
verging to it. The time-varying displacement normalized by the amplitude of
the step is the step response sr. Note that the effective mass of the oscillator is
(m+m*) in the first case and (m) in the second case. Then, different damping
values and resonant frequencies will be determined in these two tests accord-
ing to Equations 4.15 and 4.16. Therefore, proper system identification requires
analytical correction in the positive step approach.

4.3.3 System Identification

The impulse response completely characterizes the LTI system. If there is an
adequate analytical model for the system under study, the measured impulse
response h can be least squaresfitted to determine the system parameters. This
is theinverse problem.
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Following the exampleof a single DoF oscillator, let us assumethat the system
under consideration resembles a single DoF. In this case, Equation 4.14 is fitted
to the measured impulse response to determine m, w,, and D. Some system
characteristicscan beidentified with point estimators. For example, the decrement
of peak amplitudes h<P%> in the measured impulse response h can be used to
compute the damping D:

1 h<pes>
D= In( s #.17)

where h<res> and h<rexteed> gre two consecutive peaks (see Figure 4.11). If
dampingislow (D < 0.1), the time between consecutive peaks is the period T,
of the single DoF system. Thus, the natural frequency o, is

© =2m ! (4.18)

n ) g<next peak> _ ¢<peak=

4.4 CONVOLUTION: COMPUTING THE QUTRUT SIGNAL

The system output signal y is a convolution between the input x and the sys-
tem impulse response h. The mathematical expression for convolution logically
followsfrom these observations:

e Theimpulseresponseh fully characterizesthe LTI system.

e A signa x can be decomposed into scale and time-shifted impulses §,_,
where the scaling factor at the discrete time i=k is the signal vaue x,
(Chapter 3):

X =2 X8y (4.19)
k

e The generaized superposition principle appliesto causal LTI systems; there-
fore," the sumd scaled and time-shzfted impulses + the sum o equally scaled
and time-shifted impulse responses’ .

Then, the LTI system output y to an input x can be obtained by replacing the
shifted impulse §,_, by the shifted impulse responseh,_, in Equation 4.19:

yi= Z Xy by (4.20)
k
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Thisis the convolution sum.* A graphical demonstrationis shown in Figure4.12.
The convolution operator is denoted with an asterisk
y=x%h

(4.21)

If the input signal was decomposed into step signals, the convol ution sum would
be obtained following a similar procedure, starting from the equation of signa
decomposition into steps, and replacing the step for the step response.

Dimensiona homogeneity in these equations is preserved because the input
signal is decomposed in terms of values x, with dimensions of [input], whereas
the shifted impulses are dimensionless. On the other hand, the discrete impulse
responseh carriesthe dimensions of the transformation [output/input]. Thus the
output has dimensionsof [output] and the dimensional homogeneity of Equations
420 or 4.21 is satisfied.

4.4.1 Properties of the Convolution Operator -
Combination of Subsystems

The convolution operator has several important properties (see exercises at the
end of the chapter):

e commutative: xxh=hxx (4.22)
e associative: (x*h<"")xh**” = x* (h~"> *h**") (4.23)
o digributive:  (x*h<"”) T (xxh )= xx (b th?)  (4.24)

The numbers shown as superscriptsin angular brackets <> indicatetwo different
impul se responses. The associative property can be used to computethe response
of asystemthat consistsof two subsystemsin serieswith knownimpul seresponse:

hgb> — h<1> 4 h<?> On the other hand, if asystem consistsof two subsystems
in parallel, theimpulseresponsedf the system can be computed from theimpulse
response of the individual subsystems as prescribed by the distributive law:

h=gebal> — p<1> +K<2> These results can be generalized to systems with any

combination of seriesand parallel subsystems.

* The convolution sum in continuous time is defined as

y® = [ x(@-n(t-1)dr
Thisintegral isalso known as" Duhame'sintegral” and it first appeared in the early 1800s. Note that
the integration includes the timescalein dt whereas the summation in discrete time does not, which
isin agreement with differencesin units between h(t) and h discussed earlier.
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4 Input signal

xT=(13-1000)

4 Impulseresponse
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Figure 4.12 Graphical demongration of the convolution sum
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4.4.2 Computing the Convolution Sum

Theimplementationof the convolutionoperation in discretetimeis demonstrated
in theform of a spreadsheetcomputationin Figure4.13. Each row showsa scaled
and time-shifted impul se response. For example, the row correspondingto k = 2
showsthe array for the impulse response (b, h;, h,, h, .. .) shifted two places
and scaled by x,. Entriesin every columni are summed to compute the value of
the output y; corresponding to discretetimet, =i. At.

Convolution can be easily programmed in any agorithmic programming lan-
guage (FORTRAN, C, Basic), with spreadsheets such as the one shown in
Figure 4.13, or with mathematical software. Implementation Procedure 4.3 sum-
marizes the algorithm for computation of the convolution sum and Figure 4.14
presents an example of the system response as computed with the convolu-
tion sum.

i=0 i=1 i=2 i=3 i=4 i
k xo-hy x-hy X -hy X, -hy Xy -hy X by
0 Xp-hg Xo-hy Xy -hy Xo-hy Xy-hy
1 X, -hy X, -hy X; -hy X, -hy
2 X, hy X,y X, - h,
3 X;-hy X;-h
4 X4 -hy
7
2 4 4 4 4

=

Xo - hy Zk:xk'hl—k ?Xk'hZ—k Xk:xk'hii—k %xk'h:t—k ;xk'hi—k

Figure 413 Convolution. Computation Soreedshect

Implementation Procedure43 Convolution sum

1. Determinethe array that characterizesthe systemimpulseresponse4 = (h,,
h;, hy,... h,...) indiscretetimet; =i.At.

2. Digitizethe input signal with the same sampling interval At to produce the
array x = (Xg, X15 X3, - - - 5 X;, = « « ). The number of pointsin arrays4and X
does not need to be the same.
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3. Foragiven valuedf i, perform the multiplicationsindicatedin thefollowing
equation, and sum all valuesto obtain y;. The summationisin k.

Y; =Zxk'hi—k
k

4. Repesat for next i, until the last element of theinput signal x,_; is reached.
Theresultingarray y is the output obtai nedfrom the convolutionof x and h.

Example

Consider a conveyor belt. The impulseresponseh of a support is determined
with a sledgehammer (Figure 4.14a). The predicted time history x of the
repetitive forcing input is shown in Figure 4.14b. The estimated response
of the support is computed by the convolution operation y =x*h, and it is
shown in Figure4.14c.

Note: A more efficient convolution algorithm is presented in Chapter 6.

(a) Impulse response h

s 15
WWEWW h nn““" ’ ==
' " IH A 127 255

{b) Load higtory x

(c) Convolution sum y

Response: y=x*h

Figure 4.14 Convolutionexample. Thedynamicresponseat thesupport of abelt conveyer
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4.4.3 Revisiting Moving Kernels and Cross-correlation

Signal processing with moving kernels (Equation 4.4), cross-correlation (Equa-
tion 4.8) and convol ution(Equation4.20) sharesimilar mathematical expressions:

moving kernel cross-correlation convolution
p=m

Vi= 2 Kp X¢ m-1 o0 P = 30X, - Zigy ¥i= 2 X by
p=1 i—- 3 +p i k

Therefore, these three operations are classified as convolutions. The similarity
between cross-correlation and convolution requires careful consideration. Com-
parethe columnsin the respectivecomputation sheets (Figures 4.7 and 4.13). The
two sheetsare the sameif: (1) both signalsare of the samelength N, (2) thesignal
x istail-reversedin the cross-correlationoperation, and (3) circularity applies so
that the signal h repeats before and after, or it "wraps around. In this case,

" =z % rev(x) (4.25)

Thetail-reversedversionof array x =2, 4,6, 5,3, 1] isrev(x) = {2, 1,3, 5,6, 4].
Notethat thefirst elementis x, in both arrays. While convolutionis commutative,

cross-correlationis not (Equation 4.11, cc.™* =cec=;*”) and this is properly
accounted for by tail reversal in Equation 4.25.

45 TIME DOMAIN OPERATIONS IN MATRIX FORM

Convolutionoperations,including moving kernelsand cross-correlation, are sum-
mations of binaryproducts. Thisisanal ogousto matrix multiplication(Chapter 2).

The binary products involved in the convolution operation can be reproduced
in matrix form by creating a matrix h where each column is a shifted impulse
response (Figure 4.15): the k-th column in matrix h is the array h shifted down
k places. The signal x isan Nx 1 vector, and the convolution operation in matrix
form becomes

y=h-x (4.26)

=

Convolution is commutative; therefore, convolution in matrix form can be
expressedin termsaf the matrix x made of vertically shifted copiesof thearray x,

y=x-h (4.27)

The definition of convolution in the time domain does not require both arrays
X and h to have the same number of elements; therefore, the matrix 1:1 may not
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\_ Each columnin b isashiftedreplicaof impulseresponseh

Figure 415 Convolution sum in matrix form. Matrix multiplication involves the sum-
mation of binary products. These are the operationsrequired to implement convolution

be square. If the matrix h in Equation 4.26 were invertible, the input x to a
system could be inferred from the output y asx =h"".y. Thisis deconvolution.
Likewise, if the matrix x in Equation 4.27 were invertible, the system impulse
response h could be determined knowing the input and the output, h=x"""v.
This is system identification. These two inverse problems will be addressed in
Chapter 8.

Although convolution operationsin the time domain can be readily expressed
in matrix form, higher computational efficiency i sachieved when these operations
are performed in the frequency domain. Time domain operations may still be
of interest in some applications, such as deconvolution of data streamsin real
time. Furthermore, time domain operations avoid inherent assumptions made in
the transformation to the frequency domain that lead to circular convolution
(Chapters5 and 6).
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46 SUMMARY

e The decomposition of signals into scaled and shifted impulses leads to the
anaysisdf signalsand systemsin the time domain.

e The first and most advantageous strategy to control noiseis a proper experi-
mental design.

e Detrending techniques remove low-frequency noise.

e Signal stacking is a robust alternative to control noise effects during signal
recording. Signal stacking leads to increased signal-to-noise ratio, resolution,
and dynamic range.

e Moving kernels permit implemention of a wide range of signal processing
procedures. In particular, moving kernel scan be used to remove high-frequency
noise in recorded one-of-a-kind signals.

e The similarity between two signalsis assessed with cross-correlation. Cross-
correlationis useful in discoveringreplicasof asignal in the presence of noise
and in identifying selected frequency components. Stationary noise with zero
mean cancels out in the cross-correlation sum.

e The impulse response h fully characterizes the LTI system. It is a mathe-
matical construct and its direct experimental determinationis inappropriateor
inconvenientin most cases.

e The output signd y is the convolution of the input signal x with the system
impulse responsesh. Operationally, convolutionis the sum of shifted impulse
responsesh, scaled by the corresponding amplitude of the input signal.

e Signal processing with moving kernels and cross-correlation operations are
convolutions.

e Convolutionoperationscan be expressed in matrix form.
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SOLVED PROBLEMIS

PA.1 Application: longitudinal wavepropagation. A cylindrical aluminumrodis
suspended by two strings. The rod is impacted at one end and signals are
collected with an accel erometer mounted on the opposite end (see sketch:
rod length L = 2.56 m). Captured signals record multiplereflectionsin the
rod. Giving an ensembleof 20 signals: (a) detrend the data, (b) stack, and
(c) calculate the travel time between reflections using the autocorrelation
function. Calculate the wave velocity in the rod.

Accelerometer Impact

ToAID and storage

Solution: Twenty signals are collected with a sampling rate of 500 kHz so
that the sampling interval is At =2 . 107 s (data by J. Alvarellos and J. S.
Lee - GeorgiaTech). A segment of one record is shown next:

e M

signal 500 U 1000 U 1500 2500

14

—t

Detrend each signal. Calculate the DC component for each signal and
subtract it z,<detrended> — 7, — DC. Repest for all 20 records.

Detrended
signal
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Signal stacking. Implement stacking to improve SNR. Note: given the high
signal-to-noiseratio in the origina signal, and the inherent noise cancellationin
autocorrelation, stacking is not needed in this case.

1+
1
Stacked

wa (N NN A A [
siga 0\/500U1000\/1500V2000V2500\/3d00

Autocorrelation. Calculate the autocorrel ation using the stacked signal:

| (N

correation V \jsov W Njkov *\%bov ‘\%BOQ/ W

-100-+

The time difference between consecutive peaks is the travel time tt between
reflections:

tt =Ak-At=7507-2-10"% =1.014-103s

The wave velocity in the duminum rod is

2L 2.2.56m

m
=T S Tola 105 oy

Thisis the longitudinal wave velocity in arod (Note: it is lower than the P-wave
velocity in aninfiite body V, =6400m/s).
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P4.2 Convolution. Consider the following short signads and demondtrate the
associative property of the convolution operator.

x=[011000fT y=[001100" z=[0001 1 0T

1 1 1}

(=)

0 23 o : ]

Solution:

x*y=[000121)7 x*(y*z)=[13310 0]

[~}

5 0 5

i

i

(=

y*z=[21000 1j7

i

x*(y*z=(13310 0/

i

The signas on the right-hand column verify (x*Y) ¥z = xx(y *z).

ADDITIONAL PROBLEMS

P4.3 Noise contral in the time domain. Noise control by stacking in time or
in frequency domains is based on statistical principlesrelated to the dis-
tribution of the mean. (@) Prove by numericd simulation the relationship
between the mean of the meansand the population mean, and the standard
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deviation of the sample meansin relation to the population standard devi-
ation. (b) Derive the equation to compute the number of signalsrequired
so that the mean x;**"> at discretetimei is within predefined bounds, with
probability p.

Noise control. Is smoothing with moving average a linear operation? Is
median filtering a linear operation? (Hint: start with the definition of a
linear system, Section 3.5.)

Stacking and resolution. Use numerica simulation to explore the effect
of stacking on resolution and dynamic range for different noise levels.
Discuss.

I mpulse response. Demonstrate that if the input x is a step function, the
derivative of the step response is the system impulse response. (Hint:
link the concept of numerical derivative with the modified superposition
principlefor LTI systems.)

Convolution operator. Verify that convolution satisfies the distributive
property (numericaly or in close form). Does the demonstration require
the assumption of linearity?

Convolution and cross-correlation operators. Given: x=[0, 1,0, -2, 0,
0,0,0] and h=[0,0,0, 10, 10, 10, 0, 0], compute y =X h and cc<*">
(no computer needed!)

Convolution and cross-correlation. Prepare a detailed flowchart for pro-
gramming the convolution and cross-correlation operators. Program the
two algorithms. Use simulated signals to compare results computed with
the cross-correlation algorithm and using the convol ution algorithm with
tail reversal. Compute the autocorrelationof background noise.

Convolution in matrix form. Prove that convolutionin matrix form can be
implemented by writing either the impulse response or the input as the
transformationmatrix. In other words, show that Equations4.26 and 4.27
lead to the same result.

Convolution in matrix form. Write the matrix convolution operator h for
an underdamped single DoF system excited by a transient at its base. Is
the matrix invertible?

Application: optimal design of speed bumps. Consider a car as a single
DoF systemexcited at its base, with damping D and resonant frequency w.
Use this model to design speed bumps to promote cruising speeds lower
than a preselected speed V-
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P4.13 Application: pavement monitoring system. Utilize the conceptsdevel oped
in Problem 4.13 to design a pavement monitoring system. The god is to
determine the pavement surface profile from acceleration records taken
with a small whedl towed behind a car. Design an experimenta proce-
dure to calibrate the system and discuss possible nonlinearities related to
wheel diameter and the geometry o surface features. Note that thisis a
deconvol ution-typeinverse problem!
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Frequency Domain
Analysis of Signals
(Discrete Fourier
Transform)

Discrete time signals can be analyzed or decomposed into a series of sines and
cosines. This representation is called the discrete Fourier transform (DFT) of
the signdl; it is reversible and no information is lost. The DFT underlies most
signal processing strategies, facilitatesthe interpretation of signal's, enhancesthe
characterizationof systems, and improvesthe efficiency of algorithms. However,
there are several inherent assumptionsand limitationsin this transformation.

Why are sines and cosines selected to analyze signals and systems? There
are two reasons. First, sines and cosines are orthogonal functionsand form a
base for the analysis of signals, as discussed in this chapter. Second, sines and
cosines are eigenfunctions for LTI systems; this will be the starting point for
Chapter 6.

5.1 ORTHOGONAL FUNCTIONS - FOURIER SERIES

Two functions are orthogonal in the interval[a, b] if

ifu#v
ifu=v

b
[to-foa= {g (5.1)

Discrete Signalsand Inverse Problem ], C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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where f, and f, are functions with real and imaginary components, f indicates
complex conjugate of the function f, and c is any number different than zero.

Given a sinusoid of circular frequency « = 2/T, its u-th harmonic is another
sinusoid with circular frequency w = u- (2mr/T), where uisan integer. Harmonics
fulfill the orthogonality property; therefore, the following relationshold:

 /om - 0 ifu#l
sin{ —t}-sinfu—t}-dt={T 52
fun(Fo)un(oF)amiT I, e
0 2
T .
2 ) 0 ifu#1
fcos (—Et) - COS§ (u—qzt) dt = [11-‘ ifu=1 (5.3)
T T =
0 2
g 2
Of sin (szt) - cos (uTTrt) Ldt=0 for all u (5.4)

Invoking Euler's identities (Chapter 2), these equations show that complex expo-
nential -are orthogonal as well (see solved problem at the end of this Chapter):

T (2m (2 .
/e"( 7 .e“l'(“ 7 {0 fu#l (5.5)
T ifu=1

0

The integral equation used to determine the orthogonality of two functions is
equivalent to the equation used to determine the value of cross-correlation for
zero time shift (1 =0 in continuoustime). Hence, orthogonality concepts support
the utilization of cross-correlationto identify frequency similarity between two
signals (Chapter 4).

5.1.1 Fourier Series

The orthogonality of harmonics suggests that these functionsform a base in the
open interval [0, T[. Then, a continuous periodic function f(t) with period T
can be expressed as a linear combination of sinusoids with frequenciesthat are
multiples of the fundamental circular frequency 2m/T. The summation is known
as Fourier series. The value at discretetimet; is

f, = f: [a, -cos (u%q) +b,-sn (uzTTrt,)] (5.6)

u=—=00

where the coefficientsa, and b, are redl.
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5.1.2 An Intuitive Preview of the Fourier Transform

Imagine N points in the x—t Cartesian coordinates x = [Xg, X,, Xps X35« « « J.
If a polynomid is least squares fitted through these points p(t) =a+ bx+
cx?+dx3 T . ., we could call the set of coefficients p=[a, b, c, d,...] the
"'polynomial transformof x”. -

Likewise, one can least squares fit the Fourier series (Equation 5.6) to the
signal x. The set of coefficientsX = [a4, by, a,, b,, a;, b, &, b,. ..] iscaled the
Fourier transform of x, which is herein denoted with a capital letter. The subset
made of all a-coefficientsis called the"'red" part Re(X), whereas the subset of
b-coefficients is called the "imaginary" part Im(X). Each subset plotted versus
the frequency counter u providesimportant information about the signal x:

e Theu-thvaluein Re(X) isthe amplitudeof the cosine with frequency u(2w/T)
that is needed to form the signal x.

e The u-th value in Im(X) is the amplitude of the sine with frequency u(2w/T)
that is needed to form the signal x.

where the fundamental period T as the length of the time window, so that the
fundamental circular frequency is 2m/T. Figure 5.1 showsa collection of simple
signalsand the correspondingreal and imaginary parts of their Fourier transform
obtained by fitting the Fourier series to the signals. The signals are simple
and Fourier transforms are identified by visual inspection and comparison with
Equation 5.6. A few important observationsfollow:

e A constant signal, x; = constant for all i, has no oscillations; therefore, all
terms for u> 0 are null; a,,, =0 and b,., =0. For u=0, cos(0)=1, and
the first real coefficient g takesthe value of the signal. On the other hand,
sin(0) =0, and any valuefor thefirst imaginary coefficient b, could be used;
however, b, =0 is typically assumed. For example, fitting the Fourier series
tox=[7,7,7,7,7,...] results in Re(X) =[7,0,0,0,0,...] and Im(X) =
[0,0,0,0,0,...], asshownin Figure$5.1a.

e The Fourier transform of a single frequency cosine signal is an impulse in
Re(X), whereas the transform of a single frequency sine is an impulse in
Im(X). For example, if a sine signal with amplitude 7 fits three timesin the
time window, then the Fourier transform obtained by fitting Equation 5.6 is
an impulse corresponding to the third harmonicin the imaginary component,
b, =7, and Re(X) =[0,0,0,0,0,0,...] and Im(X) =[0,0,0,7,0,0,...]
asshown in Figure5.16.

® Because the Fourier series is a summation, superpositionis implied, and the
casesin Figure 5.1d and e are readily computed.
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Figure 5.1 Smple signals and the corresponding real (cosine) and imaginary (sine)
componentsof thefitted Fourier series. Notethat the truncated sinusoid requiresadditional
frequency components to synthesize the signal
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e What isthe Fourier transform of asignal duration T with a one-cyclesinusoid
duration T/3, shown in Figure 5.1f? A good initial guessis to assume that b,
will not be zero. Furthermore, there must be other nonzero real and imaginary
components; otherwise, the sinusoid would be present throughout the duration
of the signal.

This intuitive preview suggests a robust interpretation of the Fourier transform:
it is curve fitting the signal a series of cosines (real part) and sines (imaginary
part). However, there are several subtleties. For example, note that the signal x
exists from time zero to T, that is 0 <t; < T. However, the sinusoids that are
used to fit the signal x exist from "'the beginning of timetill the end of time, dll
thetime", that is —e <t < +o0. The implicationsof discretizationare explored
in the next sections.

5.2 DISCRETE FOURIER ANALYSIS AND SYNTHESIS

There are four types of Fourier time-frequency transforms according to the
continuousor discreterepresentationof theinformationineachdomain: continuous-
continuous,conti nuous-discretedi screte-continuous, and di screte-discrete. Current
engineeringand scienceapplicationsinvariablyinvol vedi scretetimeand frequency
representations. Consequently, only the case of discrete-discretetransformationis
considered.

There is an immediate and most relevant consequence of selecting discrete
time and frequency representations. The discrete time and frequency Fourier
transform presumes periodic signals. In other words, any aperiodic signa x
with N points[x,, . . . , xy_,] iSautomatically assumed periodic with fundamental
period T = N - At. A schematic representationis shown in Figure 5.2.

521 Synthess The Fourier SeriesRewritten

The Fourier seriesin Equation 5.6is rewritten to accommodatethe discrete nature
of thesignalsin time and frequency domains, and the inherent periodicity associ-
ated with thediscreterepresentation. The sequenceof changesis documented next.

Change #1: Exponentials

Sines and cosines are replaced for complex exponentials by means of Euler's
identitieswith complex coefficients X, (Chapter 2):

f(t) = E X, ST (5.7)
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Figure 5.2 The discrete time and frequency Fourier tranform assumes periodicity.
Therefore, aperiodic signals are converted to periodic signals. The continuousline repre-
sentsthe captured signal. The dotted lines are the presumed periodic repetition from time
—oo {0 +o00

Change #2: Discrete Time

Theinherent periodicity of adiscretetimesignal x isT =N . At and discretetime
timeist, =iAt. Then, Equation 5.7 becomes

“+oc .

1
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Change #3: Nyquist Criterion

The highest frequency that can be resolved from a discrete time signal is the
Nyquist frequency 1/(2-At), as shown in Chapter 3. Therefore, the highest
frequency of any harmonicto beincludedin the seriesisu,,, - (1/T) =1/(2- At).
Replacing T = N - At, the discrete time Fourier series need not extend beyond
U, = N/2. Keeping N summation terms, from —N/2 to (N/2) — 1,

N _
6= 3 X, o) (5.9)
N

u=—:

2

Change #4: Shift in Summation Limits

The complex exponential does not change if either u or u+ N appear in the
exponent because e”2™ = ¢i*™ = 1. Then the summation limits are shifted while
keeping N-terms in the summation. In particular, Equation 59 can be written as

X; = EXU . ej'(u%“i) (5.10)

u=0

where negative frequencies are avoided. The fact that the summation limit goes
above N/2 does not imply that higher frequenciesare extracted from the discrete
signa. Thisisjust a mathematica effect that will be discussed further in the text.
An important conclusionfrom this analysisis that the Fourier series for discrete
time periodic signalsis finite.

5.2.2 Analysis: Computing the Fourier Coefficients

Fourier coefficients X, can be obtained by least squaresfitting the signal x with
the Fourier seriesin Equation5.10: given the array x, identify each coefficient X,
so that the total square error E between measured valuesx, and predicted values
x> is minimized, min[E = 3(x, — x;"**)?]. When the fitting is complete,
theresidua is E=0. (There may be some numerical noise. See solved problems
in Chapter 3.)

A better alternativeis to call upon the orthogonality property of harmonicsto
identify how much the signal x (N points sampled with an interval At) resem-
bles a given sinusoid of frequency w, =u.2w/(N.At). Following this line of
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thought, the Fourier coefficients are computed as the zero-shift value of the
cross-correlation?

X, = Nz_lxi IF) (5.11)
i=0

Notethat Equation’5.11 isasummationin thetimeindex i, whereasEquation 5.10
is a summation in the frequency index u. The Fourier coefficient Re(X;) = X" x;
capturesthe static component of the signal (zero-offsetor DC-offset) and the zero
frequency imaginary coefficient is assumed Im(X,) =0. The array X formed
with the complex Fourier coefficients X, is the *'discrete Fourier transform™ or
frequency domain representation of the discrete time signal x. The magnitude of
the Fourier coefficient X, relates to the magnitude of the sinusoid of frequency
o, =U-27/T that is contained in the signal with phase ¢,

X, =/ [Re (X T Im(X,)  amplitude (5.12)
¢, =tan-' G;: g“;) phase (5.13)

5.2.3 Selected Fourier Pair

The analysis equation and its corresponding synthesis equation form a "' Fourier
par'. From Equations5.10 and 5.11,

N-1 —j-(u%“i)
X, =) x;-e analysis equation: time — frequency (5.14)
i=0
1 N-! j.(ugNﬂi)
X=g > X, e synthesis equation: frequency — time (5.15)
=0

The normalizationfactor 1/N isaddedin the synthesi sequationto maintainenergy
content in time — frequency — time transformations.

There are different Fourier pairs availablein computer software and invoked
in the literature. This Fourier pair is notably convenient in part owing to the

! The Fourier tranform and the Laplace transform in continuoustime are;

Fourier: X(w) = f x(t) .e~Fotde Laplace: X(s) = / x(t) .e~S'dt
wheres isthecomplex variables = o+ j . @. When o = 0, the Laplace transform becomesthe Fourier
trandform. The ztransform is the discrete time equivalent of the Laplace transform.
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parallelism between the analysis and the synthesis equations. (Other advantages
will beidentifiedin Chapter 6.) If the DFT isimplemented with a given analysis
equation, the inverse DFT (IDFT) must be computed with the corresponding
synthesisequation in the pair. Table 5.1 summarizesthe Fourier pair and related
expressions.

The DFT of a one-dimensional (1D) signal in time involves the frequency
o =2m/T and its harmonics. If the parameter being monitored varies along a
spatial coordinate £, the wave number k =2mu/N is used instead. Analogous
to signalsin time, the maximum wavelength A that is captured in the discrete
record depends on the sampling interval A€ and the number of points N so that
A=N.A¢, and the exponent u- .t in the complex exponential becomes

.211 =u- 2m -i-A£=u~2E11-i in space (5.16)

Therefore, the formul ation presented earlier is equaly applicableto spatial vari-
ables.

Table51 Summay: discrete Fourier transform pair and related expessions

Analysis(fromfime — to frequency) Synthesis(from frequency — to time)
N 2R N-1 a3,

x,="F'x, %) =% X, VN
i=0 u=0

Static component: Xy =3 x

Magnitude:  [X,|= \ﬂRe X+ (Im (X,)I

L [mx,)
Phase: q;“:tan‘[__“_]
Re (X,)
identi Nl Ny 2
Parseval's identity: ¥ x2=3%. % X,
i=0 =0

The following expressions are worth highlighting:

1 1
f. =_ f =
me ™2 At

1 1 2 2m
f“_uf—uN-At oo“=2'rrf,,—u—,17—uN'At

Note:

The physica dimensionsare the same in both domains.

Summations in “u” can be reduced to (N/2)+1 terms by recalling the symmetry and periodicity
properties. When the summationis extended fromu = 0 tou= N — | the operationiscalled "double
Sded"”. When the summation is extended from u=20 to N72, the operationis called "'single sided".
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5.24 Computation - Example

In 1965, J. Tukey and J. Cooley published an agorithmfor the efficient imple-
mentationof the DFT. Thisalgorithmand other similar ones developed since are
known asthe'*fast Fourier transform' (FFT). Maximum computati onal efficiency
is attained when the signal length is a power of 2, N =2', wherer is an integer.

Signal analysis and synthesis are demonstrated in Figure 5.3. The aperiodic
tooth signal in Figure 5.3a is transformed to the frequency domain. (Recall
that the discrete time and frequency representation presumesthis signal repeats
itself.) Both red and imaginary components are shown in Figures 5.3b and c.
Observe that the static componentis equal to Xx;. The synthesis of the signdl is
incrementally computed by adding increasingly more termsin the Fourier series.
Figures5.2d—k show the evolution of the synthesizedsignal. Thelast synthesized
signal in Figure 5.2k is identical to the original signal x.

5.3 CHARACTERISTICS OF THE DISCRETE
FOURIER TRANSFORM

The most important propertiesof the DFT are reviewed in this section. Exercises
at the end of this chapter suggest the numerica verificationof these properties.

5.3.1 Linearity

The Fourier transformis a sum of binary products, thus, it is distributive. There-
fore, given two discrete time signals & and Y, and their Fourier transforms X
andY

(a-g+b-z)f§(a-§+b-x) (5.17)

5.3.2 Symmetry

The cosine is an even function cos(uf) =cos(—uf), whereas sine is odd
sin(u8) = — sin(—u@). Therefore, it follows from Euler's identities (Chapter 2)
that the Fourier coefficient for the frequency index u is equal to the complex
conjugate of the Fourier coefficient for —u

X, =X, (5.18)
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5.3.3 Periodicity

As invoked earlier in relation to Equation 5.10, the complex exponentia for
frequency ®, = (U N). (2w/N - At) has the same values at discrete timest, as
an exponentia with lower frequency w, =u(2w/N - At). Therefore,

Xu = Xu+N‘k (5 19)

wherek is an integer. Therefore, the discrete time and frequency domain assump-
tion inherently implies a periodic signal in time and in frequency, and the
corresponding arrays in each domain repeat with periodicity:

2 2
T =N. At (in time domain) N ?ﬂ = Kq: (in frequency domain) ~ (5.20)
Figure5.4 presentsadiscretesignal x and its discretetransform X, and highlights
the periodicitiesin time domain and frequency domains.

5.3.4 Convergence = Number of Unknown Fourier
Coefficients

It would appear that thereare N complex coefficientsX,; hence, 2 - N unknowns.
However, the petiadicity and symmetry propertiesof the Fourier transform guar-
antee that X, = Xy_,, where the bar indicates complex conjugate. Furthermore,
X, and Xy, are real. Then, the number of unknowns is reduced to N. Indeed,
this must be the case: each vaue x; permits writing one equation like Equa-
tion 5.15, and given that complex exponentials form a base, the number of
unknown Fourier coefficients must be equal to the number of equations N. The
following numerical example verifiesthese observations. Consider the time series
x=][1,0,1,1,0,1, 1, 2] with N=8 elements. The DFT of x is obtained using
Equation 5.14:

ulo 1 2 3 4 5 6 7
e |7 145 V2 142 [ 142 -1 [ 1.2 | —1-j-/2 | 1-j-4/2

Note that the array X fulfills the relation X, = Xy_,, and that X, =7 and
X/ = —1 areread; therefore, there are only N unknowns.

Thefact that N valuesin the time domain arefitted with N Fourier coefficients
in the frequency domain impliesthat there will be no convergencedifficultiesin
the DFT of discretetime signals. (Convergence problemsdevelop in continuous



CHARACTERISTICS O F THE DISCRETE FOURIER TRANSFORM 115

Ti ne domain: X 2T
) A A A
nhop ! | phpd
phpght nhnalt
AL VAT T
sy Y oV V VYV N=sdy VY 128
11
Frequency domain: 40-
5 Re(X,) |
] |
) “ ? }
| lh\r’l‘/\’j l‘ 4 - - mJ'lMli\‘ . J
%  y-64{ N2=-32 | [0y Ne=32 {64 %
-20- !
40-_
Im(X,)
20+
I |
- I ~ A t L —
96 64\ Np=-3 0 V N/2=32 64 \ 9%
{ . J X

Figure 54 The DFT presumesthe signd is periodic both in the time and the frequency
domains. Obsarve the symmery properties d red and imaginary components. The time
seriesx hasaDC offsat, thusRe(X,) # O.

time signalsaround discontinuities. Thisis Gibb's phenomenon, and it manifests
as ripples and overshoots near discontinuities.) In addition, the N information
units available in the time domain are preserved in the frequency domain, as
confirmed by the fact that x = IDFT[DFT(x)], indicating that there is no loss of
information going from time to frequency and vice versa

5.3.5 One-sided and Two-sided Definitions

The DFT was defined for the frequency index u that ranges from u = —N/2 to
(N/2)—1or fromu=0tou=N-1. These are called two-sided definitions.
Yet, there is no need to duplicate computations when X, = Xy_,: one does not
physically measure negative frequencies, and cannot resolve above the Nyquist
frequency. Therefore, one-sided definitions are established between u =0 and
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u = N/2. Two-sided definitionsare advantageousin analytical derivations. How-
ever, one-sided definitionsare computationally efficient. (See exercise at the end
of this chapter.) To avoid confusion, derivations, computations, and examplesin
this text are obtained with two-sided definitions.

5.3.6 Energy

The energy in a signa x is the sum of the square of the amplitude of the signa
at each point. Each Fourier coefficient X, indicatesthe amplitudeof the sinusoid
of frequency w, = u-27/T that is contained in the signa. Therefore, the energy
in the signal is also computed from the Fourier coefficients, as prescribed in
Parseval's identity,

1 N-1

N-1i
Yxt=g LK (521)

i=0 u=0

The plot of |X,|? versus frequency is the autospectral density of the signal, also
known as power spectral density. (Spectral values in one-sided computations
are twice those corresponding to the two-sided definition except for the zero-
frequency term.)

5.3.7 Time Shift

Consider a wave train propagating along a rod. The signal is detected with two
transducers. If the medium is not dispersive or lossy, and the coupling between
the transducers and the rod are identical, then the only difference between the
signal x detected at the first transducer and the signal y detected at the second
transducer is the wave travel time between the two points r. At. For a single
frequency w sinusoid,

|f X; = e_]l.l)lAl

i~r)At

yl=x!T = el — x;eJorAt (5.22)

and
(o 2m
then Y,= e_J(u N ) X,
For the given travel time, the higher the frequency signal, the higher the phase
shift. When phaseis measured, computed arctan values can only range between
[w/2, —w/2], and proper "' phase unwrapping" is required (Chapter 6).
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5.3.8 Differentiation

The derivativeof a continuoustime sinusoid x(t) =A -sin{w-t) isy{t) =w.A -
cos(w-1). In words, the derivative of a sinusoid implies a linear scaling of the
amplitudeby the frequency and aw/2 phase shift. Thefirst derivativein discrete
time y can be approximated by finite differences. The corresponding DFT is
obtained by invoking the time shift property (Equation 5.22):

YT Xol then Y, = 1—e_j( %ﬂ)
Yi= T v = Txu (5.23)
The magnitude of the coefficient that multipliesX, increases with u. Thus, this
result predicts the magnificationaof high-frequency componentswhen a differen-
tiation transformation is imposed. Thisis in agreement with observationsin the
time domain whereby the derivative of a signa is very sensitiveto the presence
of high-frequency noise.

5.3.9 Duality

The parallelism between the analysis and synthesis equationsin a Fourier pair
(Equations5.14 and 5.15, Table 5.1) leads to the property of duality. Before pro-
ceeding, notice that the exponents have the oppositesign in the Fourier pair; this
means opposite phase: oneis turning clockwise and the other counterclockwise,
or interms of time series, oneis thetail-reverseversion of the other. (For clarity,
replace the exponentialsfor their trigonometricidentities: atail-reversecosineis
the same cosine; however, a tail-reversed sine becomes [—]sine, thus opposite
phase)

Now, consider the signal x shown in Figure 5.5a. The DFT of signal x com-
puted with Equation 5.14 is shown in Figures 5.5b and c. Then, the analysis
Equation 5.14 is used again to compute a second DFT but this time of X, that
is DFT{DFT(x)]. Figure 5.5¢ shows that the result is the original signal but in
reversed order and scaled by N. In mathematical terms,

(Xo» Ry—te + 0 Xy) = % .DFT[DFT (g, Xy + - Xn_y)] (5.24)

Duality is a useful concept in the interpretation of time and frequency domain
operationsand properties.

5.3.10 Time and Frequency Resolution

The time resolution is defined as the time interval between two consecutive
discrete times; this is the sampling interval At =t —t. Likewise, frequency
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Figure 55 The duality property of the DFT: (a) the original sgnal x; (b) its discrete
Fourier trandormed to the frequency domain X; (c) theforward (not inverse) discrete
Fourier trandormation of X sends the series back to the time domain, but the sgnal
appears tail-reversd

resolution is the frequency interval between two consecutivediscretefrequencies
Af =f1,,, — f,, whereeach frequency £, is the u-th harmonicaf thefirst frequency
f,=u.f, =u/(N-Af). Then Af =f,,, —f, = (uT1—u)/(N-Al):

1 . 1
Thisisknown as the" uncertainty principle” in signal processing: when limited to
N pieces of information, the resolution in frequency can only be improved at the
expense of the resolution in time (see solved example at the end of this Chapter).

5.3.11 Time and Frequency Scaling

Thelength N of thearray x can bereduced by decimation(removal of intermediate
points) or increased by interpolation. Similar effects are obtained by varying the
samplinginterval At during A/D conversion: down-sampling or up-sampling. In
either case, the total time duration of the signal remains the same. Consider a
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stationary continuous signal x(t) sampled with two different sampling rates At
and o - At:

Discretetime | Signa | Discrete frequency | DFT

QA 2w .
t=1-At Yi Oy =V u
t, =k (a-At) z w =v2—1T Z,

k v M-a-At

Thevaluesz, and z, areequal at thesamediscretetimet; =t,; therefore,i=k-a
Likewise, the values of Y, and «-Z, are equal at the same discrete frequency
w, = o,; therefore, u = v/a. Thus,
1

if th —. Y,y 5.26

I Yka en a &-) ( )
This result shows the inherent inverse relation between time and frequency. The
factor 1/e in the frequency domain reflects the selected Fourier pair. Down-
samplingis restricted by the Nyquist frequency.

5.4 COMPUTATION IN MATRIX FORM

The summation of binary productsin analysis and synthesis equationsis equiv-
alent to matrix multiplication, and the transformation X =DFT(x) implied in
Equation 5.14 can be computed as:

X= F

IN, 1] [N, N] [1\?, jp Time — Frequency (5.27)

where each row in the Fourier transform matrix F is the array of values that
representsa complex exponential. In other words, the i-th element in the u-th row
of Fis

F,;= (5 (5.28)

Note that u and i play the same rolesin the exponent; therefore, the element F,
isequal to the element F,, and the matrix is symmetricE" =F.

Similarly, the implicit operationsin matrix multiplication apply to the synthe-
sis equation or inverse Fourier transform. The elements in the inverse Fourier
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matrix InvF have positive exponent, and the following equality holds (see
Equation 5.15):

1 (o3 1 - u%’i 1 —
InvFu,i = ﬁe ( ) = Ne ( ) - _Fu,i (529)
where the bar indicates complex conjugate. (Note: thisis in agreement with the
duality property, where the conjugate implies reversal.) Therefore, the inverse

Fourier transformis

imi

.X  Frequency — Tine (5.30)

Zl -

-)_(_=

Matrix E is the Hermitian adjoint of E (Chapter 2). It followsfrom Equations5.27
and 5,30 thet x = 1/N-E- (E-x). Then

1= L.

= N
Implementation Procedure 5.1 outlines the implementation of Fourier transform
operationsin matrix form.

]|
ljes]

(5.31)

ImplementationProcedure 51  Fourier analysisin matrix form

1 Digitize the signal x(t) with a samplinginterval At to generatethe array x
[ Nx1].

2 Create the Fourier transformation matrix E
Fu i = e_j'(“?&i)

for i and u that range between [0. .. N — 1]. The matrix is symmetric.
3. The DFT of thesignal x isX = E-x

4. The magnitude and the phase of each frequency component are

Magnitude: [X,] = /[Re (X,)T* + [Im (X,)

inx))

. =tan™!
Phase: o [Re(xu)

for corresponding frequency: £, =u L orw, = 2m
esp g eq Cy u N-At w“_uN-At
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5. Conversely, given asigna in thefrequency domain X, itsIDFT isthetime
domainsigna x,

_)S:

HlooN|

1 S .
N .X where F,; =complex conjugateof F,;
Note: Thefast Fourier transform(FFT) is preferred for largesignals. The FFT

algorithm is included in all commercially available mathematical sofiware
and in public domain codes at numerousinternet sites.

5.5 TRUNCATION, LEAKAGE, AND WINDOWS

Short durationtransientscan be adequately recorded from beginning to end. Some
A/D converterseven permit pretriggering to gather the background signal prior to
the transient. However, long-durationor ongoing signals areinevitably truncated
and we only see afinite "window of the signa".

The effects of truncation are studied with a numerical examplein Figure 5.6.
The sinusoid is truncated when six cycles are completed (Figure 5.6a). The
autospectral density is shownin Figure5.6b. Given that thisis a single-frequency
sinusoid, the autospectral density is an impulse at the frequency of the signal.
Figure 5.6c shows a similar signal truncated after 5.5 cycles. The autospectral
dengity is shown in Figure 5.6d. In contrast to the previous case, energy has
"leaked" into other frequencies.

Leakage is the consequence of two inherent characteristicsof the DFT. The
first oneis the unmatched harmonic effect whereby the sinusoid frequency f* in
Figure5.6c¢ isnot a harmonic of f,,, = 1/(N - At); therefore, the DFT cannot pro-
ducean impulseat f*. Instead, the DFT " curve-fits” the signal with harmonically
related sinusoids at frequencies f, = u/(N - At). The second cause for leakage
results from the presumed periodicity in the DFT: the signa in Figure 5.6¢ is
effectively considered the periodic signal in Figure 5.6e. The resulting sharp
discontinuitiesat the end of the signa reguire higher-frequency components; in
addition, the lack of completecyclesleads to a nonzero static component.

The window imposed on the analog signal during A/D conversioninto afinite
record is a sharp-edged off~on—off window and magnifies discontinuity effects.
Leakageis reduced by "windowing the signal” with gradual window arrays w.
The windowed signal x<**> is obtained multiplying the signal x with the window
W point by point:

W — X, - W, (5.32)
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Figure 56 Truncation and windowing: (a, b) the DFT of a single frequency sinusoid is
an impulse if it completes an integer number of cyclesin the duration of the signal T;
(c, d) thissignal has an incomplete number of cycles; its DFT is not an impulse and has a
static component; (e) periodic assumption in the DFT; (f) signal in frame 'c’ but windowed
with smooth transition towards zero ends; (g) autospectrum of the windowed signal
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The Hanning and Hamming windows are two common windowing functions:

27 E
141, 20—
Hanning w;, = 213 cos[ E @ M)} i-M} <2 (5.33)
otherwise

=]

2 E
0.54 + 0.46 - cos [g(i —M)] fi-M <>

Hamming w; = [ (5.34)

0 otherwise

These windows are centered around i = M and have atime width E. At. In this
format, the rectangular window becomes

E
1 [i-Mj<=
i—M| <>

0 otherwise

Rectangular w; = { (5.35)

Figure 5.6f shows the signal in Figure 5.6¢c when the Hanning window is used.
Finally, Figure 5.6g shows the autospectral density of the windowed signal.

The energy availablein the windowed signa is reduced by windowing. The
ratio of the energy in the original signal x and the windowed signal x<*> can
be computed in the time domain:

(5.36)

5.6 PADDING

A longer duration N-At signa renders a better frequency resolution Af =
1/(N - At). Therefore, afrequently used techniqueto enhance the frequency reso-
lution of a stored signal length N consistsof "extending™ the signal by appending
valuesto alength M > N. This approach requirescareful consideration.

Therearevarious' signal extension" strategies. Zero padding, the most common
extension strategy, consists of appending zeros to the signa. Constant padding
extends the signal by repeating the last value. Linear padding extends the signa
while maintaining the first derivative at the end of the signal constant. Finally,
periodic padding uses the same signaturefor padding.
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Fire57 Time and frequency resolution: (a, b) original N =16 signa and its auto
spectrum; (c, d) zero-padded signal with N = 32 and its auto spectrum. Padding increases
frequency resolution. The peak in the autospectral density of the original signal is absent
because there is no corresponding harmonic. (Note: the time interval At is kept constant,
the number of points N isdoubled, and the frequency interval is halved.)

Figure5.7 presentsan exampledf zero padding. Thesigna lengthisN = 16and
the DFT decomposes it into harmonics f, =u/(16At), while the padded signal
is length M = 32 and the associated harmonics are f, = v/(32At). The sinusoid
duration is 11 -At; thus, its main frequency is f*=1/(11. At). Therefore, the
harmonicfor v = 3in the DFT of the padded signal is quite closeto f*, but there
is no harmonic in the DFT of the original signd near f*.

The following observations follow from this example and related analyses:

Signal extension is not intended to add information. Therefore, thereis no new
information in the frequency domain if the same information is available in
the time domain.

e The real effect of padding is to create harmonic components that better “fit”
the signdl.

e Zero and periodic padding may create discontinuities; plot the signal in the
time domain to verify continuity.
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e The negative effects of padding are reduced when signals are properly
detrended and windowed first.

e The signal length can be increased by adding zeros at the front of the signal;
however, thisimpliesatime shiftin all frequencies, and afrequency-dependent
phase shift, as predicted in Equation 5.22.

e Signal extensionto attain a signal length N =2° allows the use of more com-
putationally efficient Fast Fourier transform algorithms. However, harmonics
may be lost: for example, a sinusoid with period 450- At in a signal length
N =900 has a harmonic at u= 2, but it has no harmonic when the signd is
zero padded to M =219 = 1024.

e When the main frequency in the signal under study is a known value *, then
record length N and sample interval At are selected so that £* is one the
harmonicsf, = u/(NAt) in the discrete spectrum.

The DFT presumes the signa is periodic with fundamental period T =
N . At. Signal extensionincreasesthe fundamental period and preventscircular
convolution effectsin frequency domain computations(Chapter 6).

e The previousobservationsapply to deterministicsignas. In the case of random
signals, signal extension must preserve stationary conditions.

Enhanced resolution with harmonics that better "fit" the signa lead to more
accuratesystemidentification(review Figure5.7). Consider alow-damping single
degree of freedom oscillator: the narrow resonant peak may be missed when the
frequency resolutionis low and no harmonic f, matches the resonant frequency.
In this case, the inferred natural frequency and damping of the oscillator would
be incorrect.

5.7 PLOTS

A signal in the time domain (time or space) is primarily plotted as x; versus
timet¢, = i. At. However, there are several alternativesin the frequency domain
to facilitate the interpretation of the information encoded in the signal. Consider
the signal in Figure 5.8a, which shows the free vibration of an oscillator after
being excited by a very short impulse-like input signal. Various plotsaf the DET
are shown in Figures 8b-h:

e Figure 5.8b shows the autospectral density versus the frequency index u. The
first mode of vibration is clearly seen. When the autospectral density is plotted
in log scale, other low-amplitude vibration modes are identified (Figure 5.8¢).
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Figure 58 Different plots of the DFT of a signal: (a) original signal x in time domain;
(b, c) autospectral density — norma and log magnitudes; (d, €) real and imaginary com-
ponents versus frequency index u; (f, g) amplitude and phase versus frequency index u;
(h) imaginary versus real component (Cole-Cole plot); (i) amplitude versus phase. Fre-
quency domain data are presented single-sided, for u=1[0, N/2]
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® Figures5.8d and e show the real Re(X,) and imaginary Im(X,) components
of the DFT versus the frequency index u.

e Figures 5.8f and g show the amplitude {X,| and the phase ¢, versus the
frequency index u.

e Figure5.8h showstheimaginary componentIm(X,) versusthereal component
Re(X,). Thisis called the Cole-Cole plot, and it is used to identify materials
that show relaxation behavior (e.g. response of a viscoelastic material); a
relaxation defines a semicirclein these coordinates.

e Figure5.8i showsa plot of amplitude versus phase.

Any frequency is readily recovered from thefrequency counter u asf, = u/(NAt).
In particular, the frequency associated with the peak response is the oscillator
resonantfrequency. The oscillator dampingisreflectedin both timeand frequency
domains: low damping is denoted by multiple oscillationsin the time domain
(Figure5.8) and a narrow peak in the frequency domain (Chapter 4).

5.8 THE TWO-DIMENSIONAL DISCRETE FOURER
TRANSFORM

A 2D signal x(p, q) capturesthe variation of a parameter in two dimensionsp and
g. During A/D conversion, the signal isdigitizedalong agrid made of M discrete
vaues in p and N discrete values in g. The discrete 2D signal is a matrix x
where entry x; , correspondsto location p=i-Ap and g =Kk.Aq. The2D signal
may involve data gatheredin any two independent dimensions, such as a digita
picture or a sequence of time series obtained at different positions in space.

The DFT X of x is aso a matrix; each entry X, , correspondsto frequencies
f, =u/(M- Ap) and f, = v/(N . Aq). The 2D Fourier transform pair is

xu_v=“§j [N—lxi,k_ () NG oD Analysis  (537)
i=0 | k=0 -
1 M (5. (2224
k=M > [: 2 Xuve e\ M 2D Synthesis (5.38)
u=0 v=0

The 2D DFT can be computed with 1D algorithmsin two steps. First, an interme-
diate matrix INT is constructed where each row is the DFT of the corresponding
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row of x. The columns of the final 2D Fourier transform X are obtained by
computingthe DFT of the correspondingcolumnsin INT.

Analysis and synthesisoperationscan be expressed in matrix form, in analogy
to the case of 1D dignals. In particular, if the discrete signal is square M = N,
the 2D Fourier transform of x is

T
T
é:[F(Fg)] =E-x-E fromp-qtof,—f, (5.39)

where the second equality followsfrom EF = E. The k-th element in the v-th row
of E(N x N) is T

§ = (- F) (5.40)

Because N-I=E-E (Equation 5.31), the synthesis equation in matrix
formis

-E-X-E  fromf,—f, top—q (5.41)

Other concepts such as resolution, truncation and leakage, discussed in relation
to 1D signals, apply to 2D signalsas well.

Examples of 2D DFT are presented in Figure 5.9 (see solved example at the
end of this Chapter). The following observationscan be made (analogousto the
1D DFT Figure 5.1). The DFT of a uniform 2D signal has only the real DC
componentat u = 0, v = 0 (Figure5.9a). The DFT of thelinear combinationof 2D
signalsis the linear combinationof DFT of the individual signals (Figure 5.9b).
A single frequency sinusoid becomes an impulse in the frequency domainin the
samedirection as the signal in the time domain (Figure 5.9¢); if thereis leakage,
it manifests paralel to the uand v axes.

5.9 PROCHOURE FOR SIGNAL RECORDING

The most robust approach to signa processing is to improve the data at the
lowest possible level (review Section 4.1.5). Start with a proper experimental
design: explore various testing approaches, select the transducers that are best
fitted to sense the needed parameter under study, match impedances, reduce
noise by proper insulation (electromagnetic, mechanical, thermal, chemical, and
biological) and usequality peripheral eectronics. If thesignal isstill poor, then the
option of signal stacking should be considered before analog filters are included
in the circuitry.
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Figure 59 The2D-DFT: (a) congtant-va uesignd: theonly nonzerovauein 2D-DFT isthe
DC component; (b) thesigndl x; , = cos(1022i) + sin(412i) hasonepeskinthereal partand
onepeakin theimaginary componentsaf the2D-DFT-notethedirectionineschcaserddtive
to theimage; (c) the 2D-DFT of the Singlefrequency sinusoid x;, = sin[4% (i10.5k)} is
dignedin thesamedirectionastheostillationsin thesigna

Once these recommendationshave been taken into consideration, start planning
the signal digitization and storage. Concepts discussed in this and the previous
chapterspermit outlining of common guidelinesfor signal recording that are appli-
cable to most situations. When signal processing involves DFTs, data gathering
must consider signal length, truncation and leakage, windowing, and frequency
resolution. Guidelines are summarized in the Implementation Procedure 5.2,
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Implementation Procedure 5.2 Recommended procedure for signal
recording

1. Thesignal must be improved at the lowest possible level, starting with a
carefully designed experimental setup, adequate choice of electronics, and
proper isolation of the system to reduce noise.

2 Itisadvantageousto extend the recording duration T so that zero amplitude
is recorded at the front and tail ends of the signa. This is possible in
short-duration events.

3. The sampling interval or time resolution At must be selected to prop-
erly digitize the highest-frequency component of interest f,,,, fulfilling
the Nyquist criterion. It is recommended that At ~ 1/(10f,,,) be used.
If unwanted higher frequency components are expected, they should be
removed with an analog filter before digitalization. Many A/D systems
include antidiasingfilters at the input to automatically remove frequency
componentsthat would be aliased otherwise.

4. The total number of points to be recorded is estimated as N = T/At. If
you know the main frequency in the signal under study f*, then combine
record length N and sample interval At so that £* is one of the harmonics
£, = u/(NAt) in the discrete spectrum.

5. Detrend and remove spikesin the signal before the signal is transformed.

6. Window truncated signals to reduce leakage. Windowing and zero-offset
corrections may be repeated.

7. Extend the recorded signal to increase frequency resolution. Make sure
that thereis a harmonic in the padded signal that correspondsto the main
component f* in the signal under study.

5.10 SUMMARY

e Harmonically related sinusoidsand complex exponentialsare orthogonal func-
tionsin the open interval [0, T[. Therefore, they form a base that can be used
to express any other function as a linear combination. This is the foundation
for the DFT.

e [For a robust interpretation of the DFT of a signal length N, remember that:
(2) the DFT is equivalent to fitting the signal with aseriesof cosines and sines
and storing the amplitudesin the "'red" and "imaginary' arrays, (2) the signd
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is assumed periodic with period equal to the duration of thesignal T = N. At,
and (3) only harmonically related sinusoidfrequenciestf, = u/(N - At) areused.

e The DFT has a finite number of terms. In fact, there are N information units
in a signa length N, both in the time domain and in the frequency domain.
There are no convergencedifficultiesin the DFT of discretetime signals.

e The parallelismbetween analysisand synthesisrelationsin a Fourier pair leads
to the duality of the DFT.

e Resolutionin timeisinversely proportional to resolutionin frequency. Signal
extension or padding decreases the frequency interval between consecutive
harmonics.

e The truncation of ongoing signals produces leakage. Leakage effects are
reduced by windowing signals with smooth boundary windows.

e The DFT can be applied to signalsthat vary along more than one independent
variable, such as 2D images or data in space-time coordinates.

The signal must beimproved at the lowest possiblelevel, starting with careful
experimental setup, adequate choice of electronics, and proper isolation of the
system under study to reduce noise. While planning anal og-to-digital conver-
sion, the experimenter must take into considerationthe system under study and
the mathematical implicationsof digitizationand DFT operations.
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SOLVED PROBLEMS

P5.1 Fourier series. Demonstratethat:

fTej(zTﬂt) .e_j(“zT“‘) dt = {0 ifu#1l
0 T ifu=1
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Solution: Using Euler's identities

[ 27 .. (2w 2% o 2w
21, 41 4025 s (422 3 (o255 |
cos(Tt) j.sm(Tt ] [cos (uTt j.sm(uTt)] dt

_cos ZEt cos uﬁr—t —j-cos 2——Trt sin uzwt
T T T )™ T T
£(T) — f dt
0 2 2w 2 2w

L+J sm(Tt) cos(uT ) sm(Tt) sm(uTt)

()= f [eos (222) con (5224) -3 f eon (220) i (1222) e
[ 0
+j- _/T [sin (%Et) -CO8 (uz%rt):l -dt+ fT [sin (2—;%) - sin (uzTﬂt)] -dt

Invoking Equation 5.4, the previousequation simplifiesto

0= s (220) o (o220) s (3 i (51)

And, from Equations5.3 and 5.4

0= [ (1) oo (5250 st [sin(3)-n (7))

-

.
£(T) = j
0

") \

if u#0

0 if u#0
2 9f u#0

if us#0

(N[ W)

P5.2 Digitization. Given a sampling interval At=10"3s and a record length
T =10.5s, compute: (a) frequency resolution, (b) frequency corresponding
to the frequency counter u= 13, (c) the shortest time shift compatiblewith

a phase shift Ad = = for the frequency component that corresponds to
u=10.
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Solution:

(@ The frequency resolutionis Af =1 = ;L. =2Hz

(b) Thefreguency correspondingtou = 13isf;; = U.Af =f =13-2Hz =
26Hz

&t
(c) Phaseand time shifts are related as “2—11_ = —

T,
Thetime shiftis &t = Ad, I = 0.025s
2w u

2D-Fourier transform.Create a 2D image x to represent rippleson a pond.
Calculate the discrete Fourier transform X. Analyze the results.
Solution: Definition of function X (Nx N elements where N=64)

N\’ Ny’
Distancefrom the center of thepond: 1, = \/(1 - —) + ( - —)

2 2
2
sin (10 & L k)
; _— max(r) ”
Displacementfunction: X,y =
’ rx+10

. 2w,
Discrete Fourier transform matrix: F,;=eN'
2D discrete Fourier transform: X=E-x-E
Magnitude: X =X0y . X,y

where the spatial indicesi and k rangefrom 0 to N — 1 and the frequency
indices u and v range from 0 to N — 1. Time and frequency domain plots
are presented next. Only one quadrant of the 2D-DFT is shown:

k4 v 4

30~

201
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Interpretation: There are 15 ripplesin both i and k directions along the
center of the plot. That i sthelocation of peak energy along the u and v axis.

Explore this solution further. What happens if you shift the center of
the ripples away from the center of the image? What is the 2D-DFT of a
signal with elliptical ripples?

ADDITIONAL PROBLEMS

P5.4

PS.6

P5.7

P5.8

Fourier series. Compute the fourth-order discrete Fourier series (U =
0,1,2,3,4) that best approximates an odd sguare wave. Repesat for an
even square wave. Compare the coefficientsfor sine and cosine compo-
nents in both cases. What can be concluded about the decomposition of
even and odd signals?

Discrete Fourier transform pairs. There are various Fourier pairs besides
the one presented in Table 5.1; for example:

i 1 Nl 27 N1 . 215 -
Anayss. 3, =5 2 x,.cos(u¥i) and b, = L3 x.sin(ud)
i=0 i=0

N-1
Synthesis: x;= 3J3, .cos(ui)tj-b, sin(ulfi)]
u=0

Determinethe rel ationshi p between this Fourier pair and the one presented
in Table 5.1. Explicitly state the relationshipbetween 4, and b, and X,,.

Properties of the discrete Fourier transform. Demonstrate the following
properties of the DFT of discrete periodic signals: linearity, periodicity,
differentiation, Parseval's relation, time shift, and N-I=F-F (matrix
operations).|sthe magnificationof high-frequency componentslinear with
frequency in Equation 5.23?

Single-sided discrete Fourier transform. Use the properties of the DFT
to show that the computation of the DFT can be reduced to coefficients
u=0 to u=N/2. Rewrite the synthesis equation to show this reduced
summation limits. Corroborate your results using numerical simulation.
Compare the autospectral density in both cases.

Discrete Fourier transform of a complex exponential. What is the DFT
of a complex exponential? Consider both positive and negative expo-
nents. Solve this problem both analytically and numerically. (Important:
use double sided formulation, that is, from u=0 to N — 1; this exercise
is revisited in Chapter 7.)
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P5.10

P5.11

P5.12

ADDITIONAL PROBLEMS

Padding. Generatea N = 300 pointssinusoid x; = sin (8- %" .i). Consider
different padding criteriato extend the signal to N =512 pointsand com-
putethe DFT in each case. Analyze spectrain detail and draw conclusions.

Application: signal recording and preprocessing. Capture a set of signals
within the context of your researchinterests. Follow the recommendations
outlined in the Implementation Procedure5.3. For each signal:

e Detrend the signdl.
e Window the signal with a Hamming window (test different widths E).

e Compute the DFT and plot results in different forms to highlight the
underlying physical process.

e |nfer the characteristicsof the system (e.g. damping and resonance if
testing a single DoF system).

o Doublethe number of pointsby padding, computethe DFT and compare
the spectrawith the original signals.

® Repeat the exercise varying parameters such as sampling interval At,
number of stored points N, and signal amplitude.

Application: sound and octave analysis. The octave of a signal frequency
f is the first harmonic 2f. In "octave andyss®, frequency is plotted in
logarithmicscale. Therefore, the central frequency of each band increases
logarithmically, and bins have constant log-frequency width; that is, the
frequency width of each bin increases proportionally to the central fre-
quency. Systems that operate with octave analysis include filters with
upper-to-lower frequency ratio 2n, where nis either 1, 112, 116, or 1112,
Thistypeof analysisis preferred in studiesof sound and hearing. Createa
frequency sweep sinusoid x with frequency increasing linearly with time.
Plot the signal. Compute X = DFT(x). and plot the magnitude versus
linear and logarithmicfrequency. Draw conclusions.

Application: Walsh series. A signal can be expressed as a sum of square
signals with amplitude that ranges between +1 and —1. In particular, the
Walsh seriesis orthogonal, normaized, and complete. Research the Walsh
series and:

1. Write the Walsh seriesin matrix form (length N = 16).
2. Study the propertiesof the matrix. Isit invertible?
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3. Apply the Walsh's decomposition to a sinusoidal signal, a stepped
signal (e.g. transducer with digital output), and to asmall digital image.

4. Analyze your results and compare with Fourier approaches (see also
the Hadamard transform).
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Frequency Domain
Analysis of Systems

The discrete Fourier transform brings a signa from the time domain to the
frequency domain by fitting the discretetime signal with afinite seriesof harmon-
ically related sinusoids(Chapter 5). This chapter showsthat the systemresponsey
to an input signal x can be readily computed using frequency domain operations.
The first question to be addressed is whether sinusoids offer any advantagein
the study of systems.

Because of the equivalence with convolution, cross-correlation and filtering
are reviewed in this context. Procedures presented in this chapter presume that
systemsare linear time-invariant (LTI). Therefore, the generalized superposition

principle applies.

6.1 SINUSOIDS AND SYSTEMS - EIGENFUNCTIONS

Consider a single degree of freedom (DoF) system. When this systemis excited
with an impulse, it respondswith a characteristic signature known as the impul se
response h. The impulseresponsehas dl the information needed to characterize
the LTI system (Chapter 4).

What is the response of an LTI system when it is excited with a single fre-
guency sinusoidal forcing function? Consider the single DoF oscillator analyzed
in Chapter 4. Deformation compatibility at the boundary is required to main-
tain alinear response; therefore, the mass displacement will also be a sinusoidal
function of the same frequency as the input force, and with some amplitude and
phase (Figure 6.1; also Section 4.4). Euler's identities allow us to extend this
observationto complex exponentials. This conclusion extendsto all LTI systems

Discrete Signalsand Inverse Problems  J. C. Santamarina and D. Fratta
@© 2005 John Wiley & Sons, Ltd
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Figure 61 A single DoF oscillator excited with a Sngle-frequency sinusoidd forcing
function - Amplitudeand phase regponse

and states that
if x(t) = sinusoid or a complex exponential
then y(t)=H,-x(t) inanLTI system (6.1)

where the complex number H, conveys amplitude and phase information corre-
sponding to the excitation frequency o,. This situation resembles eigenvectorsin
matrix algebra: given the transformation y = a - x, a vector x is an eigenvector of
aif the outcomey can be expressed as the product of a scalar A times the vector
X (Section 2.2.3),

if X is an eigenvector
then y=A-x (6.2)

where A is the corresponding eigenvalue. In other words, the output y is like the
input x but scaled by A, which may be acomplex number. By analogy, sinusoids
and complex exponentialsare "' eigenfunctions” for LTI systems, and H,, are the
corresponding eigenval ues.

6.2 FREQUENCY RESPONSE

A series of complex numbers H, can be determined by exciting the system at
differentfrequenciesw,. The array of H, valuesis the system frequency response
H. ImplementationProcedure6.1 outlinesa possibleexperiment to determinethe
frequency response H.



FREQUENCY RESPONSE 139

Implementation Procedure 6.1 Determination of the frequency response
H - Sinusoidal sweep method

1. Connect a frequency-controlled sinusoidal output source to the system
under consideration.

2. Monitor the system response. Verify that transducers have an operating
frequency compatiblewith the frequency range of interest.

3. Tunethe sourceto a circular frequency w,. Measurethe time history of the
sourcex and theresponsey. Determinetheamplitudeof x andy, and compute
amplitudeof y at frequency w,

~ amplitudeof x at frequency o,

H,

4. Measurethe relative phase ¢ betweenx and y (Figure6.1): @,
5. Repeat for different circular frequenciesw, = 2 - f,.

6. Assemblethe array H of complex numbers H,,:

H, = |H,| - cos(¢,) +j - [H,| - sin (o)

7. Transducersand periphera e ectronicstransformthe signal. Determinetheir
frequency response through calibration with known specimensand correct
the measured response H to determine the true system frequency response
(see Implementation Procedures65 and 6.6).

Notes

e The proper assembly of the array H requiresthat entries H, are obtained at
equal frequency spacing Af for atotal of N/2 readings. Then, this assembly
must be repeated with the tail reserveof its complex conjugateto obtain the
double-sided form of H. The complete array is used to evaluate the system
responseto an N-point input array x that is captured with At =1/(N - Af).

The log-linear plot of the magnitude of H versus A, helps identify the
presenceof higher modes (see Figure 5.8b).

Thismethod is recommended when the SNR is very low. When the SNR is ade-
quate, the use of broadband signalsleads to more efficient determination of H ;
the required signal processing methodsare presented later in I mplementation
Procedure6.6.
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6.2.1 Example: A Single Degree-of-freedom Oscillator
The frequency response of simple systems can be mathematically computed in
closed form. Consider once again the single DoF oscillator analyzedin Chapter 4
(also Figure 6.1). The equation of motion is

m-y+c-y+k-y=x(t) (6.3)

If the forcing function is a complex exponential, x(t) = F, - e¥t, Equation 6.3
can be written as

m-Y+c-Y+k-y=F, -e** (6.4)
whereF, istheamplitudeof theforcing function. Becausea complex exponential
is an eigenfunction of the system, Equation 6.1 predicts the mass displacement
y(t) to be

y(t) =H(w)- [F,.e"']  for excitation frequency (6.5)
This equation is substituted into Equation 6.4. After computing the derivatives,

the following expression for H(w) is obtained:

1

2
1+j-2D-3—(1”—)
w

n wl’l

H(w) = % . (6.6)

This is the oscillator frequency response H(w). The coefficient D is the
damping ratio D =¢/(2-m-w,), and o, is the oscillator natural freguency
w, =/k/m. Figure 6.2 shows the amplitude |H(w)| and the phase ¢ =
tan-' {Im[H(w)]/Re[H(w)]} asafunction of the excitation frequency. Results are
presented in dimensionlessform in terms of [H(w) - k] and w/w,.

6.2.2 Frequency Response and Impulse Response

The frequency response of the single DoF system, Equation 6.6, is a func-
tion of dl the characteristics of the system. This can be generaized to al
LTI systems: an LTI system is completely characterized by its frequency
response H.
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Hgure 62 Frequency response of a single DoF system for different damping ratios
(@) dimensionlessamplitude [H,| . k; (b) phase. Frequency is presented in dimensionless
form w /@,

A similar observation was madein the time domain about theimpulseresponse
h (Section 4.3). Therefore, the impulseresponseand the frequency responsehave
the same information content and must be mathematically reated. Indeed, thisis
the case: for an LTI system, the frequency response H is the DFT of the impulse
response h:

H=DFT(h)
N-] —j(uz—“i>
oo H,=) h-e \'¥ (6.7)
i=0

Onceagain, the DFT preservesthe informationin thearray (seealso Section 5.1).
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6.3 CONVOLUTION

It has been shown that a signad can be expressed as a linear combination of
harmonically related complex exponentials. In particular, the input signal x can
be expressed as

N-1 R
l Tx, . (F) (6.8)
u=0
If x actson an LTI system, each of the complex exponentialsin the summation
will cause a scaled and phase-shifted exponential in the response, as prescribed
in Equation 6.1. Applying the superposition principle "sum of the causes —
sum of the effects”, the output y of the LTI system to the input signal x can be
computed from Equation 6.8 by replacing the input sinusoids by their response

(Equation 6.2):
y, = l NZIH [ (Zﬁﬂ)] (6.9)

u=0

This time domain result y; is computed with frequency domain coefficients X,
and H, . Regrouping coefficients,

.=l NZ:I[H X,] S5 (6.10)

This is the discrete Fourier synthesis equation for y. Hence, the coefficientsin
square brackets must be the u-th term of the DFT of y,

Y, =H, X, (6.11)

where:
X, isthe u-th element of the DFT of the input signal x;
H, isthe u-th element of the frequency responseH which is H = DFT(h);
Y, isthe u-th element of the DFT of the output signal y; and
o, = 27f, =u-2m/(N - At) is the frequency of the u-th harmonic.

Therefore, the convolution sum in the time domain y =h % x becomes a point-
by-point multiplication in the frequency domain Y, =H, -X,. An dternative
demonstrationis presented under solved problems at the end of this chapter.

A signal has the same dimensionsin both time and frequency domains. There-
fore, the units of the frequency response H must be [units of output]/[units of
input], according to Equation 6.11. For example, the units of H(w) in Equation 6.6
for the single DoF oscillator are [units of deformation]/[units of force].
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6.3.1 Computation

Because of theefficient computation of the DFT with fast Fourier transformago-
rithms, convolution and other operationsin the time domain are often executed in
the frequency domain. The computation of convolution in the frequency domain
isoutlined in Implementation Procedure 6.2.

Implementation Procedure6.2 Convolutionin the frequency domain

1. Determine the values H, that define the system frequency response H for
the harmonically related frequencies w, =u-2w/(N - At). The frequency
sweep method can be used, as described in Implementation Procedure 6.1.
Note: aternative procedures are presented later in this Chapter.

2. Compute the DFT of theinput signal X = DFT(x).
3. Obtain the output signd in the frequency domain Y by multiplying point
by point the two arraysin the frequency domain:
Yu = Hu ) Xu

Vaues X, and H, are complex numbers; consequently, thevaluesY, are
complex numbers as well.

4. Compute the response y in the time domain as y = IDFT(Y).

Example

A numerical example is presented in Figure 6.3. The sawtoothed input x
is convolved with the system impulse response h using frequency domain
operations.

Note: Some Fourier pairs require the multiplication of the convolution by a
normulizing factor, such as N or+/N. The Fourier pair selected in this book
is compatible with the approach outlined in this | mplementation Procedure.
To test the available DFT algorithm, implement the following computation
with N =8,

define: h=(0,1,2,0,—-1,0,0,0) and x=(1,0,0,0,0,0,0,0)
compute: H=DFT(h)
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X =DFT(x)
Y, =H, X, for al u
y =IDFT(Y)

result y=(0,1,2,0,—1,0,0,0)

The computed y should be equal to h. Otherwise, the computation of the
convolution eperaror with frequency domain operations must be corrected for
the proper normalization factor.

A numerical example is shown in Figure 6.3. The sawtooth input signal x
and the system impulse response h are known (Figures 6.3b, ¢). Convolution is
computed in thefrequency domain. The output signal y isdisplayedin Figure6.3d.

6.3.2 Circularity

The DFT presumes the signal is periodic, with period equal to the signa dura-
tion T = N - At (Section 53 3. This can produce misleading results when the
convolution operation is implemented in the frequency domain.

Consider a low-damping single DoF system. The ""assumed periodic™ input x
and the impulse response h are shown in Figures 6.4a and b; the known signals
are indicated by continuous lines and the presumed signals are represented as
dashed lines. The convolution computed in the frequency domain renders the
output y shownin Figure 6.4c; the computed resultisthe continuousline. Thetail
on the left-hand side of the responsey is caused by the " prior excitation' in the
presumed periodicinput signal x. This effect is known as" circular convolution™.

The effectsof circular convolutionare minimized or cancelled when the signal
length is extended by padding, M > N, so that the signal presumed period M- At
increases (see Chapter 5.

6.3.3 Convolutionin Matrix Form
The point-by-point operation Y, =H, - X, can be captured in matrix form by

assembling a diagonal matrix diagH whose entries in the main diagonal are
diagH, , = H, and other entries are zero (diagH, , = 0 for u # v). Then,

Y =diagH - X (6.12)
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(@ Timedomain Frequency domain
Input X —DFT - X
Impulseresponse b —DFT - H
Output y=h*x  IDFT« Y,=H X,
® !
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Figure 63 Convolutionin the frequency domain. The sawtooth input signal x and the
impulse response of the sysem h are known. (a) Sequence of calculations; (b) input
signal x; (c) impulse responseh; (d) output signal y

Expressing the DFT in matrix form: Y =F-y and X =E - x (Section 5.4). Equa-
tion 6.11 becomes h B

(6.13)

i

-y =diagH -

i
Ip4

On the other hand, theinverseof E isg‘1 = (1/N) - F, wherethe entriesin matrix
F are the complex conjugates of the entries in F (Section 5.4). Premultiplying
both sides by g“,

el

-diagH -E - x 6.14)

<
li
Z| -
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Figure 64 Circularity. The example corresponds to a single DoF system with low
damping. The continuous trace shows the signals used in the computations. The dashed
lines represent the periodicity assumption of the DFT. () Input signa x; (b) impulse
responseh; (c) output signal y obtained by implementing the convolution of x and h with
frequency domain operations. The system "'responds’* before the input is applied!

Thisequation must be equivalent to the matrix form of the convolutionin thetime
domain, y =h-x, where the columnsin mamx h are shifted impulse responsesh

(Section 4.5). Hence

1=

1
N

(1=l

- diagH -

(6.15)



CROSSSPECTRAL AND AUTOSPECTRAL DENSITES 147

Example-Verification

Equation 6.15 is numerically verified in Figure 6.5. The different frames show
(a) animpulseresponsevector h with N = 8 elements; (b) the DFT of h computed
asH = F - h; (c) the DFT matrix F; (d) the matrix h computedin the time domain
whereeach column containsthe impulse responsebut shifted one timeincrement;
and (e) the matrix h computed with Equation 6.15. This matrix shows the effect
of circular convolution: the lower tails of the shifted impulse responses appear
"wrapped" at the top of each column.

6.4 CROSS-SPECTRAL AND AUTOSPECTRAL DENSITIES

The cross-correlation operation was introduced in the time domain to identify
similarities between two signals (Section 4.3). The similarity between the com-
putational proceduresfor convolution and cross-correlationled to the conclusion
that the cross-correlationee of x and z is equivalent to the convolution “x” of z
with the tail-reversedx (see Section 4.4.3):

™ = zxrev (x) (6.16)

Tail reversa is equivalent to measuring the phase in the opposite direction: a
tail-reversed cosine is the same cosine; however, a tail-reversesine is [—]sine.
Therefore, if X = DFT(x), the conjugateof X isthe DFT of rev(x). Applying the
DFT to both sides of Equation 6.16,
DFT (cc™**) =DFT [z rev (x)]
CCo* =7, {DFT[rev(x)]}, (6.17)
o =2, %,

Likewisethe DFT of the autocorrelationis AC**> = DFT(ac<*>)

ACT” =X, X,

= [Re (X,)]* + [Im (X))’ (©19

The cross-correlation and autocorrelation arrays in the frequency domain are
called the cross-spectral and the autospectral densities, respectively.
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(@) Condder theimpulse response h:
- 0'
1

1=

O O O — ON

(b) Its Fourier trandform is H=DFT(h)

L2
1.707 — 2.707j
-3-1j
0.293+1.293
0
0.293— 1.293j
-3+1jI

| 1.707+2.707

(c) The DFT matrix is computed as
1 1 1
1

1 —
1 -07-07j j
1 -1 1
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1
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1

—0.74+0.7 —j
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(d) The impulsesresponse matrix h
in the time domain is

0 0 0 0 0 0 0 O
1 6 0 0 0 0 0 O
21 0 00 0 0 O
6 11 0 0 0 0 O
0 0 0 0 0 0 0 O
-1 0 2 1t 0 0 0 O
0-1 0 2 0 0 0 O
0 0-1 0 2 1 0 O
0 0 0-1 0 2 1 0

(€) The h matrix computed as
h= [I\lIE d1agH~3
[ 0 0 0o o 2 1
1 0 0 O 0 2
21 0 O 0 0
0 2 1 0 0 0!
-1 0 2 1 o 0 ©
0 - 1 2 1 0 0 O
0-1 0 2 1 0 0 0
0 0-1 0 2 1 0 O
| 000 0-1 0 2 1 0

circularity

Figure 65 Convolutionas matrix multiplication.Circular convolution affectsthe matrix
h computer with frequency domain operations. Compare framesd and e — upper triangle
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Cross-correlation is not commutative (Section 4.2.4). However, circularity in
the frequency domain renders cc<»*> = rev(cc<**>). The computation of cross-
and autocorrelationsin the frequency domain is summarized in Implementation
Procedure 6.3. A ssimple numerical example is presented in Figure 6.6. This
a gorithmis more efficient than the computationof correlationsin thetimedomain
becauseit involvesfewer multiplications. Neverthel ess, one must be aware of the
periodicity assumption that underlines the DFT.

Caution. The values of the spectrain one-sided computationsare twice those
corresponding to the two-sided definition. Two-sided definitions are used in
this text.

Implementation Procedure 6.3 Cross-correlationand autocorrelation

1 Given x, compute the DFT: X = DFT(x).

2 Given z, compute the DFT: Z = DFT(z).

3. Determine the complex conjugatefor each value X, = Re(X,) — j - Im(X,).
4. Perform the following point-by-point multiplication:

cct? =7, X,

5. Compute the inverse Fourier transform of CC~**> to determinethe cross-
correlationof & and z in the time domain

Qc.<X,Z> = IDFI‘@<X’Z>)

6. The same procedure applies to autocorrelation AC<**, but z and Z should
be replaced by x and X.

Example

Cross-correlationand autocorrelationare used to find similaritiesbetween and
within signals (see Section 4.2). A numerical example of cross-correlationis
presented in Figure 6.6.

The computation of the crosscorrelation in the frequency domain is
affected by the underlying assumption of periodicity in the DFT (circularity,
Section 6.3.2).
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Figure 66 Cross-correlation in the frequency domain: (@) calculations; (b) signa x;
(c) signal z isa shifted verson of x; (d) cross-correlation. The peak in the cross-correlation
array indicates the time shift between the two signals
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6.4.1 Imporiant Relations

If y is the output signal of an LTI system excited with the input x, so that
y=h=*x,thenY,=H, -X,, and

Ccf‘x,y) — X_u . Yu = Yu- . Hu . Xu = Hu . AC‘(IX) (6 19)
ACf,y) =Y_u Y, =-H_u—X—uHu 'Xu = |I-Iu|2 'ACSQ (620)

Although the DFT of the sum of two signalsisthe sum of the DFT of the signals,
DFT(x Ty) = DFT(x) T DFT(y), the additivity rule does not apply to the cross-
spectraor—the autospectra. Therefore, AC**Y> # AC<*> + AC<'> (see exercises
at the end of this chapter).

6.5 HATERS IN THE FREQUENCY DOMAIN - NOISE
CONTROL

A filter in the frequency domain is a “window” W that passes certain frequency
components X, and rejects others. Thisis a point-by-point multiplication

Y, =X,-W, (6.21)

The modified array Y is transformed back to the time domain. Filters can alter
the amplitude spectrum, the phase spectrum, or both, depending on the filter
coefficientsW,,.

Many signal processing operations can be implemented as filters, including
noise control. The primary recommendation still remains. improve the signal-
to-noise ratio at the lowest possible level, starting with a proper experimental
design; then consider signal stacking if signals are repeatable (Section 4.1.5).

6.5.1 Hilters

Thefilter coefficients W, at frequenciesf, =u/(N . At) determinethefilter per-
formance. The most commonfilters are:

e | ow-pass A frequency component X, passesif the corresponding frequency
f, =u/(N- At) is below the selected cutoff frequency. Frequency components
above the cutoff frequency are attenuated or rejected (Figure 6.7b). Low-pass
filters are used to suppress high-frequency noise.
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Autospectrum Signal in time domain
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Figure 6.7 Filters—frequency domain. Autospectral densitiesand corresponding signals.
Thefiltered sgnalsare blocked. Note the double-sided definition of thesefilters. Theorig-
inal signal is x; = sin(222i) +0.7sin(621) +0.75. sin(14281). The filtered frequencies
are shaded

e High-pass. High-frequency componentsabovethe cutoff frequency pass, while
low-frequency components are attenuated or rejected (Figure 6.7c). Low-
frequency components are common in measurement and applications. Some
examplesinclude: uneven illuminationin photography, low-frequency bench
vibration during ultrasonic testing, and the 60 Hz of power lines with respect
toradio signds.

e Band-pass. These filters are a combination of low- and high-pass filters. The
intent is to keep a frequency band. The opposite effect is achieved with band-
reject filters, where a selected band of frequenciesis rejected. A notch filter is
a narrow band-reject filter.
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e All-puss. This filter is used for phase control only. The magnitude response
is 1.0 across the spectrum and the phase response is designed to cause a
frequency-dependent phase shift in the signal. Typically, all-pass filters are
used to correct the phase shift imposed by other filtersin a series of filters.

If the transition region from "pass” to "'rgect” is gradual, the cutoff frequency
corresponds to a reduction in the signal magnitude of —3dB, that is |Y,| =
0.7|X,|.

Phase shift Ag and time shift 8t are related as Ag/2w = /T, If the phase shift
varieslinearly with frequency Ag, = af,,

= A9, =2 — constant (6.22)
2=f, 2w

o,

A linear-phasgjilter causesa constant time shift 8t,, in al frequency components
and it does not distort the waveform (see solved problems at the end of this
Chapter.)

6.5.2 Frequency and Time

The point-by-point multiplication in the frequency domain indicated in Equa-
tion 6.21 implies a convolutionin the time domain between the signa x and the
inverse discrete Fourier transform (IDFT) of W. This vector must be the array
named " kernd" k in Section4.1.3. Thereforethekernel k = IDFT(W) isthe filter
impulse response. Conversely, knowing the kernel, one can determine the win-
dow (note that real signalsin one domain become complex-valued signalsin the
other domain in most cases). Then, the understanding of filtersin the frequency
domain helps gain insight into the design of moving kernels in the time domain.

Consider the windows W shown in Figure 6.8. The corresponding kernels
k are also shown in the figure. Kernels obtained from windows with sharp
boundariesshow excessiveringing. In general, smoothly varying band-passfilters
are preferred.

6.5.3 Computation

If the filter is the DFT of a kernel in time, then the filter W must satisfy
the periodicity property in frequency (Figure 5.2). In addition, if double-sided
operations are used, the filter must be defined above the Nyquist frequency (or
in the negative frequencies) as well, as shown in Figure 6.7. This annoyanceis
avoided when single-sided operationsare used. The process of filtering a signal
in the frequency domain is summarized in |mplementation Procedure 6.4.
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Figure 68 Windows W and kernels k: (a) mathematical relation; (b) sharp boundary
wide window; (c) gradual boundary wide window; (d) gradual boundary narrow window.
Sharp boundaries lead to kernels with high ringing.

Implementation Procedure6.4 Filtering noise in the frequency domain

. Given asignal x, computeits DFT: X =DFT(x).
. Plot the magnitude |X,,| vs. f, to determinethe frequency band of interest.
. Choose the type of filter to be used.

. Caution: if double-sided DFT is used, then thefilter must have acompatible
double-sided definition. Low-pass filter: removes frequency components
below counter u* and above N—1—u*, where u* is the frequency counter
for the cutoff frequency. H gh-pass filter: keeps frequency components
between the counter at the cutoff frequency u* and N—1—u*.

A W DN P
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5. Define the array that represents the filter or window ¥, Superimpose a
plot of thisarray onto the spectrum of the signal to confirm the selection
of thefilter.

6. Apply the window to the signal: multiply point by point Y, = X, . W,.
7. ComputetheinverseFourier transformof thefilteredsignal: y = IDFT (Y).

Example

The effect of differentfiltersis exploredin Figure 6.7.

Note: Electronicfiltersare frequently used during data acquisition. Antialias-
ing low-pass filters must be included in the measurement system before the
signal isdigitized. Analog-to-digital devices often have antialisingfilters built-
in. Because the information content in a signal increases with increasing
bandwidth, filtering removes information. Consequently, the design of filters
isa critical task in signal recording and postprocessing.

Theinformation content in asignal increases with the bandwidth. Filtersreduce
the information content and rejected frequencies areirreversibly lost. That is, the
convolution of the signal with the filter is a linear transformation, but it is not
necessarily invertible.

Thereare versatile nonlinear signal-enhancement operationsin thetime domain
(Figure4b). Likewise, thereare nonlinear filtersin thefrequency domain as well.
For example, the band pass of afilter can be implemented by thresholding: if
IX,| > threshold, then Y, = X,; otherwise, Y, =0 (Figure 6.7d). The threshold
may be established in linear scale or in dB.

6.5.4 Revisiting Windows in the Time Domain

Time windows are used to reduce "leskage™ (Section 5.5): the signal x in'the
time domain is multiplied point by point with the window (x;-w;) before it is
transformed to the frequency domain. Multiplying a signa times a window in
the time domain is equivaent to the convolution sum of their transformsin the
frequency domain (duality property). On the other hand, windows are used for
filteringin the frequency domain whichisequiva ent to convolution with akernel
in the time domain.
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At this point, the concepts of "window" and "kernel™ have been encountered
in both the time and the frequency domains. What is the difference? Typicaly,
kernels are convolved whereas windows are multiplied point by point with the
array being processed. Both operationsmay take place either in the time domain
or in the frequency domain, and each operation is the Fourier transform of the
other.

Frequency domain

Point-by-point (-) Y= XoW:

‘ / \

Convolution(*) | Y=X*K

6.5.5 Filtersin Two Dimensions (Frequency-Wavenumber
Filtering)

The process of filtering in the frequency domain can be extended to two-
dimensiona (2D) signals. The original 2D signal is 2D discrete Fourier trans-
formed to the f-k space. A 2D band-pass window is multiplied point by point,
keeping only the information of interest. Finaly, the windowed spectrum is
inverse transformed to the origina 2D space of the signdl.

For example, consider wave propagation (refer to Figure 6.9). Time series
gathered at different aligned locations can be transformed into the frequency-
wavenumber spacef-k (f = 1/T, k = 1/)\). In this space, eventsthat emergewith
characteristicdopesf/k = A/T = V. Unwanted eventsare convenientlyidentified
and filtered. In geophysical applications, 2D f—k filtering permits removing a
coherent component such as surface waves or "'ground roll™ from signals.

6.6 DETERMINING H WITH NOISELESS SIGNALS
(PHASE UNWRAPPING)

The determination of the impulse responseh in the time domain is hampered by
the mathematical nature of the impulse signal. A more convenient alternativein
the time domain is to apply a step, to measurethe step response, and to compute
its time derivative. Then, the frequency responseis H = DFT(h).

One can a'so determinethe frequency responseH by exciting the system with
single-frequency sinusoids, which are system eigenfunctions (Implementation
Procedure6.1). If needed, the impulse responseis computed as h = IDFT(H).
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However, the most effective and versatile approach to determine the frequency
response H is to use any broadband input signal and to process the data in the
frequency domain. Indeed, if convolutionin thefrequency domainisY, =H, - X,,
then the u-th entry in the frequency response array H is

(X
X

u

for frequency w®,=u

2w (6.23)
N- At
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where the arrays X and Y are the DFTs of the measured input and output sig-
nals, X =DFT(x) and Y = DFT(y). Thefrequency responsearray H is obtained
by repeating this point-by-point division for all frequencies. This is a salient
advantage of frequency domain operations!

6.6.1 Amplitude and Phase - Phase Unwrapping

Each entry in the array H is complex. The magnitude |H, | relates the amplitude
of the response sinusoid to the amplitude of a single input sinusoid of the same
frequency w,; the units of |H,| are those of [output/input]. The phase between
output and input sinusoids is ¢, = tan~![Im(H,)/Re(H,)]. The analysis of the
computed phase often requires an additional step. Consider a system that causes
a constant phase shift 8t to all frequencies:

e Figure 6.10a shows the true phase shift ¢, = 2m(6t/T,) = 8t - w,. (Note that
thisis alinear phase system)

e Figure 6.10b shows the computed ratio Im(H, ) /Re(H,) = tan(e,).
e Figure 6.10c shows the computed phase ¢, = tan~![Im(H,)/Re(H,)].

The computed phase appears' wrapped" between —r/2 and +/2. Phase unwrap-
ping means shifting each segment up everywhere where the phase jumped from
—m/2 to +m/2 as shown in Figure 6.10d. (If the time shift is negative, the phase
jumps from +m/2 to —m/2 and segments must be shifted down.) The jumps are
not always obvious, and in some cases local jumps may be related to the phys-
ical nature of the phenomenon, rather than the mathematical effect describedin
Figure 6.10. Increased frequency resolution may help clarify some apparent dis-
continuitiesin phase. In any case, phase unwrapping must be guided by physical
insight into the system under consideration.

ImplementationProcedure6.5 summarizesthe stepsinvolvedin computingand
interpreting the frequency response H of any LTI system using noiselesssignals.

Implementation Procedure 65 Determination of the frequency response
H with a generic broadband signal — No noise

1. Select any broadband sourcethat operatesin thefrequency rangeof interest.

2. Select the signal duration N-At, the number of points N and the sampling
interval At following the guidelinesin Implementation Procedure5.2.
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3. Measurethe input at the interface between the source and the system. This
is the input signal in the time domain x.

4. Capture the measured responseYy.

5. Compute the DFTs of the input and the output: X =DFT(x) and
Y =DFT(y).

6. Compute the " measured” frequency response as a point-by-point division:

<meas> Yu _ 27
H; _X, for frequency W, = uN AL

7. Transducers, multimeters, analyzers and other peripheral electronics must
operate within their frequency range. Each component transforms the
signal. Therefore, determine the frequency response of transducers and
peripheral electronics H<™" in calibration studies with known speci-
mens.

8. Assuming that the response of transducers and periphera electronic
H*"™ isin series with the system response, then the measured response
is

H:meas> — Hu<sys> . H<tran>
u

Therefore, the sought system responseis

H:meas>
H‘f""b

Note: The system response H<%*> is an array of complex numbers. Results
are commonly presented as amplitude |H,| and phase ¢, versus fie
quency w,. The phase is calculated as ¢, = arctan [Im(H,)/Re(H,)] and it
yields values between - w/2 and w/2. The phase spectrum is " unwrapped"
by accumulating the phase at every jump between —w/2 and =/2
(Section6.6.1).

H:sys> —

6.7 DETERMING H WITH NOISY SIGNALS (COHERENCE)

Equation 6.23 isvalid for ideal noiselesssignals. Yet, noiseis always present. In
most cases, the input signal x can be measured close enough to the system so that



160 FREQUENCY DOMAIN ANALYSIS OF SYSTEMVIS

20
(a) (Pu 10
0 50 100 150
o,
20 W'
®) tan(Qy) T 0 100 50
,
~20 -~
/2
atan(gy) , . L/
© wrapped 0 V 100 V W
2 : e
atan(@y)
@ unwrapped

Figure 610 Phase unwrapping: (a) consider a process that produces a time shift 8t =
0.1 between input an output so the phase shift is linear with frequency ¢, =58t w,.
(b) However, tan(e,) is not a linear but a periodic function of frequency. This is the
value computed with input and output data: tan(¢,) = Im(H,)/Re(H,). () The inferred
phase shift ¢, = arctan [Im(H,)/Re(H,)] oscillates between /2 and —/2 in a seesaw
function that is characteristic of the wrapped phase. (d) The origina phase spectrumis
reconstructed by "unwrapping' the phase, adding = a each jump from /2 to —m/2 in
the spectrum
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Inputx | System Outputy  Measured z
characteristics

Noiser

Figure 6.11 System characterization with noisy signals. The measured output signal z
induded noiser added a the output

no undetected signal goes into the system, till, noiser gets added at the output
Yy (see Figure 6.11). Then, the measured output z in the frequency domain is

2
Zu=Y‘,'|'R1,=H,,=X“'|'Ru for frequency o, = u T

- (6.24)

where R is the discrete Fourier transform of the noise R =DFT(x). If the fre-
quency responseis computed with Equation 6.22, one obtains

HX AR g R (6.25)

X, X,

Hence, the error in the frequency response depends on the ratio R/X,. The
procedure to determine the frequency response must be modified to correct for
noise effects. In the new procedure, the input and the output will be measured
" M times so that the effect of noise will be canceled by averaging spectra
dendities. The proper equation to compute the frequency responseis

_ @Ky _ OO )
SRR, T B, 2

where the average spectra dendities are

H:Noisy>

1

(CC:X’Z>)avr = M Z (Cc:xyz>)eachmeas
allmeas
(6.27)
1
(AC:X>)W,-= M Z (ACT™ ) cach meas
allmeas

The vaues of auto and cross-corrdationsfor each measurement are averaged at
each u-th frequency for similar signals to eliminate uncorrel ated noise. Note that
contrary to signal stacking in the time domain (Section 4.1.2), the varioussignals
X need not be the same.
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Why does Equation 6.26 work? The average cross-spectral dendity is
(CCT )y = {20 . Ko ) o
= [(Xu . Hu + Ru) x]avr (628)
= [(Xu X:) ) H“]avr + (RU . 7(I)avr

In thefirst term on the right-hand side, H, is a constant and can be factored out
of thesummation. In the second term, the sum goesto zero because noise and the
input signal are uncorrelated. Therefore, the numerator in Equation 6.25 tends to

(CCT g = H, - (ACT™) (6.29)

avr

avr avr

and the computational procedure prescribed in Equation 6.26 adequately esti-
mates the frequency response without the effects of random noise. (Notice the
paralelism between Equation 6.19 for a single noiseless signa and Equation 6.29
for averaged spectra of an ensemble of noisy signals.)

As an example, consider a simple system with frequency response H, = 0.5
and ¢, =0 for al frequencies f,. Figure 6.12 shows the computed frequency

Input x

] ““W'WJWW““ 0 64 w128

} - 1 ! High noiselevel
0 128 i 256 Yz [
- u !
Output z 0.5
4 3 \
0 64 u 128

‘““U VI 10 i
SNR " |
0.01:
11073

0 128 ; 256

Figure 6.12 Example of evaluation of frequency response from an ensemble of noisy
signals
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response H given a set of input signals and the corresponding output signals
" gathered" with additive Gaussian noise.

6.7.1 Mesauresof Nase - Coherence

The noiseless output y is fully caused by the input x (Figure 6.11). Thisis not
the case for the measured output z. The coherence operator yields a real valued
array y* where each u-th entry denotes the energy in the measured output that
can be justified by the input. In mathematical terms,

2 = (AC”™),..  for frequen = u—2w— _
BT iy amig 6D

Coherence quantifies the energy in the measured output that was caused by the
input. Coherence? is properly determined using averagespectrafor an ensemble
of signals:

V= _ e, forfrequencye, (6.31)
! (AC: e )avr b (ACu( Z>) avr

If only onesignal isavailable, thisequationresultsin 4* = 1.0 for d| frequencies.
Thus, the value of coherence is meaningful when average spectra for multiple
signalsare used. The average spectraare computed asindicatedin Equation 6.27.
It can be shown through mathematica manipulationsand arguments similar to
those invoked for the derivation of the frequency response that

72 _ |Hu|2 N (AC:X>)avr

= 6.32
lHul2 : (AC:x>)avr + (Ac:b )avr ( )

where AC*™ is the autospectrum of noise R. This equation agrees with the
definitionin Equation6.30 (recall identitiesin Equations6.19, 6.20). Furthermore,
it showsthat if coherenceisone(thatis, y2 = 1 a frequency @, = u.2m/(N- AT),
then al the energy in the output is caused by the input.

Coherenceis a vauable diagnostic tool. Coherenceless than 1.0 indicatesone
or more of the following situations:

e Noisein the output
e Unaccounted inputsin the system

e Nonlinear system behavior
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Lack of frequency resolution and leakage: alocal drop in coherence observed
near a resonant peak suggests that the system resonant frequency does not
coincide with a harmonic w, =u-2%/(N.AT) in the discrete Fourier trans-
formation (Section 5.6).

The signal-to-noiseratio (SNR) i s computed asthe ratio between the autospectral
density of the signal without noise y. and the autospectral density of noiser:
(ACT" ) pue

avr

SNR, = for frequency, (6.33)

Its proper determination requires ensemble averages, similar to Equation 6.29.
From Equation 6.30, the SNR is related to coherenceas

NR, = I Y > for frequency w, (6.34)
g
The rangefor SNR variesfrom 0 to infinity; the higher the SNR, the stronger the
signal is with respect to noise.
Figure 6.12 shows the spectrum of coherenceand SNR for the ssimple system
with frequency responseH,. = 0.5 and ¢, =0 for al frequenciesf,.

6.7.2 Statistical Interpretation

Statistical parameters can be computed for the value of a signal x at discrete
time t;, using the ensemble of M signals,

meanvalue W = ﬁ 3 ox (6.35)

meansquarevalue  §F = % Z (xi<“>)2 (6.36)

variance ol = 1%4 Y (x - <“>) =9l —p? 6.37)
k

If thesignal is ergodic (Section 3.1), these statistical parameterscan be computed
using the N-vaues in one signal. In this case, the mean square value 2 is
known as the root mean sguare rms of the signa and it is equal to the value
of the autocorrelationfor zero-time shift ac*> = ¢? = ¢ + 2. On the basis of
Parseval's identity, ¥ is also equal to 1/N? times the area of the autospectral
density plot. These observationssuggest the mathematical link between ensemble
statisticsand spectral densities. These conceptsare invoked in the next section.
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6.7.3 Number of Records - Accuracy in the Frequency
Response

The computationof the frequency responseis enhanced by increasing the length
N-At of recorded signals and the number of signals M in the ensemble. Longer
signalsreduce estimate errors in time average operators such as cross-correlation
and autocorrelation (recall Figure 4.8). Furthermore, the length N-At must be
much larger than the averagetime shift 8t between input and output to avoid bias.

On the other hand, the higher the number of signals M in the ensemble,
the lower the variance in the estimate of the frequency response. Following an
analogous discussion to Section 4.1.2, the mean computed from samplessize M
has a coefficient of variation (cov) proportional to the cov of the population and
inversely proportiona to +/M, where the cov is the standard deviation divided by
the mean cov = o/p..

The number of signals M that must be processed to estimate the magnitude
of the frequency response |H, |, with an expected cov in the estimate, given a
signal-to-noiseratio SNR or coherence y?, is (see Bendat and Piersol 1993)

1 1 1-y?

M=—">—

2c0v2SNR ~ 2c0v2 2 (6:38)

Similar statistical argumentswere used in the time domain (Section 4.1.2). How-
ever, the criterion followed in the time domain was to obtain a good estimate
of thesignal x; at a given time t,. The aim in Equation 6.38 is to obtain a good
estimate of the frequency response H, at frequency w,. For clarity, subindices
are not included in Equation 6.38.

For example, for an SNR=1 and a desired cov=0.01 (excellent) in the
estimate of If, it would require M = 5000 signals, while for cov =0.1 (good)
the number M =50. The desired cov can be lowered if single-point estimates
of system characteristics are replaced by a more comprehensive consideration
of the array H. For example, estimating the mechanical characteristics of a
single DoF oscillator from resonant frequency and the amplitude at resonanceis
more sensitive to errors than least squaresfitting the theoretical responseto the
measured response.

6.7.4 Experimental Determination of H in Noisy Conditions

In summary, the frequency response H can be determined by exciting the system
with:

e astepor a"quas-impulse”; noiseiscontrolled by stackingin the timedomain
the responsefor the same repeatableinput. The resultish (or anintegral of h
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when a step is used), and the frequency responseis computed as H = DFT(h).
This approach was discussed in Chapter 4.

¢ steady-state single-frequency @, sinusoidsto determinethe values of H, one
at the time, and repeating the measurement at multiplefrequenciesto form H.
High signal-to-noise ratios may be attained even for signals buried in noise
(lock-in amplifiersfacilitate this task).

e generic broadband input signals and computing H with spectral quantities.
Noiseis controlled by spectra averaging.

The methodology for the last approach is outlined in Implementation Procedure
6.6 and relevant equations are summarizedin Table 6.1.

H

1

Implementation Procedure 6.6 Determination of the frequency response

. Determine the number of signalsto be stacked for the required cov in the

. Collectinput x and output z signas. acquire the longest possible record to

. Pre-process the signals by detrending the arrays (Section 4.1.1), applying

using generic broadband signals— Noisy output
Start the experiment followingthe initial guidelinesprovided in Implemen-

tation Procedure 6.5. Conduct preliminary measurementsto assessthelevel
of noise. Computethe SNR ratio and estimate the coherence.

measurement

1 1—+2
M=
2-cov2|: v2 ]

For example, if the coherence at the resonant frequency is vy =0.8 and
the desired cov of the pesk frequency responseis cov = 2%, then a total
of M = 312 measurements will be needed.

reduce the bias in the estimate of the frequency response.

smooth transition windows (Section 5.5) and extending the recorded time
series by zero-padding (Section 5.6) as needed.
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. For each measured input and output signals: compute the following arrays:

X =DFT(x); theconjugateof X; and Z=DFT(z)
CC™™  wherethe u-th entry is (Z,.X;)

AC<*>  wherethe u-th entry is(X, -X,)
Use these resultsfor all measurements to compute average spectra

(CC<*=) where the u-th entry is (CC;**),,, = 3. (z,.X,)..
= o al meas. #/meas

(AC*),,, Wwherethe uthentry is (ACS™)e = 2 (KXo Xo) oo

al meas.

. Finally, compute the frequency responsearray H. The u-th entry is

GO and it correspondsto frequency , = u 2m
- (AC:X>) eSp eq y u — ST o

H,
avr N At

. The coherencey? and signal-to-noiseratios correspondingto the ensemble

of collected signalsare

<X,Z> 2 2
2 '(Ccu ’ )avel Yo 2m
= and SNR =—— al o, =
o (AC:X> )avr ' (AC:D)avr ! i @u=1 N. At

Analyzelow coherence values to identify possiblecauses. Consider noise,
nonlinear system behavior, or poor resolution near resonance.

Correct the measured H for the frequency response of transducers and
peripheral el ectronics (see Implementation Procedure 6.5).

—

The input signal may be random noise. The average autocorrelation of white
random noise is constant ~a for dl frequenciesw,, and Equation 6.25 becomes
H, = a (CC;**),.. Furthermore, systems that preferentially amplify certain
frequencies, such as a low damping resonant oscillator, tend to vibrate in that
frequency and exhibit an increasein coherence near resonance. These two obser-
vations suggest the use of " unmeasured ambient noise™ to explore the frequency
response of systemsthat cause sharp amplification in narrow frequency bands.
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Table 6.1 Summary of equations

|
No noise — ideal signal ! Noise added to output
|
|
Time domain \
Input signal X : X
Output signal ¥ : z=y+r
Frequency domain :
Input signal X : X
Output signal Y : Z=Y+R

Component in DFT
Complex conjugate
Autogpectrum
Cross-spectrum
Cross-correlation
Frequency response
Phase shift
Amplitude

Coherencefunction

Noiseto-signal ratio

X, =Re(X,) +j-Im(X,)
X, =Re(X,) —j-Im(X,)

AC,® =X, X, =[Re (X, +[Im (X,)I

CCu n) = Z : Zu
g<)(‘Z> - IDFT (_(:_C_(X,Z))
! <X,Z>
H =£ ! H = (CCu * )avr
COX ! g ) (ACT ) e
— tan—1 | O,
b= [Re(Hu)]
|H,| = v[Re(H,)? + [Im(H,)]?
2
H (CC et )avr
Not applicable 2= |< —— ——
" (A(:l‘lx )avr .-.QAC“X )avr
Not applicable | SNR, = —2
I 1_v;

2

Theu-th valuedf a parameter correspondsto frequency: v, =ug%;

6.8 SUMMARY

e Sinusoids and complex exponentials are eigenfunctionsfor LTI systems: the
output is a scaled and shifted sinusoid or complex exponential of the same
frequency.

Thefrequency response H fully characterizesthe LTI system. It is equal to the
DFT of theimpulseresponseH = DFT(h).
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e The convolution sum in the time domain y = x*h becomes a point-by-
point multiplicationin the frequency domain Y, =X, - H,. Cross-correlation
becomes a multiplicationin the Fourier domain as well.

e Circular convolution and cross-correlation reflect the inherent periodicity in
the DFT. Zero-padding hel ps reduce the effects of circularity.

A window is applied as a point-by-point multiplicationwitha signal. Windows
are used in the time domain to reduce leakage in truncated signals. In the
frequency domain, windows are used to implement filters.

e Windowing in one domain is equivaent to convolution with a kernel in the
other domain. The kernel and the window are related by the DFT.

e The frequency response H can be computed in the frequency domain using
any generic broadband input signal, including random noise. Thisis a salient
advantage of the frequency domain.

e The presenceof noise requiresadequate signa processing procedures.

e | ow coherenceindicates noise, unmeasured inputs, inadequate resolution, or
nonlinear system behavior.

e Thesimpler, albeit slower, approach of determiningeach value H, by exciting
the system with steady-state single-frequencysinusoidscan render high signal-
to-noise ratios even when the signal is buried in noise.
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SOLVED PROBLEMS

P6.1 Properties o the Fourier transform. Demonstrate that if X = DFT(x),
then the DFT of the tail-reversed rev(x) is the complex conjugate of X.
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Solution: Let usconsider areal-val uedsingle-frequency sinusoidcomputed
as the sum of a cosine and a sine. Its tail-reversed rev(x) is obtained by
changing the sign of the sine component:

x; =cos(%i) + 1.3sin (i) then rev(x;) = cos(12%i) — 1.3sin (2%4)

The signal is evaluated for N = 8 points. The rea part of the double-
sided DFT of x has positive amplitude at frequency counters u=1 and
u=N — 1. Theimaginary part Im(X) has negative amplitudeat u=2 and
positive at u= N — 2 in agreement with the symmetry property of the
DFT (Section 5.3). All other termsare zero. The DFT of the tail-reversed
signal has the same real componentsbut the imaginary componentshave
opposite sign. Indeed, the DFT(rev(x)) is the conjugate of X,

xF=(1 1.6 1.3 02 -1 -1.6 -1.3 -0.2)

revi'=(1 -02 -1.3 -1.6 -1-02 1.3 1.6)

2T 5. 27 _..a
N Y A
— -_‘F t i
01 2 3%4 5 6,'7 8 0I.2 3 45 6 7 8
=% . . o
N - | o, .
) ‘&
ai 24
IOT 107
o k3 s o
01 2 3 4 5 6 7 8 01 2 3 45 6 7 8
+ +
-10+ -10+

P6.2

Important: notice that the array is not obtained by reversing the array! In
fact, xy =rev(x,).

Convolutionin thefrequency domain. Demonstratethat Y, = X, . H, start-
ing with the expression for time-domain convolution and assuming that
H=DFT(h).

Solution: Convolution in the time domainisy;, = ; Xe-hiy

(w23,
ItsDFTis Y,=Y (Zxk-hi_k) e (5%)
i k
But according totheshift property (Equation5.22):

u2—wk) —j (uz—“i)
N e N

Replacing Yu:;zxk.hi-e_j(
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Rearranging Y, = (; Xy - e_j(u%k)) (Z b, 'e“ji(uzl_\}!i))

1

The factors in brackets are the u-th components of the DFT of x and h;
therefore, Y, = X,, . H,.

Filters. All-pass filters are used for phase control, and the magnitude
responseis|H,| = L0foral u. Typically,all-passfiltersare used to correct
the phase shift imposed by other filters. Design an all-passfilter that will
causealinear phaseshift withfrequency and apply thefilter toasine sweep.
Concludeon theresponsedf thefilter and thebehavior of theoutput signals.

Answer: All-passfilter defined as H,|=1and ¢, =vZu
Thefilter frequency responseis H, = |H,| . [cos (¢,) +].sin(¢,)]
Consider afrequency sweep x; = sin (&Fi'%)

ItsDFT is X =DFT(x)

Thefiltered signal is Y,=H, X,

Thefiltered signal in timeis y = IDFT(Y)

The original and filtered signals with v = 64, 128 and 192 are presented
next. Astherate of phase shift v increases, the signal is shifted to the left,
advancingin time. Because alinear phase shift is equivalent to a constant
time shift 8t, thereis no distortion in the signal. The effect of circularity
is clearly seen (periodicity assumptionin the DFT).

— AL A NAAAAAN
AN ERVARARR AT
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ADDITIONAL PROBLEMS

P6.4 Power spectra. Demonstrate that the additivity rule does not apply to
either the cross- or the autospectra: AC<*'**> £ AC**!> 4+ AC>,

P6.5 Filters — Hanning window. Consider arrays of length N-At. A Hanning
window of width E-At is used to extract signal segments. Computeand plot
the DFT of Hanning windows with widthE=N, E=N/2 and E = N/4.
Realizing that these transforms act as kernels in the frequency domain,
what is theeffect of windowing asingle-frequency sinusoid withaHanning
window? Repeat for a Gaussian window. Move the windows off-center;
how do real and imaginary componentsreact?

P6.6 Filters: windows and kernels. Band-passfilteringin the frequency domain
is equivalent to the convolution of the kernel with the signal in the time
domain. Study the kernel characteristicsfor band-pass filters of different
width and transitionratesat boundaries. What is the kernel of a Gaussian
window? Explore the effects of these filters on a sawtooth signal. Draw
conclusions.

P6.7 Noise and frequency response. Study the effect of noise in the determi-
nation of H when (@) the input is measured with noise but noise does not
go through the system; and (b) the input is measured without noise, but
noise gets introduced into the system at the input and manifests in the
output. (Note that these two cases are different from the one covered in
the chapter.)

P6.8 Freguency response determination. What is the DFT of random noise
(consider spectral averages)?What isthe DFT of an impulsesigna ? What
can you conclude about the application of these signals to determine the
frequency responseof a system? What are the differencesfrom the point
of view of asystem with alimited linear range?

P6.9 Coherence. Expand the definition of coherence and show that coherence
v% = 1.0for all frequencies when a single measurement is used.

P6.10 Coherenceand signal-to-noise ratio. Comparethe theoretical and practical
definitionsof the coherence and signal-to-ratiofunctions. Vary the noise
level and the number of signalsin the ensemble. Conclude. (Hint: define
theinput signal x, noiselessoutput y, noiser and noisy output z; = y; +r;
for each signal in the ensemble.)

P6.11 Application: echo testing (e.g. ultrasound). An exponentialy increasing
amplification is sometimes applied to the received signal to compensate
for the effects of geometric and materid attenuation. This amplification
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isa window in the time domain. What is the corresponding kernel in the
frequency domain? What are the implicationsof this method?

Application: transducers and peripheral electronics. Find the manua or
specificationsfor standard laboratory devices that you use (transducers,
amplifiers, signal generators). Identify the information provided by the
manufacturer about the devicefrequency responseH(w). | stheinformation
sufficient to completely define H(w)? Implement a numerical simulation
of the effect of the device on a known measurement x as a convolution
between x and H. Draw conclusions on the effect of transducers and
peripheral electronicson your system.

Application: system characterization. Design a step-by-step procedure to
determine the frequency responseof a system of your interest (e.g. trans-
ducer, imageanalyzer, bridge, city traffic). Consider both the experimental
setup and the numerical processing of signals. Make sure you include
guidelinesto reduce noise and experimental and computational details to
correct for the frequency response of transducersand peripheralsused in
the measurements.

Application: system characterizationwith random noise (Part |). Systems
with low damping readily respond in their resonant frequency, and the
measured response Z for any broadband signal will resemble the system
frequency responseH. Consider asingle DoF oscillator. Preparean ensem-
ble of M input signals x of length N generated with a random number
generator. For each input signal x, compute the output y as a convolution
with the system response, and add random noise to obtain the ensemble
of "measured" output signals z. Then (1) compute the frequency response
with average spectra, and (2) consider the possible use of ambient noiseto
explore H without measuring the input. Repeat these studies for different
number of signalsM, duration N, and system damping. Draw conclusions.
Can the system be characterized using ambient noise as excitation without
measuring the input?

Application: system characterization with random noise( Pan 2). Back-
ground noiseis omnipresent and may be used asa sourceto study systems
without additional excitation. Design a detailed procedure — both exper-
iment and data-reduction components — to determine the frequency
response of a system of your interest using background noise. Include
detailed informationabout the transducer, the sasmplinginterval, the signal
duration, the number of records, and the data processing procedure.

Application: cepstrum analysis. The cepstrum (from spectrum) of a signal
is defined as IDFT[log(AC<*”)]. Standard signal processing terminol-
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ogy is changed when using cepstrum analysis in order to denote this
type of transformation, for example: gamnitude (magnitude), quefrency
(freguency), rahmonics (harmonics), and liftering (filtering). Cepstrum
analysis may facilitate detecting changes in the system such as the for-
mation of cracks (or the effect of repairs) and recoveringthe signa at the
source without the multiple reflections. Explore the viability and benefits
of cepstrum analysisin your system of interest.

Application: spectrum of velocity and attenuation. Consider 1D wave prop-
agationin an infiniterod. A travelingwavelet is measured at two locations
at a distance L apart. There is only material attenuation in this system
e~ where a is the attenuation coefficient and £ the travel length. Detail
the algorithm to determine the velocity and attenuation spectrum given
the two measurements (include phase unwrapping). Consider (8) noiseless
signals, (b) noisy signals, and (c) known transducer transfer functions.
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Time Variation
and Nonlinearity

The operations presented in previous chapters are versatile and effective and
facilitate the interpretation of signals and the characterization of systemsin a
wide range of problems in engineering and science. However, there are some
restrictions. For example, consider a musical score; it simultaneouslytells us the
timing and the frequency of each note; yet, the frequency domain representati onof
sound would convey no informationabout timing. On the other hand, the efficient
agorithms for system analysis described in previous chapters were devel oped
on the bases of linear, time-invariant system behavior; yet many systemsdo not
satisfy either or both assumptions. Alternativesto analyze nonstationary signals,
and time-varying nonlinear systems, are explored in this chapter.

7.1 NONSTATIONARY SIGNALS: IMPLICATIONS

The discrete Fourier transform (DFT) perfectly fits the N-points of a discrete
signal with afinite seriesof harmonically rel ated sinusoids. Each nonzero Fourier
coefficient indicates the existence of a sinusoid that is present at al times, not
only inthetimeinterval of thesigna [0, T butfromt = —sctot = +o0. Thelack
of timing-related informationin the Fourier transform would suggest a stationary
signal with constant statistics across broad time segments. By contrast, speech,
earthquakes, music, topography and color picturesconsist of differentfrequencies
or ""notes” that take place at different times and for afixed duration!

For example, Figure 7.1a shows successive wave trains of different single-
frequency sinusoids. The autospectrum of the complete signa is shown in
Figure7.1b. The spectral peaks reflect the frequency of the wavetrains, but there
is no informationin the frequency domain about the timing of the events.

Discrete Signals and Inverse Problems J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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Figure 7.1 The frequency domain representation of the signal yields information
about frequency content, but fails to define the time location of each freguency:
(@) a nondationary sgnal with different frequencies & different times; (b) autogpectral
densty

There are important, yet often subtle, effects related to the interpretation of
signal processing resultsin the case of nonstationary signas. Consider the mul-
tiple transmission paths an emitted sound experiences (Figure 7.2). The sigha-
ture recorded with the microphone includes the direct wave, signals reflected at
walls, floor and ceiling, and signals diffracted around or traveling across any
anomay within the medium. Each arriving component will have experienced
a travel-length and frequency-dependent phase shift and attenuation (geometric,
backscatter, and material loss). Assume the complete record obtained with the
geophoneis discrete Fourier transformed. What do amplitude Y, ] and phase ¢,
indicate?

The implications of this situation are analyzed with the help of Figure 7.3.
Figure 7.3a consists of a sinusoidal of 8 cycles in 512 points. The DFT is
an impulse at the corresponding frequency (u = 8) and phase ¢; = —m/2. By
contrast, Figure 7.3b shows a windowed version of the same single-frequency
sinusoid (u = 8), showing only two cyclesfollowed by zero entriesfromi =128
toi =511 points. In spiteof having the sasmefrequency, the DFT of the windowed
signal isfairly broadband. The phaseis correct, 3 = —m/2. Even though a single
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Figure 7.2 A visit to the Museum of Modem Art. Emitted sound: " Oh..!?". The signal
detected at the microphone includes the multiple arrivals along different transmission
paths, with different arrival times and frequency content partially filtered by the medium
and reflections

frequency actsfor a short time, the DFT implies the presence of multiple sinusoids
at all times. Thereare two ways to interpret this result:

1

TheDFT isequivaenttofittingthearray x with the Fourier series. Inthiscase,
it is clear that several nonzero Fourier coefficientsare required to fit not only
the two cyclesof the sinusoid but thefull signal including the zero amplitude
region as well (see Figure 7.3b). All sinusoids are present at al times; yet
their amplitudeand phasesare such that their contributionsin the synthesized
signal render the correct values of x; at al discrete times t;, including the
x, =0 values.

The alternative view is to consider the signal x in Figure 7.3b as a sinusoid
512 points long but multiplied point by point with a square window w in
which thefirst 128 points are ones, and the rest are zeros. The point-by-point
multiplication in the time domain implies a convolution in the frequency
domain between the DFT of the sinusoid (whichis an impulse) and the DET
of the square window. Therefore, the DFT in Figure 7.3b is the DFT of the
window shifted to the frequency of the sinusoid u = 8.

Figure7.3c showstheoriginal signal plusa' reflected" signal with no attenuation.
Thereflectionarrivesat i = 255. Given the phase of thereflection, thissignal can
be considered asthe original sinusoidin Figure7.3a, but windowed with a square
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Figure 7.3 Some effects of nonstationarity: (a) a single-frequency sinusoid transforms
toasingle peak in amplitudeand phase; (b) two cyclesof asingle-frequencysinusoid with
zero-padding. The amplitude spectrum is broadband; the phase remains as —m/2 in the
dominant frequency; (c) two wave trainsd the same frequency with time shift equal to
twicethe period; (d) two wave trainsof the samefrequency but with time shift equa to 2.5
timesthe period. The computed amplitudeand phase are zero at the otherwise" dominant™
frequency

wave with two nonzero regions. Then, the DFT of thesigna in Figure 7.3c is the
DFT of this new window with two nonzero regions shifted to u=238. The phase
computed for the frequency of the sinusoid is still @g = —m/2.

Finaly, the case analyzedin Figure 7.3d consistsof theinitial two-cyclesignal
followed by a "reflection” that arrives at i =288, that is, haf a period after
the reflection in Figure 7.3¢. This signal cannot be obtained as a window o the
sinusoid in the first frame. In fact, the computed energy is AC5* =0 and the
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phaseis ¢ = 0 at the frequency of the sinusoid u=28. In general, the computed
phase correspondingto the frequency of the wave train cannot be associated with
any of thetwo arrivals.

7.2 NONSTATIONARY SIGNALS: INSTANTANEOUS
PARAMETERS

Let us reconsider the fundamental signals used in frequency domain anayses:
cosing, sing, and complex exponentialse™* and e~#*. The signals are plotted in
Figure 7.4, including both the real and the imaginary componentsof the complex
exponentias. Their corresponding double-sided DFTs are shown from u=0 to
u=N — 1, where the Nyquist frequency correspondsto u=N/2.

The DFT(cos) is real and symmetric, whereas the DFT(sin) is imaginary and
antisymmetric (Chapter 5. periodicity and symmetry properties). However, the
DFT of complex exponentials are single-sided. Furthermore, visual inspection
allowsthe confirmation of Euler’s identitiesin the frequency domain:

DFT(¢/*") = DFT(cos) T j . DFT(sin) (7.1)
and DFT(e*") = DFT{cos) — j . DFT(sin) (7.2)

7.2.1 The Hilbert Transform

The Hilbert transform x<*> is a new signal, orthogonal to the original signal x,
obtained by imposing —m/2 phase shift, and of the same spectral density. By
definition, the followingis a chain of interrelated Hilbert transforms:

cos (wt) = sin (wt) I _cos (wt) M, —sn (wt) 2 cos (wt) (7.3)

These transforms are readily confirmed by visua inspection of results in
Figure 74. Moreover, the detailed analysis of these figures allows us to identify
a procedure to implement the Hilbert transform:

e Given asignd x, computeits X = DFT(x).

e For0<ucx N/2,SetX:’“> = —j. X,

For N/2 <u < N—1, set X7 =j-X,.

Thearray X<"> isthe Hilbert transformof thesignal in the frequency domain.

The Hilbert transformin the time domain is x<™> = IDFT(X<">).
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7.2.2 The Analytic Signal

Let us define the "anaytic signad” as the array of complex numbers formed
with the original signal x as the real part and its Hilbert transform x<*> as the
imaginary component:

x> =xFj.x#>  anayticsignal (7.4)

1

The following analytic signals are computed by visual inspection in relation to
Figure 7.4, or by invoking the resultsin Equation 7.3 and Euler's identities:

if X =cos(wt) then x<A> — cos(wt) +j . sin(wt) = (7.5)
if x=sin{(wt) then  x** =sin(wt) —j-cos(wt) = —j.e*  (7.6)
Notice that the DFT of these two analytic signalsis an impulse between 0 and
the Nyquist frequency, 0 < u < N/2. This is always the case: it follows from
the definition of the analytic signal (Equation 7.4) that its Fourier transform is
DFT(x<4>) = DFT(x) T . DFT(x<">). Then, recalling the procedure for com-

puting the Hilbert transform, the values of the analyticsignal at the u-th frequency
become

XA =X, Fj(-jX,) =2%, for0su<N2 (77
ad X =X,+j(G-X,)=0 for N/2<u<N. (7.8

These observationslead to an effective procedure to compute the analytic signa
x~*> associated with a signal x:

e Compute the DFT of the signal: X = DFT(x).

e Set al values above the Nyquist frequency to zero: X:4> =0 for
N/2<u<N-1.

e Multiply valuestimes 2 for 0 <u < N/2: X4 =2X,.
e Thisis the analytic signal in the frequency domain X=<A>.
The analytic signal in the time domainis x<A> = IDFT[X**>].

By definition (Equation7.4), thereal part of the analyticsignal isthesignal itself,
Re(x74>) =x,.
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7.2.3 Instantaneous Paramefters

The analytic signal can be processed to extract ""instantaneous amplitude™ and
"instantaneous frequency™ information at each i-th position in time (see exercise
at the end of the chapter). The instantaneousamplitudeis

, - -
amp, = ‘/ Re (xf’”) +1m (xf”) instantaneous amplitude (7.9)

The instantaneous frequency requires an intermediate computation of "instanta-

neous phase'™:
Im (x*
¢; =tan™ [m—-(x—)} (7.10)

Re (xi(A))

Finaly, the instantaneous frequency is computed as the time derivative of the
instantaneous phase. Using thefirst order-finite difference approximation

_ b~y
At

The methodology is summarized in Implementation Procedure 7.1 and demon-
strated in Figure 7.5. The instantaneous frequency and amplitude are plotted
versus time to resemble a musical score (see solved problem at the end of this
Chapter).

[0 instantaneous frequency (7.11)

Implementation Proocedure 7.1 Analytic signd and instantaneous
parameters

Determination of the analytic Sgnal

1. Detrend the signdl.
2. Computethe DFT of the signal X = DFT(x).
3. Createasingle-sided array:

XA =0 for N/2=<u=N-1 (above Nyquist frequency)

X:A> =2.X, forO<u<N/2 (below Nyquist frequency)

4. Calculatethe analytic signal as x<A> = IDFT[X**"].
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Figure 75 Anaytic signal: (a) signal composed of two wave trains of different fre-
quency; (b) instantaneousfrequency versustime; (€) instantaneousamplitudeversustime;

(d) autospectral density
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Comments

In most cases, resultsare not as clear asin the examplein Figure 7.5, and require
careful interpretation. For example:

e The instantaneous frequency of a beat function x = A cos(w,t) * B sin(w,t)
oscillatesfrom w, = 0 to w; = (Ao, + Bw,)/(A + B) with periodicity @, — W,

¢ Whereas the instantaneous amplitude is quite stable, the instantaneous fre-
guency is very sensitiveto noise, which becomes magnified by afactor @ when
the derivativeof theinstantaneousphaseis computed. Thus, itis recommended
that at least alow-passfilter be applied in the frequency domain.

e The instantaneous frequency may be outside the bandwidth of the signa
observed in the autospectral density.

An alternative analysis of nonstationary signals involvesits transformationinto
the time-frequency space, where the "momentary” signa characteristics are
determined at different times. In this case, the one-dimensiona (1D) signal
in time is transformed into a two-dimensiona (2D) signd in time-frequency.
Three time-frequency signal processing methods are introduced in the following
sections.

7.3 NONSTATIONARY SIGNALS: TIME WINDOWS

Drawbacksin the global DFT can be lessened by extracting time windows of the
origina nonstationary signal x and analyzing each windowed in the frequency
domain. Then frequency content is plotted versus the time position of each
window. Implementation detailsfollow.

The k-th windowed signal is obtained as a point-by-point multiplication
y¥> = w¥>.x,. The Fourier transformsof the extracted subsignals are assem-
bled into a matrix Y that defines the short-time Fourier transform (STFT) of the
origina signal x

Y =STFT (x) short-time Fourier transform (7.12)

where the k-th column of Y is the DFT of the k-th windowed signal y<*>.
Therefore, while the DFT of a signal convertsthe 1D array x in timeinto the 1D
array X in frequency, the STFT convertsthe 1D array x in timeinto the 2D array
Y in the time-frequency space.

" If the window width is M-At, only M entries are kept in the windowed signals
(where M is the number of pointsin the window, and At is the sampling rate of
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the signal), the maximum period of the window is M-At and the u-th elementin
the k-th column Y, , is the Fourier coefficient that correspondsto the frequency

© (for window width M - At) (7.13)

v =M A
The timing assigned to the k-th window is the time at the center of the window.

The presentation of STFT results is more cumbersome than a simple DFT.
Typically, the graphical display of Y involvesthe amplitude |Y, x| on the time-
frequency information plane. This is the " spectrogram™ of the signal. If contour
plots or collapsed three-dimensiond (3D) graphs are used, the value |Y,,| is
mapped onto a color scale or shades of gray. Figure 7.6 displays the DFT of
individual windowed records and the STFT of the signdl.

7.3.1 Time and Frequency Resolufions

The separation between two adjacent window positions 8t = q - At and the win-
dow width M-At define the overlap between windows, and affect the STFT and
its interpretation. The analyst must select the integersg and M, and the shape of
the window.

Window width, and to a lesser extent its form, determine time and frequency
resolutions. The longest discernible period is obtained with a square window;
however, it causes spurious frequencies. For any other window, T,,, < M. AL
Thus, the lowest resolvablefrequency in the windowed signal is >1/(M - At) and
thisis frequency resolution Af,., between successive harmonics:

Af, >= frequency resolution (7.14)

M- At
The maximum frequency remainsthe Nyquist frequency, which is determined by
the sampling rate At used in digitizing the signd x, and is independent of the
characteristicsof the window.

While a wide window enhances freguency resolution, it also leads to the
analysisof longer time segments, and thetimingof acertainfrequency component
in x loses precision. For windows that are square at the center with smooth edge
transitions, time resolution is worse than haf the window width M-At,

M- At
3 time resolution (7.15)

At >

Optimal coverage of the time-frequency plane takes place when two neighbor
windows just touch. In practice, higher overlap is used, yet, the separation 8t
between windows need not be less than the time resolution Af.
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Figure 7.6 Short time Fourier transform: (a) original signal; (b) amplitude-frequency
plotsfor windowed signalsindicate the time location correspondingto each wave train —
only 9 of the 16 windows are shown; (c) contour plot — amplitude normal to the page

Equations 7.14 and 7.15 can be combined as

1
Afres . Atres =z

> (7.16)

This relation summarizes the trade-off between time and frequency resolution,
and determines the rate of scanning of the time-frequency information plane.
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The successful implementation of the STFT depends on balancing the trade-off
between frequency and time resolutions.

7.3.2 Procedure

The STFT isintuitively appealing and enhances signal analysis. Implementation
Procedure 7.2 outlines the steps to compute the short-time Fourier transform
Y =STFT(x). The technique can be readily extended to image processing; the
display in this case involvesfrequency-specificplots.

Implementation Procedure7.2 The short time Fourier transform (nonsta-
tionary signals)
1. Digitizeand store the N-point signal x.

2. Definetheform and length of the window w. Square windows with smooth
transitionsare adequate. Consider the following criteria when selecting the
width M:

e Each signal segment, length M-At, will be considered stationary.

e The time and frequency resolutions are At >0.5-M-At and
Af, >1/(M-At).
¢ Thelongest period that can be discernedis T,,,, <M-At.

e A wider window will improve frequency resolution but decrease time
resolution (windowed segments may be zero padded).

3. Select the time distance between two successivewindows 8t = q. At where
q is an integer. The value of 8t need not exceed the time resolution,
8t < 0.5-M-At. The separation 8t and the width of timewindowsM.-At define
the overlap between windows.

4. For thek-th window position, compute the windowed signal y<*""> consist-
ing of M paints,
yi<k-th> - Wi+k-q'Xi

5. Compute the DFT of each windowed signal y<¢">

Y<<t> — DFT (Z<k-th>)
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6. Ensemble these arraysinto a matrix Y, so that the k-th column of Y is the
DFT of the windowed signal y<"®>, Thisis the STFT of x:

Y = STFT (x)

The u-th element in the k-th column Y, is the Fourier coefficient that
correspondsto frequency @, = u.2m/(M- At) and central timet, = k. 8t.

7. The STFT may be presented as a collapsed 3D plot of magnitude [Y,, |-

The trade-off between time and frequency resolutionis explored in Figure 7.7.
The two wave packets in the smulated signal are of different frequency. STFTs
computed with two window widths are presented in Figures 7.7b and ¢ as con-
tour plots of amplitude. Results confirm the dependency the STFT has on the
selected window width, and the lower time resolution attained with wider win-
dows.

7.4 NONSTATIONARY SIGNALS: FREQUENCY
WINDOWS

The STFT seeks to identify the frequency content at selected time segments.
One could also wonder about the time when selected frequency bands take
place. In this case, the DFT is computed for the whole signal, X = DFT(x), and
frequency windows of X are extracted and inverse-transformed to time. Once
again, windowing is a point-by-point multiplication, in this case in the frequency
domain. For the s-th window W <>

Yo =WE X, (1.17)

The band-passfiltered spectrum Y <*> is inverse transformed to the time domain
and placed in the s-th column of the matrix Y- Thus, thisis also a transformation

from a 1D array x in time into a 2D array in time-frequency y. The plotting
strategiesfor the spectrogram resemblethose used in STFT. -

A window in frequency is a band-pass filter. Therefore, each column of y
is a band-pass filtered version of x. Yet, why does this procedure work for
nongtationary signals? The time-frequency duality predicts that the point-by-
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Figure 7.7 Thetime window size hasimportant consequences on theresults of the STFT:
(a) signal made of two wave trains of different frequencies; (b) STFT performed with a 64-
point wide window presents high resolution in frequency, but does not discriminate well
intime; (c) STFT performed with a 16-point narrow window presents higher resolution in
time, but does not discriminate the fast-varying frequencies very well

point multiplication in the frequency domain (Equation 7.17) is equivalent to
the convolution between the signal and the kerne k that contains the inverse
transform of the frequency window, xxk. But convolution is a tail-reversed
cross-comeation (see Sections 4.2, 44, 6.3 and 6.4). Therefore, the procedure
can be viewed as the identification of similarities between the original signd x
and the IDFT of the frequency window.

7.4.1 Resolution

The trade-off between the resolution in time and in frequency persists. a narrow
filter enhances frequency resolution but it correspondsto a wide kernel in time,
decreasing time resolution. Furthermore, a narrow frequency band deforms the
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Figure 7.8 Windowsin the frequency domain - Band-passfilters: (a) the signal consists
of three wave trains of different frequency; (b) the autospectrum of the signal; (c) the
DFT of the original signal is windowed to extract the frequency bands that are inverse

transformed

signal, creating phantomsof the sgnature before the true signal appearsin time
(typically fish-shaped; Figure 7.8).

7.4.2 Procedure = Example

I mplementation Procedure 7.3 presentsthe step-by-step algorithmto computethe
band-filtered time-frequency analysis of a signal x. This type of algorithm can
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be used to unmask events that are hidden within other frequency components,
including noise.

The procedure is demonstrated in Figure 7.8. The signal x in Figure 7.8a is
transformed to the frequency domain X (Figure 7.8b) and analyzed by extracting
successive frequency windows. Figure 7.8¢c presentsthe spectrogram assembled
with the inverse transforms of the filtered signals.

Implementation Procedure7.3 Band-passfilters and nonstationary signals
(windows in the frequency domain)

1. Digitizeand store the N-point signal x.
2. Computethe DFT of the signal: X =DFT(x).

3. Define the form and width of the filter W and the frequency separation
between adjacent windows 8. Consider the trade-off in the frequency-time
resolution.

4. Foreach positionof thewindow, multiply x by thewindow W <*"> centeredat
frequency o, = S- 8w (asymmetricwindow must beapplied abovethe Nyquist

frequency when double-sided Fourier transformsare used — see Section 6.5):
y<s-th> — yw<s-th> . X,. Thisarray hasthe samelengthasx.

5. Computethel DFT of thefilteredsignal: y <> = IDFT (Y~*"">).

6. Ensemblethesearraysintoamatrix y, sothat thes-th columnof yisthe IDFT

of thefiltered signal y=*>. Thei-th element in the s-th column yi; isthevalue
of theband-passfilteredsignal at timet, =i.At.

7. Displaytheresults.

7.5 NONSTATIONARY SIGNALS: WAVELET ANALYSIS

The STFT highlightstime resolutionin the spectrogram; on the other hand, band
filtering enhancesfrequency resolution. It would be advantageous to improvethe
frequency resolution of low-frequency events whileenhancing the time resolution
of high-frequency events. This could be achieved by increasing the width of the
band-pass filter as it is moved aong the frequency axis. Let us anayze this
suggestion:
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e A band-passfilter is a window that is multiplied point by point with the DFT
of thesignd. Thisis equivaent to the convolution of the signal with a kernel
K in the time domain.

e The IDFT of the band-passfilter is a wavelet-type kernel. The duration of the
wavelet isinversay related to the width of the band-passfilter.

e The convolution of the kernel k with the signa x is equivalent to cross
correlation (Chapter 4); that is, it identifies similarities between the signal and
the kernel.

These observationsare the foundationsfor the wavelet transform.

7.5.1 Wavelet Transform

The wavelet transform of a signal x consists of identifying similarities between
the signal and the wavelet kernel k. The wavelet is tranglated by imposing time
shiftsT =b- At, and its frequency is varied by successivetime contractionsa:

1

a2 Kb controlling time shift and frequency (7.18)

Mathematically, the wavelet transformis the cross-correlation of the signal with
wavelets of increasing central frequency, and it convertsa 1D signal x onto the
2D wavelet transform G: !

| N-1

Gep=02-) X;-Kis (7.19)
i=0 *

Some wavelet functions form a base, and the inverse wavelet transform exists.
This is important if the intention is to conduct signal processing in the time-
frequency domain, followed by a reconstruction of the signa back to the time
domain, for example, in the processingof noisy signals. In other cases, wavelet
analysismay berestrictedto the detailed study of the signal within somefrequency
range, for example, to analyze dispersion. In this case, wavelet analysisinvolves
a finer scanning of the time-frequency information space, within the region of
interest and the constraintsimposed by the time-frequency resolution.

! The wavdet trandform in continuoustimeis (the bar indicates complex conjugate):

G(a,b) = % -/x(t)~g(?)~dt
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The wavelet transform depends on the selected wavelet. Therefore, the wavelet
used in the analysis must be explicitly stated. There are several well-known
wavel ets (see exercisesat the end of the chapter). The Morlet waveletis reviewed
next.

7.5.2 The Morlet Wavelet

The Morlet wavelet consists of a single-frequency sine and cosine in quadrature
(complex, with 90" phase shift). The amplitude is modulated with a Gaussian
function,

K, = ei-(v-ne"”“‘”'(ﬁ)z (7.20)

Thefirst complex exponential representsthe sinusoid and the second exponential
captures the Gaussian amplitude modulation. The wavelet central frequency is
indicated in the exponent v.i = (v/At)- (i - At); thus w = v/At. The value of v
must be v<m to satisfy the Nyquist criterion wy,, = w/At. The wavelet
width M-At is measured at half the peak amplitude of the wavelet. Figure 7.9
showsaMorlet wavelet in time and frequency domains. The DFT is single-sided
(refer to Figure 7.4) and its spectral density is a Gaussian curve (not a single
frequency).
The wavelet transform of a signal x in termsof the Morlet waveletis

a N-I ™ (i :
G,,=2"2-3 [eifﬁ-") e (2) -xi] (7.21)
i=0

where the central frequencyis w, = w/(2% - At), and the Nyquist frequency corre-
spondsto a=0, that is w = w/At. Thetimeshift for each valueof bistT=b- At.

If the signal x has N points, then 2' < N/2. Finally, the width of the wavelet is
M =2*../4-1In(2). The parameters"d" and “b” areindicesin the frequency-time
information space.

7.5.3 Resolution

The trade-off in time-frequency resolution is also manifest in wavelet anaysis.
The time resolution attained in the wavelet transform using the Morlet wavelet
is related to its width M-At, and the frequency resolution Af, is related to the
frequency band of the transformed wavelet. If the time and frequency widths are
determined on the Gaussian envelopes at hdf the peak, the uncertainty princi-
ple becomes

Af,,.At, ~09 (7.22)
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Figure 79 Morlet wavelet: () mathematical definition of the complex series; (b) Morlet
wavelet with parameters v=0.15.1m and M =40 - real and imaginary components;
(c) autospectral density — note that it is single-sided — refer to Figure 7.4

7.5.4 Procedure - Example

Implementation Procedure 7.4 outlines the computation of the wavelet transform
of a signa in terms of the Morlet wavelet. A numerical example is shown in
Figure 7.10. Small values of "'d" give information about high-frequency content
detailsin the signal, whereas high vaues of "'d' show the low-frequency global
trends.

ImplementationProcedure7.4 Wavelet transform of nonstationary signals
(Morlet wavelet)

1. Select a wavelet k(t). Copiesin discrete time are obtained by time shiftsb
1

and contractionsa: a2 . Ki-p
a
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2. Decide the scanning rate for the time-frequency space, keepingin mind the
restrictionsimposed by the uncertainty principle. This rate will determine
shift b and contractiona parameters.

3. Calculate the wavelet transform as a cross-correlation of the signal x and
the wavelet for each degree of time contraction

y N—t

Gap=072. ) X Kih

i=0

4. If the Morlet wavelet is used, the wavelet transform of x is computed as

N-1 . = ‘
G,y =2_§ > |:ejZ—’('_b)-e ('2’ ) 'xi:|

i=0
- The Nyquist frequency correspondsto a = 0.
- If thesignal x has N points, 2% < N/2.
— The width of the waveletisM - At=22
5. The vaues of the wavelet transform for each combination of contraction"'a’

and shift “b” are plotted versus a and b, or versus time shift 7, = b. At and
frequency w, = /(2" . At).

Example
A numerical exampleis presented in Figure 7.10.

Note: Efficient algorithmsare implementedwith filter barks and decimation or
down-sampling. (Recall the time-scaling properties of the DFT in Chapter 5.)
The wavelet transform can be designed to minimize oversampling the time-
frequency information space, while assuring invertibility.

In practice, the scanning of the time-frequency space is planned to avoid
redundancy, in agreement with the superposition of windows in the STFT, and
the scaling parametera is variedin powersof 2, a = 2* (compareEquations7.19
and 7.20). Likewise, it is not necessary to compute the cross-correlationfor time
shiftsthat differ in only one samplinginterval (t = b- At); in fact, the time shifts
can be related to the central period of the wavelet.

VAT,
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Figure 710 The waveet transform: (a) the signal in discrete time (b) the wavelet
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plot: wavelet transform presented in the frequency-time space dencted by parameters a
and b



NONLINEAR SYSTEMS DETECTING NONLINEARITY 197

7.6 NONLINEAR SYSTEMS: DETECTING NONLINEARITY

The application of the convolution operator is restricted to linear time-invariant
(LTI) systems where the generdized superposition principle applies: *'the input
is expressed as a sum of scaled and shifted elemental signals and the output
is computed as a sum of equally scaled and shifted system responses”. The
superpositionprincipleloses validity in nonlinear or time-varying systems.

7.6.1 Nonlinear Osciilator

Thesingle DoF oscillatorin Figure7.11a is thearchetypal LTI system applicable
to widerange of engineering and science applications, ranging from atomic phe-
nomenato mechanical and electrical engineering systems (see also Figure 4.10).
The frequency response H is independent of the amplitude of the forcing func-
tion x.

By contrast, the other four systemsdisplayedin Figures7.11b—e are nonlinear.
The systems in frames b and c include frictional elements. nonrecoverable dlip

o IAVA, '

x(t) x(t)

© ™ | o @ m | o
k

m D\ \\\\

Figure 711 Linear and nonlinear Sngle DoF systems (a) linear system; (b, ¢) nonlinear
frictiona sysems; (d) Duffing nonlinear sysem (nonlinear spring); (€) nonlineerity caused
by physcd condraints

k(y) ¢
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takes place whenever the force transmitted to the frictional element exceeds its
capacity. Nonlinearity isfirst exhibited near resonanceand its effect spreadsto a
wider frequency range as the amplitude of the imposed excitation increases. At
low frequencies - below resonance - the inertial response of the mass is very
small and most of the applied force is transmitted to the support; thisis not the
case at high frequencies— above resonance — owing to the inertia resistance of
the mass. Hence, the quasi-symmetry of |H| in a linear viscoelastic system is
gradually lost as the system becomes nonlinear.

Figure 7.11d presentsanother simple yet revealing nonlinear system in which
the restoring force is nonlinear with the displacement. Thisis called the Duffing
system. The equation of motionis

m-y+c-y+(k-y +o-y’) =F,-cos (wt) (7.23)

When a= 0, the equation of motion becomes the equation of mation of a lin-
ear system. If a> 0O, the restoring force increases with amplitude, and |H| is
skewed to the right. If a < 0, the restoring force decreases with amplitude, and
[H} is skewed to the left (Figure 7.12a). These examples show that a shift in
the peak value of |H| with increasing input amplitude is another indicator of
nonlinearity.

7.6.2 Multiples

Consider the nonlinear system in Figure 7.11e subjected to a single-frequency
sinusoidal input x. As the excitation amplitudeis increased, the mass oscillation
eventually reachesthe boundaries, the displacementis stopped, and therest of the
motion is distorted. Without further analysis, assume that the mass displacement
history resemblesthe signal y shown in Figure 7.13a. The responserepeats with
periodicity T = 2m/w, where w, is the frequency of theinput sinusoid; however,
it is not a sinusoid.

How is this periodic response y fitted with a Fourier series? Clearly, the
sinusoid corresponding to frequency w, remains an important component of the
response. But other frequency components are needed to fit the response, and
their contribution to the synthesis of y must take place at locations that are
repeatable with periodicity T = 2m/w,. Therefore, the other components must
be harmonics of w,. The DFT of the responsey is shown in Figure 7.13b
where harmonicsor "multiples” are readily seen (see problems at theend of this
Chapter).
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Figure 712 Duffing nonlinear system: (8) spectral response as a function of a and the
amplitude of excitation Fy; (b) measured response varies with the sweep direction (the
case shown correspondsto a soft spring, a < 0; the same appliesfor a > 0
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Figure 713 Nonlinear response of the nonlinear system presented in Figure 7.11e:
(8 input x and output y signals; (b) the amplitude of the discrete Fourier transform Y
in dB. The multiple peaks are harmonics of the excitation frequency (only the first 10
harmonics are shown)
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7.6.3 Detecting Nonlinearity

Becausetheapplicationof classical signal processingand systemanalysismethods
presumes linearity, it is important to assess whether the system under consid-
eration exhibits nonlinear response. Let us list here those previoudy discussed
methods that can be used for this purpose:

e Scaling and additive rules. Test whether the scaling or additive rules are
fulfilled by exciting the system with the same signal at different amplitudes,
or with two different signals and their sum (Section 3.5).

e Preserving datistics. Compare the statistics of input and output signals
(Section 3.5; also Chapter 9).

e |nput-independent frequency response. Compute the frequency response H for
differentlevelsof excitation. H does not changein shape, amplitude, or position
if the systemis linear (Sections 6.6 and 6.7).

e Loss in coherence near peak. Check the value of coherence, particularly at
frequenciesnear the pesk of H. (Recall: lossin coherence near the pesk is also
an indicator of poor frequency resolution, Section 6.7.)

e Multiples. Check higher harmonicsor multiplesin the DFT of the responseto
narrow-band input.

e Compatible spectral variation. The spectral variation of the real and imaginary
partsof H arerelated through the Hilbert transform(known as Kramers—Kronig
relationsin materials research, Section 7.2.1).

Other aspectsin the detection of nonlinearity are described next.

7.7 NONLINEAR SYSTEMS: RESPONSE TO DIFFERENT
EXCITATIONS

The frequency response H of linear systems is independent of the excita-
tion used. (Techniques based on frequency sweep and broadband signals were
discussed in.Implementation Procedures 6.1, 6.5, and 6.6.) This is not the
case in nonlinear systems, as is demonstrated in this section. For clarity, a
step-by-step description of each experiment is summarized in Implementation
Procedure7.5.
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Implementation Procedure 7.5 Nonlinear systems — Different excitations
Frequency sweep at constant amplitudeinput
1. Select the amplitude of the input Amp@. This is the excitation force for

the case of a single DoF oscillator.

2. For agiven frequency o, apply the forcing function with amplitude Amp(x)
and determine the amplitude of the response Amp(y).

3. Compute the magnitude of the frequency response [H,|=
Amp(y),,/Amp(y),,.
4. Repeat for other frequenciesw.

5. Repeat for other selected input amplitudes Amp(x).

Frequency sweep at constant amplitude output
1 Select the amplitudeof the response® for a given frequency o.

- Apply the input with frequency w and amplitude Amp@.

- Determinethe amplitude of the response Amp(y). Modify the amplitude
of the input until Amp(y) = R (feedback |oop).

- Compute the magnitude of the frequency response |H,|=
Amp(y),,/Amp(x),,.

2. Repest for other frequenciesw.

3. Repeat for other selected magnitudesof the amplitudeof the response R.
Random input signal

1. Select the amplitude of the random input signal.

2. Apply the signal, compute the coherence, and determine the number of
signals M to be stacked.

3. Compute the frequency response using the average cross- and autospectra
(Implementation Procedure 6.6):
_ ey

H,= BT for frequency w, = u-2w/(N - At)
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The computed frequency response H is the equivalent linear mode that is
least squares fitted to the data, within the extent of theinput random signal.

4. Repeat for other selected amplitudesof the random signal.
Example

Figure 7.14 compares data gathered with these three methods for the shear
stiffness of a soil column.

7.7.1 Input: Single-frequency, Constani-amplitude
Sinusoid

In this method, the frequency of the forcing function is gradually stepped while
keeping the input amplitude constant, so that |X,| = constant for all frequen-
cies w,. The system response is measured at each frequency step w,. The fre-
quency response H, is the measured response Y, divided by a constant. Thisis
a robust method to study the system response, including conditions with high
background noise.

Analytical results are presented in Figure 7.12b for a "soft spring™ Duffing
system. There is a "jump" from the low-frequency jump to the high frequency
branch in the response. The frequency at which the jJump occurschanges with the
direction of the frequency sweep. This phenomenon, also known as "'galloping™,
indicates that the frequency response is not only dependent on the amplitude of
the input signal but also on the evolution of the experiment.

Consider the following experiment: sand is poured inside a thin cylindrica
latex balloon, and it is then subjected to vacuum to form a <tiff sand specimen.
The sand column is then subjected to torsional excitation to study its response.
(Thisis a fairly standard device known as torsional-resonant column.) Results
obtained for a frequency-increasingsweep are presented in Figure 7.14a. Note
the gradually increasing asymmetry of the frequency response, the shift of the
peak response to lower frequencies, and the increasein attenuation (lower peak
and wider band) with increasing excitation amplitude.

7.7.2 Input: Random Signal

Frequency-domain analysis is required to determine the frequency response H
when a system is excited with wide-band signals. However, assumptions in
frequency domain analyses are violated when the system is nonlinear and the
computed frequency responseis inadequate or misleading.
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Figure 7.14 Deermination of frequency response in nonlinear systems: (a) constant
amplitude input — frequency sweep; (b) random input signal; (c) comparison for similar
amplitude (Cascante and Santamarina, 1997)
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Let us explore the nonlinear system response to random noise using the same
sand column tested previoudly. A random signal is of particular interest: like the
previous method, a random signal contains the same energy in al frequencies
as in the previous method; however, al frequenciesare present at all timesin a
random signal.

Figure7.14b shows the frequency response obtained with random noise using
cross- and autospectral densities (see Implementation Procedure 7.5). The com-
puted frequency response curves shift to lower frequencies and exhibit higher
attenuation with increasing excitation amplitude. But there is an important dis-
tinction with the results in Figure 7.14a: the responses measured with random
noise are quasi-symmetric and resemble the response of linear systems. In fact,
the system parameters inverted by fitting a linear viscoelastic model to any of
these curves would be the parameters of an equivalent linear system for the
corresponding strain level. Ir can be concluded that the frequency response H
computed from cross- and autospectra is the best-fit linear model to the data,
within the extent of the input.

7.7.3 Input: Single-frequency Sinusoid - Output: Constant
Amplitude

Consider the same experimental device and a single-frequency sinusoid, but in
this case the input amplitudeis modified to produce the same amplitude output
for dl frequencies; that is, |Y,| = constant &t &l w,. The methodology requiresa
feedback loop (see Implementation Procedure 7.5).

Results obtained at similar peak strains using constant amplitude output and
random signal are almost identical (Figure 7.14e).

Why are measured responses obtained with the two single-frequency sweep
methods so different? The degree of nonlinearity and the associated frictional
energy consumed per cycle are strain-dependent in sands. In the constant input
method, the amplitude of the displacement varies with frequency; hence, the level
of nonlinearity also varies across the spectrum. However, in the constant output
procedure, the displacement and the strain are constant at all frequenciescausing
the same degree of nonlinearity and energy l0ss across the spectrum.

7.8 TIME-VARYING SYSTEVIS

The response of a nonlinear system inherently varies in time according to the
imposed excitation history. Furthermore, there are linear systemsthat experience
time-varying system parameters. Both cases fail the time-invariant assumption
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that underlies frequency domain system analysis: the system response must not
change during the measurement.

If sowly changing time-varying systems are assumed time-invariant within
short-time windows, data processing is based on spectral ratios, as discussed in
Chapter 6. The selection of the window width M-At depends on the system rate
of change. In turn, the window width affects the ability to identify the response
to low-frequency components, the determination of "instantaneous” rather than
time-averaged system parameters, and time resolution.

A versatiletime domain methodology for the analysisof time-varying systems
is introduced next.

7.8.1 ARMA Model

Systems have "inertia* or "memory"; therefore, the current output y, can be
forecast on the basisof the prior output values. On the other hand, the convolution
equation in the time domain showsthat the current output y; isa moving average
of the current and prior inputs according to the entriesin the impulse responseh.
In general these two approachesare valid and can be used in combination,

ARMA Auto-Regressive Moving-Average
Current linear combination of linear combination of current
output = prior output values + and prior input values

Y Yi-1» Yi-2> Yi-3-.. Xi» Xi—1s Xj_250cun

Formally, the predictiveequation is written as
Yi=@ Y+ Yot )+ (b xi+by-xi +.)

na nb (7.24)
= Zah “Yin t+ Zbk *Xi—x
h=1 k=0

where the output y, at discretetimet; is computed as an Auto-Regressivelinear
combination of the "nd" prior output values, and a causal Moving Average of
the “nb” current and prior input values. The values na and nb define the order
of the auto-regressiveand the moving average componentsof the ARMA mode;
proper implementation requires adequate a priori selection of orders na and nb.
The coefficients a, and b, capture al the information relevant to the system
response.
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7.8.2 A Physically Based Example

Let us develop a physically based ARMA model for asingle DoF oscillator. The
equation of motionis (detailsin Section 4.3)

m-y+c-Y+k-y=x
. . 1 (7.25)
Yy+2-D o, Y +o? yza-x

wherethedrivingforce X and the displacementy are functionsof time. In discrete
time, the values of velocity and acceleration can be replaced by forward finite
difference approximationsin terms of the displacementsat timet, <i.At:

Yi —Yin
At
Vi—2¥ Ty
At?

velocity (7.26)

y
1

acceleration (7.27)

y
Substituting into Equation 7.25,

y, = (&%“’—-A—t—)) it (__1) vt ( %‘2) X, (7.28)

C - N r—
Auto-Regressive Moving-Average

where C = (112.D.w.At+w?. At?). Therefore, the physical meaning of all
ARMA parameters is readily apparent (the factors of y;_,,y;_, and X;). The
methodology can be extended to other linear and nonlinear systems.

7.8.3 Time-Varying System Analysis

An equationsimilar to Equation 7.28 can bewritten for each value of the measured
output. This leads to a system of equationsof the following form:

yl= @ Lil] . [E:—ﬂ (7.29)
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where the values of y and x are known. The totd number of unknowns is
N = nat nb. For examplefor na= 3 and nb =2, the system of Equations7.29
becomes

r] r Tr 7
Vi 0 0 0 x, 0 O a,
Y2 i 0 0 x x 0 a,
0 x; X X a
Y3 _ Y2 N 3 X X} 3 (7.30)
Ya Ys Y2 Y1 X4 X3 Xy by
Ys Yo V3 Y2 X5 X4 X3 b,
— R b, |

The goal isto extract the valuesa and b that characterize the system parameters.
This is an inverse problem. If the system is time-invariant, the inverse problem
is solved using all equations. If the systemis time-variant or nonlinear, alimited
number of equationsaround timet, is used to obtain the equivalent time-invariant
behavior that correspondsto time t;. The calculation is repeated at al times of
interest. This will render momentary system properties within the time covered
by the model.

The selected number of rows M corresponding to known values y; must be
equal or greater than the number of unknown model parameters na+nb. If
M > (nat nb), aleast squaresapproachis used to determinethe unknowns|[a, b,
the inferred values are less sensitive to noise, and the system parametersaverage
over the time interval M-At. The least squares solution to the inverse problemiis
presented in Chapter 9.

If MA models are used instead of ARMA models, Equations 7.24 and 7.29
become the convolution operation, and inverted MA model parameters are the
system impulse response h = b. However, the convolutional nature of MA does
not accommodatesystems with feedback, which are common from mechanics, to
biology and medicine; however, thisis readily considered in the AR component
of ARMA models. Furthermore, more complex models can be developed; for
example, forecasting does not need to be based on linear combinationsbut may
involve polynomial auto-regressivemodels.

7.9 SUMMARY
7.9.1 Nonstationary Signals

e The DFT of asignal convertsa 1D array in timeinto a 1D array in frequency
by decomposing the signal into a series of harmonically related, scaled and
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phase shifted, infinitely long sinusoids. The signal is presumed periodic. It is
aways possible to compute the DFT of nongtationary signals, however, the
unequivocal interpretationof the DFT requires stationary signals.

Techniquesfor the analysisof nonstationary signalsinclude short-time Fourier
transform, band-pass filters and wavelet analysis. They convert the 1D array
in the time domain into a 2D array in the time-frequency space. Alternatively,
theanalyticsignal presentsinstantaneousamplitudeand frequency versustime.
Likeamusical score, thesemethodscapturethe time-varyingfrequency content
of thesignd.

The uncertainty principleisinherenttoal formsof signal analysis: an increase
in frequency resolution (for a given number of digitized points) can only take
place at the expenseof alossin time resolution.

All the available information is encoded in the signal. Hence, transforma-
tions do not generate new information, but facilitate the interpretation of the
information encoded within the signa.

7.9.2 Nonlinear Time-Varying Systems

The analysis of signalsand systems in the frequency domain presumes linear
time invariance; thus, the generalized superposition principle applies. Under
these conditions, there are equivalent operations in the time and frequency
domainsfor dl linear or convolutional operators. The choice between time or
frequency domain reflects computational demands, enhanced interpretation of
information, or the nature of the application at hand. Given the efficiency of
FFT agorithms, frequency domain operationsare often preferred.

Severa procedures permit the detection of system nonlinearity: verification
of scaling or additive rules in the superposition principle, determination of
the frequency response H for different excitation levels, similitude between
input and output statistics, presence of multiples, verification of coherence,
and compatible spectral variation between real and imaginary components of
the frequency response.

Both test proceduresand data analysis methods may hide the nonlinear system
response. Thus, the experimenter must remain skeptical and alert to the selected
methodology.

Slowly changing time-varying systemscan be studied in the frequency domain
by extracting short-time windows. Alternatively,locally fitted auto-regressive
moving-average ARMA models extract momentary system propertiesin the
time domain.
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SOLVED PROBLEMS

P7.1 Analytic signal. Consider thesignal x=A - cos(w .t) ¥ B.sin(w.t). Com-
bine the results in Equations 7.5 and 7.6 to compute the analytic signa

x<*>, What is the instantaneous amplitude?
Solution: The analytic signals for sine and cosine functions are (Equa-

tions 7.5 and 7.6):
X = cos(ot) = x<*>=cos(wt)tj-sin(wt)
X = sn(et) = x** =sdn(wt)—j.cos(wt)
Invoking the linearity property:
x**> = A-.cos(w-t)+j-A-sin(w-t)+B-sin(w-t)—j-B-cos(w-t)
= A-cos(w-t)+B-sin(w-t)+j-[A-sin(w-t) —B-cos(w-t)]

The instantaneousamplitudeis A; = /[Re (x4>)]* + [Im (x=4>) ", there-
fore

A, = /[A-cos(e-t)+B-sin(w-)*+[A-sin (- t) — B-cos (- O]

= \/A2-0052(w-t)+B2-sinz(w~t)+A2-sin2(w-t)+B2-cosz(m-t)

= \/(Az +B?) - [cos? (w - t) + sin” (@ - )]

- V@)



210 TIME VARIATION AND NONLINEARITY

W.2 Analytic signal. Does the instantaneous amplitude follow the exponential
decay observed just with the peaks of an attenuating sinusoid?
Solution: To explore this question, let us plot
('S 2m :
X, =A-e" . sin (SOWI)

for N=512, A=1, and attenuation a = —0.005. The signal x and X =

DFT(x) are
Signal x %
0.2
Discrete
Fourier L)f_l ol
tranformX

g
s
8
&

500

Follow the step-by-stepapproachin ImplementationProcedure7.1 to com-
pute the analytic signal. The rea and imaginary parts of x<*> are

I
et |l
component
Imaginary ﬂ
component
~+ —+— } —+ }
0 100 200 300 400 500

Let us plot theinstantaneousamplitude A; = \/ [Rc(xf“>)]2+ [Im (x4~ )]2
in semilogarithmic scaletogetherwith A; = A . ™
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Semilogarithm plot:
instantaneous
amplitude versus

time Alm (g)J |

0.1

A Analyticdgnal
— — - Exponential decayingfunction

0.01+

Resultsshow that theinstantaneousamplitudeproperly followsthe atten-

uation law. Add high frequency and random noise to the signa x and
repeat thisanalysis. Furthermore, test this approach with real data. Evaluate
potential applicationsand limitationsof the analytical signal.

W.3 Nonlinear systems. Explore the multiplesin a thresholded beat function.
Consider the followinginput x and output y signals:

Yi

X

2 2 th- —"L) for |x;| > th
=2-sin (10—“i) +2-sin (25—“1) andy; = ("" b
' N N X; otherwise

Set the threshold at th = 2.5. Plot the amplitude of the discrete Fourier
transforms X and Y. Analyzethe frequency where multiples are observed.
Solution: Theinput and output signalsx and y are

MWWV WAN WA W

T

1000 2000

i
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The magnitude of discrete Fourier transforms X and Y is plotted in dB
scale to enhancethe identificationof multiples:

X, [dB]

O_ —

_100 | ] | ] ! | ] ]

IY,] [dB]

0O 10 20 30 40 S0 60 70 8 90 100

The two peaks in [X| correspond to the two frequencies f; and f, that
make the beat function x (frequency counters u=10 and u=25). How-
ever, the nonlinear thresholding transformation causes multiple peaks in
|Y|. Some develop in the harmonics of the primary frequencies f; (u=
20, 30,40,...) ad f,, (U=50,75,100,...), while others are mani-
fest in the beat frequency f, —f, and its harmonics. Therefore, expect
peaks at frequencies|[pf, '|'qf2 +r(f, — f,;)] wherep, g and r are integers
0,12 ...

ADDITIONAL PROBLEMS

P74 Nonstationary signals. Expressthe transformation of a nonstationary signa
into thetime-frequency spacein matrix formfor: (a) timewindows(STFT),
(b) frequency windows (band-passfiltering), and (c) wavelet transform.
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P7.5 Wavelets. Consider the Morlet, Mexican hat and Sinc wavelets. Plot these

P77

P7.8

P7.9

waveletsfor different control parameters(v, M). Compute their DFT.

. i 2 _1.{i)?
Mexican hat wavelet k; = l_(ﬁ) ]-e +(ir)

sn(2m. &)

™M

“Sinc” wavelet ; = withk, =1

Nonlinearity. Knowing the linear responsey of a single DoF oscillator
(f, = 100Hz, D = 0.4), assume that theresponseof aquasi-linearoscillator
is y > = |y,|"? (yi/ly;]). Simulate the output y<®=> for the following
input x signals: (1) a random signal, (2) an ensemble of single-frequency
sinusoidsof the same amplitude, that spans across the resonant frequency,
and (3) an ensembleof single-frequency sinusoidswith variableamplitude
to render the same output amplitude. Compute the frequency response H

in each case. Compare results, analyze and draw conclusions.

Time varying system — ARMA. Reconsider the stock market problem in
Chapter 1 using the ARMA approach. Download thedatafrom the Internet.
Fit ARMA models of order 2, 4, and 8 to 10-year data until 12 months
ago. Then use the fitted models to extrapolate the Dow Jones values into
the present time. Analyzethe results and discuss.

Application in your area of interest: nonstationary signals. Obtain a long
signal of your interest — either run experimentsor download similar signals
from the Internet. (1) Test whether the signal is stationary. (2) Analyze the
signal with techniques described in this chapter: anaytical signal, STFT,
band-passfiltering, and wavelet transform. Modify the control parameters
to optimize the information extracted in each case. Compare results and
draw conclusions.

Applicationin your area of interest: linearityand time invariance. | dentify
asystemin your areaof interest. (1) Developand implement a procedureto
test whether the system remainstime-invariantwithin thetimescal eof inter-
est. (2) Run the different tests to explore nonlinearity, asin Section 7.6.3.
(3) Analyze and discuss the resultsand their physical relevance.
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8

Concepts in Discrete
Inverse Problems

Many engineering and science tasks are inverse problems (Tables 1.1 and 1.3).
The goal of inverse problem solving is to determine unknown parametersfrom
measured quantities by assuming a modd that relates the two. This chapter
begins with a few examples of inverse problems, introduces the general con-
cept of data-driven solutions, and identifies some of the difficultiesinvolved in
inverse problem solving. Solution methods for inverse problemsare presentedin
subsequent chapters.

8.1 Inverse Problems = Discrete Formulation

Forward problems start from the known input. Conversely, inverse problems
start from the known output and attempt to determine either the input or the
propertiesof the system. Inverse problemsappear in all engineering applications
and scientific tasks.

Possible forward and inverse problems are identified for simple examplesin
Figure 8.1. These examples underlie more complex problems: shadow inversion
underscorestomographic imaging; water flowing out of the vase is analogousto
rain fallingin ariver basin and causing surface runoff and flooding downstream;
the moving weight on the beam is a simple model of a bridge structure; and the
source of heat within a body is common to conduction phenomena of dl kinds
and itisdirectly relevant to geothermal resourcesas well as to infrared detection
systems.

Discrete S gnal s and Inverse Problems  J. C. Santamarina and D. Fratta
© 2005 John Wiey & Sons, Ltd
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I

I nverse problem

INPUT sgnal

ik
SYSTEM l 1 . OUTPUTVsignal

Forward problem

Description: The tube-lamp illuminatesthe medium
and a shadow is created on the wall.

Forward problem: Given a semi-opague object and a
known source, compute the shadow on the wall.

Inverse problems. for a known medium and light
intensity on the wall,
Input:  determine the tube position, orientation and
intensity.
System: infer the characteristics of the semi-opague
object.

Description: At timet, the height of water in the
vessel is y(t), the surface of the water has a radius
r(t), and the stream strikes at distance x(t).

Forward problems. Determinethe striking distance x
when the vessdl isfilled to height y, or the time
required to drain the vessel.

Inverse problems:

Input:  knowing X at a certain time, what is the height
of the water in the vessel at that moment?

System: knowing the time history x(t), what is the ves-
sel's shape r(y)?

Figure8.1 Inverseproblemsin engineeringand science — simple examples
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Description: The rigid beam supported on two
springsis loaded with a known body weight W at
position X.

Forward problem: Compute the deflection of the

w beam given the known position and stiffness of
%— both sprl ngs.

Inver se problems.

- Input:  knowingthe characteristicsof the systemand

X its deflection, infer the body's location and
weight.

System: knowing the deflection of the beam for differ-
ent positions of the weight, infer each spring
position and stiffness.

Description: Thereis a source of heat Q within the
body. Temperaturecan be measured anywhereon
the surface S.

Forward problems. Compute the surface
temperature knowing the source Q, location and
{Ej\} size, and medium properties.

Inverse Problems:

Input:  knowing the medium propertiesand the
spatial distribution of surface temperature,
infer the source position and size.

System: for a given source position and size, and sur-
face temperature, determine the volumetric
distributionfor thermal conductivity.

Figure8.1 (Continued)

8.1.1 Continuous vs. Discrete

Examples in Figure 8.1 can be formulated using continuous or discrete mathe-
matics. Light attenuation from the tube source to the screenis an integral of the
absorption that takes place in each differential ray length ds, along the ray path.
On the other hand, the cumulativeoutput from the vessel at timet dependson the
correspondingelevationz of the water insidethe vessel at timet and the geometry
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of the vessel aboveit. These two examples can be captured in equations of the
following form:

b

y(®) = [ h(p,9)-X(5).ds  Fredholm equation CRY
P
or y(p) = f h(p,s).x(s).ds  Volterra equation (8.2)

where the function h(p, s) is the kernel. When the kernel h(p, S) describes the
system response at location p owing to a unit input at location s, the function
h(p, 9) is the Green’s function.

Ininverseproblems, y(p) and the kernel h(p, s) are known, but the functionx(s)
is unknown. When the unknown function appears inside the integral, the expres-
sion is known as an "integrd equation”. There are two main types of integra
equations: Fredholm equations when both integration limits are fixed (Equa-
tion 8.1), Volterra equationswhen oneintegrationlimitis variable (Equation8.2).
Either integral equation is of the first kind when the unknown function appears
only inside the integral, and it is of the second kind when the unknown function
appears both inside and outside the integral; therefore, both Equations 8.1 and
8.2 are of thefirst kind. Note that convolution (Chapter 4) and even the Fourier
transform (Chapter 5) are integrals of the product of two functions, and their
inverse operationsare integral equations.

The discrete form of integral equationsis a summation:

Yi= Zhi,k Xy (8.3)
k

When many measurementsare avail abl e, the systemof equationscan be expressed
as matrix multiplication

=

y=h-x (8.4)

where the array x captures the unknown values. (Note that the matrix h is lower

triangular in Volterra-type problems.) If the matrix h isinvertible, its inverse is
computed g", and the solution of the inverse problem becomes

x=h"ly  inverse problem (8.5)

However, the matrix h is noninvertiblein most cases, and a "' pseudoinverse” is
computed instead.

Vectorsand matricesare the natural data structurefor discretesignalsand linear
transformationsthat operateon discretedata values. Therefore, in accordancewith



INVERSE PROBLEMS - DISCRETE FORMULATION 219

the scopeof this book, we seek to expressinverse problemsin discreteform, like
Equation 85. (Note: not al problemsare amenableto this representation.) Once
the forward problem is encoded in matrix form, we can implement simple yet
powerful and versatileal gebraic proceduresto computea pseudoinverseand solve
the inverse problem. Matrix algebraalso facilitates the analysisand diagnosis of
inherent difficultiesin inverse problems (Chapter 9).

Selected examplesare explored in the following sections. As you read these
examples, consider smple problems of your own interest, identify the gov-
erning physical laws, express them in mathematical form and convert them to
a discrete formulation like Equation 8.4 that would be compatible with some
possible measurement scheme. This association with a specific problem will
facilitate understanding this and subsequent chapters, and enhance the interpreta-
tion of underlying implicationsand limitations. (See exercises at the end of this
chapter.)

8.1.2 Reuvisiting Signal Processing: Inverse Operations

Many signal processing operations have an inverse or involve the solution of an
inverse problem, for example: deconvolutionin the time domain, inverse Fourier
transform, system identificationincluding the case of time-varying systems using
ARMA models, and adaptivefilters (Chapters 4-7).

Convolution is the forward problem of determining the output signal y know-
ing the input & and the impulse response & In terms of discrete mathematics,
convolutionis a sum of pairwise multiplicationsand it can be readily expressed
in matrix form (Section 4.5)

y=h-x  forward problem: convolution (8.6)

where the columns of matrix h are shifted versions of the impulse response h.
The inverse problem of deconvolution is to determine the input x knowing the
outputy and the impulse responseh. If the matrix h wereinvertible,

X= 2-1. y inverse problem: deconvolution 8.7

The other type of inverse problem is system identification. Because convolution
is commutative, the convolution sum in matrix form can be expressed as the
multiplication of a matrix x whose columns are shifted versions of the input
signal x times the vector of the impulseresponseh, y = x - h. Followinga similar
reasoning as before, if the matrix x were invertible, the impulse response could
be extracted as B

h= g“- \ inverse problem: system identification (8.8)

Theinverse Fourier transform in matrix form was developedin Section 5.4.
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8.1.3 Regression Analysis

System identification problemscan be seen asfitting a hypothesized model to the
measurementsin order to extract the unknown model parameters. The solution
procedure starts by selecting a plausiblemodel or physical law. This defines the
function to be fitted.

Consider fitting a polynomial of order N — 1, with constants(c,, C,, . . . , €n_1)
to measurements of distance z; traveled by a free-faling object at times t,.
A polynomia equation can be written for each i-th measurement:

g0 1 2 j N-1
ti=co-z]+C -z +czi4+... ¢+, Foy o

t=co-z"+c¢, 7'+ 27+ o+ oy, ! (8.9)

0 1 2 ' N—
ty =Co-Zp +C-Zy FCo Ty o O Tt O Ty

This set of equations can be rewritten in matrix form as

X 1 o
t, 1 z ...z .
1
_ k N-1 e
t |=] 1 z zZ A c
e e e k (8.10)
ty 1 zy ...z AV .
N—1
or
t=z-¢
The N model parametersc ={(cg,---,Cy,--+»Cx_y) are unknown. In general,

there are more measurements than unknowns (M > N, overdetermined) and mea
surements are noisy (inconsistent set of equations).

Note that setting the problem in matrix form does not require a linear func-
tional relation t =1£(z), but a linear combination of basis functions of z. The
Fourier series is a good example: t:c0+c, -cos(w.2) +cz.sin(w.z) +...,
where sines and cosines are the basis functions. A hyperbolic mode is fitted to
experimental datain Figure 8.2.

When several competing models are available, the goodness of the fit helps
identify the most plausible one. However, this is a necessary but not sufficient
sdlection criterion. Why is it not sufficient? The answer becomes apparent later
in this chapter.
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Experimental data: Stress-strain data
Hypothesized law: Hyperbolic model
Inverted parameters: a and b parameters

A
@ 2.10% 4
£/0°3[Pa!]
1108+
Fitting equation: —£-=a+b-¢
Gy
0 002 004 0.06 0.08
€[]
(b) 4-10* T i ey ssssteseses
G4 [Pa] .
2:10° T
H . ~ £
Hyperbolicmodd: 4= 6T
t -+ + >
0 0.02 0.04 0.06 0.08

€[]

Figure 82 Cdibration of condtitutivemodds. Experimentd |oad-deformetion data for
akaolinite gpecimen. The hypothesized stress-drain rdationship is the hyperbolic modd.
Inverted parameters.initia Y oung's modulusE = a—! = 20.8 MPa, materid srengthb-! =
41.5kPa. (a) Trandformed coordinetes; (b) datain standard stress-strain Space (data cour-
tesy of E. J. Macari)

8.1.4 Travel Time Tomographic Imaging

Tomographic inversion attempts to infer material parameters and their spatial
variability within a body by mathematically processing measurements obtained at
the boundary. The techniqueappliesto chemical, electrical, thermal, or mechani-
cal parameters. Hence, thisis a powerful approach in the study of many systems
in engineering and science. In al cases, a physical model must be presumed.
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Consider an ultrasound diagnosticstool where travel time measurements are
inverted to render a tomographic image of the spatial variability of veloc-
ity V within the body. Both transmission data and reflection data may be used
(Figures8.3a and b). The signal emitted at the sourcetravelsthrough the medium
and is detected at the receiver (Figure 8.3c). The travel time from the source
to the receiver is the integral of differential times spent in traveling differential
lengths "' dh" aong the ray path,

recei ver

1
= f Togd (8.11)

source

where V(p, q) isthe velocity of propagation within the medium at location (p, g).

The problem can be set in discreteform by dividing the region of interestinto
pixels. For exampl e, the unknown region shownin Figure 8.4 has been discretized
into four subregions or "pixels’, N = 4, such that each pixel k has a constant
velocity V. For simplicity, straight ray propagation is assumed as the governing
physical model. Then, the travel time t, between source S, and receiver R; can
be computed as

l'lll h12 4 hlk
=ty 2= == 8.12)
A Evk

Thisis the discreteform of Equation 8.11. The valueh,, is the distance traveled
by ray i in pixel k. Defining " downess” s as the inverse of velocity s, =1/V,,
the travel times for the four measurements in Figure 8.4 are (rays 1, 2, 3, and 4;
M = 4):

ty=hy,-s;+h, s
t=hy;-83+hy,-s, 8.13
ty=hy ;s +hy5-8; (®.13)
ty="hy,-5+hy,s,

These equations can be arranged in matrix form as

t, hy; hy, 0 0 S
Ll _| O O bhy; hyy | | 8
t3 - h3,1 0 h3’3 O S3 (8. 14)

t 0 h, 0 h, S4
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+ /_ Cross-hole
\ testing

(@) Transmission
*
Veticd
sEgmic
profiling
* .
(b) Reflection T
Crack
Indudon
p
q I
(c) Trave time S 3 R
evaluation tsn=f _dh
IR
dh

Figure 83 Trave time techniques. Datagathered with (a) transmissionor (b) reflection
techniques can be anadlyzed using inverse problem-solving techniques. (c) Travel timeis
the line integral of downess (the inverse of velocity) aong the ray path. Note: asterisks
indicate the location of sources; dots show the location of receivers

In the general case of M-measurements of travel time and N-unknown pixel
values,

t; by ... hy ... hy 84
ti = hi,] s hi,k PP hi,N . Sk
ty hy 4 By i hy N Sn

or
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S, S,
* *
h h
S1 _--____l’_l ____________ L‘z._-_ﬂ.Rl

® ®

& &

R, R,

Figure 84 Tomography. The unknown region is digitized in four subregions or pixds
The region is "illuminated" with straight rays Sources S and receiversR are placed an
the boundary. Only ore ray is shown S, — R,. The other three rays in this example are
S, =Ry, 8> R;,and 5, > Ry

where

i refersto ray number;

k refersto pixel number;

tisthe [M x 1] vector of measured travel times;

h; . isthe length traveled by the i-th ray in the k-th pixel;
h isthe[M X N] matrix of travel lengths; and

sisthe[N x 1] vector of unknown pixel downess.

Equation 815 is the forward problem: travel times t are computed knowing
the travel lengths4 and pixel slownesss. The aim of the inverse problem is to
determine the pixel values s by measuring travel times t. Note that a physical
wave propagation model is presumed to estimate the travel lengthsin h. Once
pixel values s are computed, the imageis rendered by coloring pixels according
to their slowness using a selected color scheme.

8.1.5 Determination of Source Location

Many tasks require preciseinformation regarding the location of sources. Proper
source location is used to (a) determine the evolution of material failure using



NVERSE PROBLEMS - DISCRETE FORMULATION 225

either electromagnetic or acoustic emissions; (b) locate brain lesion from elec-
troencephal ograms; (c) assess fault rupture evolution on the bases of successive
hypocenter locations during earthquakes; (d) identify the instantaneous position
of atransmitting antenna; or (€) define the tragjectory of a pill transmitterthat is
swallowed and travelsinside the body.

Thetravel timet, from the sourceto thei-th receiverin ahomogeneousmedium
is (Figure 8.5)

b= ; ' ‘/(Ps —p)* (@ -q) @ -1) homogeneous megium (8.16)

where p,, q,, and r, are the unknown coordinatesof the source, and p;, q;, and ;
arethe known coordinatesof thei-th receiver. Thetravel timet, can be expressed
asthe addition of (1) the timethat the wavetakesto arrive at a referencereceiver
t, (unknown), and (2) the time difference between the arrival at the referenceand
thei-th transducers Ag

to+ At = % V@ =P + (@ —a) + (- 1)’ (8.17)

A similar equation can be written for each monitoring transducer. Each equation
isanonlinear combination of spatial coordinates. The problem can be linearized

i-th station

T *

Source (pg, Qs Ty 9

Locationi-th station: (p;, g, 1;)
Detection at time: t;

Figure 85 Passveemisions. The unknowns are source location p,, g, r,, and time of
emissont,. Note the agterisk indicates the location d the source; dots show the location
o recavers
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if equations for two different receivers are subtracted. Consider two receivers
i and k:

V2 [(to+A6)° - (i + A4)*| = @, — ) + (@ — 0.’
+(,—1)" = (0, —p)’ (8.18)
— (- @)~ (r,— 1)’
Expanding and simplifying,
V2 [2-4- (A4 — At) + At — AG*]=2-p,- (o, — P))
+2-q- (g —q)+21,-(r, —1;) (8.19)
+p° +6¢° +1° —p’ —q’ -1’

Finally,
knowna; ; knownb; ; knownc; knownd;
# —— e e, rm—,
ty- V2. (At —At) —p,. (Px—P) —G. (% — %) —T. (—r)
_1 [P} +a? +17 —pf —qt — 12 — V* (AL — A)] (8.20)
known e;

where a, b, ¢, d, and e are auxiliary parameters that depend on known values
related to receiversi and k and the reference receiver. Equation 8.20 is a linear
equation in terms of the reference time t, and the coordinates of the source p,,
g,, and r,. It can be written for each pair of receiversi and k (in relation to the
referencetransducer),

€2 a; by ¢ dpy t

. . . . . D,
ex |=| ax bix Cx dix |- q (8.21)

S

.. L .. . - . y

v u

e A -

Thegoa of theinverse problem isto solvefor the time of the event (with respect
toits arrival at the referencereceiver) and the coordinatesof the source. Thisis
the vector of unknownsu = (ty, p,, G, I,).

If alarge number of monitoring stations are available, Equation 8.21 can be
extended to take into consideration the spatial variability in the medium. In this
case, inversion will not only render the timing of the event and the location of
the source but the characteristicsof the medium as well.
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8.2 LINEARIZATION OF NONLINEAR PROBLEMS

The expressiony = h-x implies a linear relation. However, linearity is only a
tangential approximation to any physical process. For example, the trend between
conductivity and electrolyte concentration deviates from linearity as the salt
concentration approaches saturation, and Ohm's linear law between current and
voltagefails at high current densities. In nonlinear cases, the analyst must decide
how far the linear model can be used within acceptable deviations.

Still, a nonlinear relation can be linearized about a point using a first-order
Taylor expansion. (See solved problemsat the end of the chapter.) Consider the
nonlinear functionz = f (x) shownin Figure86. Thefirst-order Taylor expansion
about x<%> permitsthe estimation of the value of the function z at x<!> from the
valueof z at x<%>

z (x<1>) ~ Z(X<0>) + d_z_

i . (x<1> _ x<0>) (8.22)

x<0>

where the slope dz/dx|, - is the derivative of the function evaluated at x<%. If
zisafunction of two variablesx, and x,, the value of z(x;!>, x5!>) at a point
x> = x> T Ax, and x5 = x5%> + Ax, can be estimated as

a a
z(x77,x5"7) 22 (x(, x5) + E)‘(Z— - Ax, + a_z_ - Ax,
1 (X1<O>.X2<0>) x2 (X<0>,X2<0>)
(8.23)
In general, if zisafunctionof N variablesx = (x;. . . Xx)s
WY ~ 5 (%O 9z A 8.24
z(xM) 22(x)+ 32 x| N (8.24)
z
£
9xg s
~2(x<1) AZI It . Error
2(x%)
)=o) 3|
X | ©
AX X
X<0> x<P X

Figure 86 Linearizationof nonlinear problems: first-order Taylor expansion
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If there are M nonlinear equations, the linearized approximationsare assembled
in matrix form as

Az=].Ax (8.25)
where
Az, =z, —z<% for i=1toM measurements
Axk = xkV — x> for k=1 toN variables
k= ;L; o [M x N] Jacobian matrix of partial derivatives

Equation 8.25 has the same mathematical form as other linear problems dis-
cussed in the previoussection. Therefore, inverse problemsthat involve nonlinear
systems can be solved by successive linearizations. Difficulties associated with
convergence and uniqueness are often exacerbated in nonlinear problems.

8.3 DATA-DRIVEN SOLUTION ~ ERROR NORMS

The solution of inverse problemsis guided by the dataand physical requirements
about the model. Concepts related to data-driven inverse problem solution are
discussed in this section.

8.3.1 Errors

Let us consider the case of curve fitting a second-order polynomial to the data
shown in Figure8.7. Theerror or residual for the i-th measurement is established

between measured value y=™*> and predicted value y; ">

& = y; < —y, <P (8.26)

where the predicted value y;<***> =a+tb.t,+c-t;2 is computed for a given
estimate of the unknown coefficients (a, b, ¢). The goal is to identify the set of
coefficientsthat minimizesthe residual, taking all measurements into considera-
tion.

Many physical parameters vary across orders of magnitude. For example,
this is typicaly the case in conductivity of al kinds (fluid, thermal, electrical).
Furthermore, complementary manifestationsof the same physica phenomenon
may take placein very different scaling conditions(see an examplein Figures8.8a
and b). When very small and very large values coexist in the data, the error
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H

! .

| ¢ Measured datapoint

i . . 2
| =—— Fitted equation: yP*®=a+b-t,+c-t;

i t

Figure 87 Error between the measured and the predicted valuesfor the i-th measure-
ment.(Mesured valuesy; <™*> and predicted valuesy, <> =atb-t,+c.t?)
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Figure 88 Error definition: (a and b) red and imaginary parts of the complex permit-
tivity k; (c and d) data points with a bias: the fitted line followsthe data in linear scale,

yet the biasis clearly seenin log-log scale
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definition in Equation 8.26 will bias the inversion towards the largest measured
values, and aternativeerror definitionsshould be considered:

e; =log (y™*>) — log (y‘< p'°d>) log difference (8.27)
yomeas> _ y.<Pl'ed>
e == = — proportional error (8.28)

<meas> <pred>
% - y;~F

e standard error (8.29)

O;
where g; is the standard deviation for the i-th measurement. It is also possible
to define the perpendicular error as the distance normal to the trend. While this
definition has advantages (for example when inverting very steep trends), the
implementationis more involved.

Be awarethat the selected error definition affectsthe inverted parameters. This
is demonstratedin Figures 8.8c and d where the same data and trend are plotted
in linear and logarithmic scales. While the trend fits the datawell in linear scale,
it isclearly biased in logarithmic scale. (See problems at the end of this chapter
to explore these issuesfurther.)

8.3.2 Error norms

The global " goodnessof thefit™ isevaluated by computing the norm of the vector
of residualse. A useful family of "error norms” is the set of n-norms:

1
L,= (Z Ied“) (8.30)
Three notable norms are those correspondington =1, n = 2 and n= !

Li=) le] sum of absolute errors (8.31)

2
L,= (Z leil2> =./¢Te sum of squared errors (8.32)

L. =max (le,|,.., |&],.., leml) maximum absolute error (8.33)
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The search for the "best fit" attempts to minimize the selected error norm and
leads to three distinct criteria:

1. min(L,) or minimum total absolute value criterion. Thisnorm is not sensitive
toafew largeerrorsand it yields " robust solutions”.

2. min(L,) or "least squares' criterion. Thiscriterioniscompatiblewith additive
Gaussian noise present in the data.

3. min(L,,) or “min-max” criterion. The higher the order of the norm, the higher
the weight placed on the larger errors. The L, norm is the extreme case
and it considers only the single worst error. This criterion is most sensitive
to errors in the data and has a higher probability of yielding nonunique
solutions.

The term "robugt™ describes a procedure or algorithm that is not sensitive to
a few large deviations or outliersin the data. For comparison, the term "da
ble" in this context refers to a procedure where errors are damped rather than
magnified.

Figure 8.9 presents the fitting of data points with a linear regression y =
athb. t, and the error surfaces computed with the three norms. The minimum
in theL,, surface is not a point but an area (Figure 8.9b): any combination of
parametersa and b in thisregion gives the same minimumerror, and the solution
is nonunique. The lines displayed in Figure 8.9¢c have the same minimum L,

Error norms and associated surfaces assess the goodness of a solution and
provide information about convergence towards the optimal solution. A smple
trial-and-error method to solve inverse problems based on this observation would
dtart with an initial guess, and continue by perturbing one unknown at a time,
trying to minimizethe error norm between measured and predicted values.

Let us utilize this procedure to study the implications of selecting different
norms. Figure 8.10 presents the inverted parametersfor straight lines that were
"beg fitted" to the measured data points by minimizing the three norms L,
L,, and L,,. Observe the effect of the out-of-trend data point on the parameters
inverted with each norm.

It isinstructiveto study the variation of the norm in the vicinity of the optimal
set of inverted parameters. Thisis done by fixing all inverted parameters except
one, and varying it about the optimal value. Such plotsare shown in Figure 8.11
for the curve-fitting exercisepresented in Figure 8.10. Each of theselinesisa 2D
dliceof theerror surface across the optimum, that is, the intersection between the
error surface and a plane that contains the variable under consideration and goes
acrossthe minimum point in theerror surface. Figure 8.11 showsthat the different
norms result in different inverted parameters and exhibit different convergence
rates towards the minimum.
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Figure 89 Error norms (a) four data pointsto befitted with astraight liney = a*+b.t.
Theresidual isevaluated using threedifferent error norms L, L,, and L,  (b) contoursof
equal error. The central plateauforthel, error functionsuggeststhat several combinations
of aand b parametersyield the same minimum error, as exemplifiedin (c)
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Figure 810 Fitted straight lines using different error norms:
L, a=0000 b=100
L, a=-073 b=127
L; a=—1.40 b=140
Thel, normisleast sensitiveto the data point that ** appears out-of -trend
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Figure 811 Sliced the error surfaces near optimum. Three different error norms (data
from Figure 810). L; and L, are divided by the number of measurements to facilitate
comparison. Note the differences in convergence gradients
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8.4 MODEL SHECTION - OCKHAM'S RAZOR

Error minimization between measured data and predicted valuesis only a part
of inverse problem solving. The other part is selecting a proper moddl. In the
absence of problem-specificcriteria, we explore in this section the idea that a
"good" modd is simple.

8.4.1 Favor Simplicity: Ockham's Razor !

While solving inverse problems, the engineer or scientist attemptsto extract the
most information possible out of the data. Therefore, it is tempting to select
models with a large number of unknown parameters. However this may not be a
desirable practice.

Let us revisit regression analysis (Section 8.1.3). Given N data points, one
may fit increasingly higher-order polynomialsto observe that the residua error
between measured and predicted values decreases as the number of unknowns
increases. In fact, thereis a perfect match and zero residual when an N — 1 order
polynomia (N-unknowns) is fitted to the N data points.

But should an N — 1 polynomial be fitted to the data? Linear and quadratic
laws rather than high-order polynomialsseem to prevail in the physical sciences.
For example, Galileo invoked a second-order polynomial to predict distanced as
afunction of timet, in terms of velocity V and accelerationg: d = d, +v.tt
g.t%2. Why did Galileo not consider higher-order termstto fit the data?

High-order polynomials™fit" data pointswell, but high-order term coefficients
are small and add little information about the physical law. In contrast, lower-
order polynomials follow trends, filter data noise, and extract the most meaning-
ful information contained in the measurements. Therefore, new data will most
likely fall near the low-order polynomial, particularly when it takes place outside
the range of the origina data. In terms of Bayesian probabilities, ""a hypothe-
sis with fewer parametersautomatically has an enhanced posterior probability™.
Figure 8.12 shows a numerical example.

In summary, a better fit does not necessarily imply a better model. A model
with many unknowns is preferred over a simpler one only if its predictionsare
significantly more accurate for multiple data sets. If the predictionsare similar,
the simpler model should be favored.

! The philosopher William of Ockham (14th century) is known for his principle: " Plurality must
not be posited without necessity” . The article by Jefferys and Berger (1992) presentsan insightful
discussion of this principle, also known as the rule of parsimony.



MODEL SELECTION - OCKHAM'S RAZOR 235

Second order polynomial Sixth order polynomial
100 -F 100 +
eT-e>0 Zero residual: eT-e =0
d; so+ // d; soT
¥ — + 1
(] 2 4 6 8 0 2 4 6 8
4 t
Adequateprediction of new data Poor predictionof new data
100 T 100+
<
d; soT d; so+
.
0o ¥ 4 6 P 0o V7 H 6 8
t t

Figure 812 Ockham's razor criterion: favor simplicity. Simulated data correspond to
d=3-a-t? and includes random noise. The sixth-order polynomial fits the seven data
points with zero residual. The higher the order of the polynomial, the higher the probable
error will be between the model and new measurements, particularly when new datafall
outside the range of the original data set (new dat a shown as empty diamonds)

8.4.2 Reducing the Number of Unknowns

There are different approaches to implement Ockham’s criterion in discrete
inverse problemsof theformy =h- x.

Consider tomographic imaging where the vector of known measured travel
timest [M x 1] is related to the vector of unknown pixel slownesss [N X 1]
through the matrix of travel lengthsh [M X N] ast=h-s. It is tempting to seek
high-resolution tomograms. Y et physical constraints(e.g. wavelength) and limi-
tationsin the implementation of the experiment (e.g. noise, illumination angles)
restrict the amount of informationin the data. In this case oneis well advised to
reduce the number of unknowns. (Additional instability reasons are explored in
Chapter 9.)

There are several options. The simplest oneis to reduce the number of pixels
N by increasing their size, but this causes undesirablecoarse image granularity.
A more effective dternativeis to fit a hypothesized slowness function. Let us
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assume that the field of slowness across the p—q space of the image can be
approximated with the following function (Figure 8.13):

s(p,@) =a+b-(p)+c-(@)+d-(p-q)+e-(p*) +f-(q°) (8.34)

with six unknowns(a, b, c, d, e, f]. Then, each pixel valuein theequationt=h-s
can be expressed as a function of itslocation in the pq space:

t by, ... h, ... hy
ti = hi,l e hi,k [N hi,N
tM hM,l Y hM’k Y hM,N

Lo (839
at+b-pt+c-q+d-p-q +te-py+1f-qp

x| a+b-p+c-q+d-p.-q+e-pi+f-q

a+b-py+c-gy+d-py-gqy+e-py+f-gy

)

q

s(p, @) =a+b-(p)+c-(q)+d-(p-q)+e- () +f- ()

Figure 813 Sowness variation. The functional characterization of slownesss(p,q) pe-
mitsa decrease in the number of unknowns in tomographic imaging
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Finally Equation 8.35 can be rearranged as

o
t hyy.oo by ..o by 1 pp 4 P P% ‘ﬁ b
t o [={h;...hyp.oobiy |-l 1 P G P PG d
.
ty LhM,l-”hM,k---hM,NJk 1 py Qy Pn9v PR O% I
(Mx1] BIMxN] OINxe] “'?6:1;
" (8.36)

The second matrix Q is a function of the known pixel coordinates p, and qy.
Likewise, the entries h; , are known once the geometry is defined. Therefore, the
product of the two matricesh [M x N] and O [N x 6] on the right-hand side can
be executed to obtain only one [M x 6] matrix h* =h- Q. The relation between
the vector of measurements and the unknowns becomes

t=h-

o

-u=h*-u (8.37)

The result is a system of M equations with only six unknowns u'=
(a b,c,d,e,f), rather than the original system of M equations with N unknown
pixel slowness, where typically N > 6. The form of Equation 8.37 isidentical to
that of other linear discreteinverse problemsanalyzed previoudly in this chapter.

Note: If adownessfunctions(q, p) isassumed, then the slownessisnot constant
within pixels. However a single value of slownessis assigned to each pixel when
the problem is discretized as t =h-s. The error in this approximation can be
made as small as desirable by considering smaller pixels. While the number of
pixels N increases, the size of the matrix h* in Equation 8.37 remains the same:
[M x N][N x 6] =[M x 6]. o

8.4.3 Dimensionless Ratios - Buckingham's = Theorem

Similarity is established in terms of dimensionlessratios. For example, consider
the impact that operating a car has on an individual with an annual income |
[$/yr], when the individual drives a vehicle with unit cost C {$/km] for a total
distance D [km/yr]. While the three parameters may vary in a broad range for
different individuals, the dimensionlessratio w = D . C/I facilitates comparing
financial conditionsamong individuals.

Buckingham’s i1 theorem generalizesthis observation: a physical relation of N
parametersf (x,,...,Xy) iSequivalent to a relation F (m, ..., Ty_g) in terms
of N—d dimensionless parameters w, where d is the number of dimensions
involved.
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The number of dimensionsd is small. For example, d = 3 in typical mechanics
problems: length [L], mass [M], and time [T]. Therefore, thereis a small relative
reductionin the number of unknownswhen N is large, such as in tomographic
imaging. On theother hand, thedimensionl essrepresentationwil | beadvantageous
when the inverse problem involvesa small number of unknownsand it is solved
by repeating time-consuming forward simulations.

8.5 INFORMATION

Information is conserved in an invertible transformation: if y=h-x and h is
invertible, then x —h‘ -y without loss of information; in fact, y can be fully

recoveredfromxasy =h. (h™* y) Theinverse problem cannot lead to a unique
solution when more informationis required during inversion (N unknowns) than
the amount of available information. In this case, one must either reduce the
number of unknowns or provide additional information.

8.5.1 Available Information

A large number of measurements M do not necessarily imply a large amount
of availableinformation, as many of the measurements may duplicate the same
information. Deciding whether information is duplicated may not be obvious at
first glance. For example, the system of equations for the tomographic problem
in Figure 8.4 is (assuming square pixels of length 1.0)

1 1

0 0
0 (8.38)
1

It
Il
™

1

0
1
0
0 1

S =~ O

The fourth row can be obtained by adding the first and second rows and then
subtracting the third one, and Equation 8.38 becomes

1100
, 100 11
=11 01 0 |% (8.39)
0 0 0 0

Therefore, there are only three independent equations in this system, the rank
r[h] = 3, and the information gathered with the M = 4 measurements is insuffi-
cient to solvefor the N = 4 unknown pixel values. (Note: appropriatediagnostic
tools are identified in Chapter 9.)
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8.5.2 Information Density - Spatial Distribution

Uneven information density has different effects on the various error norms and
on the inverted parameters. In particular, the L, and L, error norms sum all
individual errorse;; hence, regions with high information density have a stronger
effect on the solution than regions with low information density. On the other
hand, theL, normis not an error-averaging function and it is determined by the
worgt error; hence, it is not affected by information density.

Consider the graphical example in Figure 8.14. In the top frame, the data set
includes one out-of-trend measurement; in the bottom frame, three out-of-trend
measurementsplot on the same point. A straight liney = athb.tisfittedin each

Data set with one out-of-trend paint

Fittingequation: y;=athb t;

6T (1 point) *
Kl . )
L | o000 1.00
T L -0.40 1.20
‘, } 1 . _ 1_-:, _ -0.60 1.25
0 2 4 6
ti

Data set with three out-of-trend pointslocated at the same position

61 Fittingequation: y;=atb.t;
W poua) a b
4+
Yi L, -0.25 1.25
2T L | o4 1.25
! L. [ -060 1.25
0 2 4 6

Figure 814 Didribution of information. The regresson line depends on the sdected
norm. TheL,, normisnat sensitiveto thenumber of out-of-trend data points. TheL; norm
isleast sengdtive to outliers
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case; inverted parameters are tabulated on the figure. Results confirm that the
L., normis not sensitiveto information density and renders the same solution in
both cases.

In summary, high-order norms are most sensitiveto outliersand least sensitive
to uneven information density. (A persuasive example of the effect of uneven
spatial distribution and the benefits of the L, norm is presented in Chapter 11 in
the context of tomographic imaging.)

8.6 DATA AND MODEL ERRORS

Errors affect the invertibility of unknown parameters in the inverse problem
y=h-x. There are two main sources of errors. First, data error renders the
measurements y noisy. Second, there is model error if the model assumed to
compute the matrix h does not properly reflect the phenomenon being studied;
for instance, a linear elastic modd is used to analyze a material with nonlinear
elastic behavior, or straight rays are used to analyze sound propagation data in
heterogeneous media. Data and model errors combine, and are often magnified
whileinverting the equationy =h - x.

Implicationsare explored in the context of least-squares fitting a straight line
y= atb-tto gathered data. Three cases are shown in Figure 8.15; noiseless
data along a straight line, noisy data aligned with a straight line, and noiseless
data along a nonlinear trend. The error surfacesfor the L, norm are computed
in each case. Once the minimum is identified, the L., norm is computed near
optimum by perturbing one parameter at the time; these are the 2D cross-sections
of the 3D error surface obtained across the point of minimum error (see aso
Figure 8.9b).

It can be observedthat in the absence of model or data errors, dataare perfectly
fitted with the model and the minimum of the error surfaceis zero (Figure8.15a).
On the other hand, data or model error widens the error surface, the minimum
is above zero, and the curvature around optimum decreases, thus diminishing
the ability to resolve the optimal values (Figures 8.15b and c). Furthermore,
parametersestimated with an improper model mask real featuresin the data and
bias the interpretation of measurements.

Therefore, the error surface provides information to guide the search for the
optimum set of parametersthat minimizesthe error, and provides an indication
of error severity. However, identifying the source of error remains the analyst's
task. This forensic exercise requires in-depth understanding of the underlying
physical process and detailed knowledge of the measurement procedure.
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Figure 8.15 Dataand modd error \20 the data increases the magnitude
of the residua at optimum. The mini ction does not hecessarily occur

at the true values of a and b; (c) It the presumed modd is not in agreement with the

underlying physical process (within the range of the data), the norm of the residual will
not be zero, even for noiselessdata

8.7 NONCONVEX ERROR SURFACES

Error surfaces found in previous examples are convex, as in Figures 8.9, 8.11,
or 8.15. However, this is not necessarily the case even in smple examples.
Figure 8.16 shows a series of data points dong a straight line. Data are fitted
with a function y = x - tan(a). The L, error norm is computed for angle vaues
between 0° < « < 180". The error surface — aline in this case - is nonconvex.
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Figure 8.16 Nonconvex objective function. Data points in frame (a) are fitted with a
graightline. Theinclination of thelineaistheonly unknown. It can be sear chedclockwise
"a l” gartingat a=180°, or counterclockwise" a 1” sartingat @« =0°. TheL, normis
plotted in frame (b). Search criteria guided by the gradient in the error surface would not
find the minimum when the search dartsat @ > 90°. If the search is extended between 0°
and 360°, it would identify ether 75" ar its symmetric 255"

The minimum in a convex error surfaceis effectively searched following the
gradient. However, gradient-based search algorithms may get trapped in local
minimaor deviate away from the minimum. This occursin Figure 8.16 when the
search starts anywherein 90° < o < 180°. Therefore, proper search algorithms
must be used when the error surface is suspected to be nonconvex (Chapter 10).

Uneven information density tends to cause nonconvex error functions, partic-
ularly when L, or L, error normsare used (seeChapter 11). But the information
density is perfectly even in Figure 8.16: in this example, nonconvexity is caused
by the selected error definitione; = yms> — y=P!>: d| errorse; tend to infinity
when a approaches90" and 270".

8.8 DISCUSSION ON INVERSE PROBLEMS

The goal of inverse problem solving is to obtain physically meaningful values
of the unknown parameters x from measured quantities y<™*> by assuming a
proper model or relationship between the two.

A transformationx — y is said to be invertibleif there existsanother transfor-
mation that permits the recovery of X fromy, y — x. Mathematical procedures
with inverse operationsinclude multiplicationand division, integration and dif-
ferentiation, DFT and | OFT, among others. But, which of the two operationsis
the inverse problem in each case? It is difficult to define "inverse problems™ a
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priori, yet we would most likely recognize one when we seeit! Inverse problems
share one or more of the following characteristics:

The level of difficulty involved in inverse problem solving is higher than in
forward problem solving; in fact, the forward solution may be explicitly used
to solve the inverse problem.

There is no certainty about the physical model that is selected to relate the
measurements y <™**> to the unknowns x.

The availableinformationis effectively much less than the gathered data.
Dataerrors are amplifiedin the solution.

The solution is ill-posed even if the forward problem is well-posed, where
well-posed means that there exists a unique and stable solution that depends
continuously on the input.

Thesolutionis not unique and more than one set of unknown parametersx <¢*>
justify the available observationsy™.

Additiona informationis needed to solve the inverse problem; otherwise, the
problem must be cast with fewer number of unknowns.

Complete time history data may be needed to solve the inverse problem,
whereas the forward problem is a function of the current state only. (Recall
the vase problem in Figure 8.1 and compare the forward computation of the
instantaneous seepage velocity versus the inverse computation of the vase

shape.)
Computational demandsare higher than for the correspondingforward problem.

8.9 SUMMARY

Vectors and matrices are the natural data structureto cast forward and inverse
problems that operate on discrete data values. The resulting formulation is
versatile and facilitatesthe analysisand diagnosis of inverse problems.

The goal of inverse problem solving is to determine the vaue of unmeasured
guantities (the unknown parameters) from measured quantities (experimental
data).

A model must be assumed to relate the two. Favor simple models.

The solution of inverse problemsis guided in part by the error between the
measured data and model predictions.

Select an error definition that weights all measurements alike.



244 CONCEPTSIN DISCRETE INVERSE PROBLEMS

e Three salient error norms are identified. The L, norm is least sensitive to
outliersand supports robust inversion; however, it is most sensitiveto uneven
informationdensity. The L, norm is compatible with additive Gaussian noise
in the data and it leads to close-form least squares solutions. The L, norm is
most sensitive to outliers but least sensitive to uneven information density; it
leads to min-max solution strategies.

e Thesolutionof inverse problemstypically faces: a noninvertibletransformation
matrix, insufficientindependentdata rel ativeto the number of unknowns, noise
in the data, difficultiesin selecting a proper theory or a nonlinear model, a
nonconvex error surface, uneven distribution of information density, and high
computational demands.

e The following are preliminary recommendationsfor inverse problem solv-
ing: (1) plan the experiment carefully to gain evenly distributed information,
(2) gather high-quality data, and (3) stay in touch with the physical reality of
the problem.

e The solution of the inverse problem must be physically meaningful and ade-
quately justify the data, given an acceptable model.
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SOLVED PROBLEMS

P8.1 Problem linearization. Given the function z=x+2.y2+3.xZ, estimate
Zza x=12 and y=7.2 using the first-order Taylor expansion around
X, =1.0and y, =7.0.
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Solution: The partial derivates of z = x+2.x.y2+3.x% with respect to x
andy are: z/dx =142 y*+6-x and dz/3y =4 - x - y. Then, the value of
zat (x,y) =(1.2,7.2) isestimated as:

0z Jz
Z(X,Y):Z(XO’YO)+(X_XO)'3_X' +(y—yc)-a—
Xo-Yo Xg.Yo

~102+(7.2—7.0)- 102+ (1.2 —1.0)-28 = 128

The true valueis z(1.2,7.2) = 129.2. Thereforetheerror is —1%.

Regression analysis. Data that follow a power trend y = a- x? are fitted
with a straight line in log-log scale. Show that the inverted parameters are
different from those obtained by fitting y = « - xB in linear scale. Write the
objectivefunction that is minimized in each case.

Solution: Data are simulated as y; = a- (x,)P + md fora = 100, =0.25,
where md is a uniform random number generator between —10 and +10.
The objectivefunctions are:

logrlog  Ere(et, B) = Y- {log(y;) — [log(e) +B- log(x,)])’
i=0
N-1
linear Err(a,B) = Y [vi — a- (x)?]’

i=0

Slices of the error surfaces taken across the minimum are shown next for
thefitting in log scale:

Err(c,, 0.293) Em(100.2, B)
0.02 1 0.02 T
0.01 ¢+ - 0.01 £
a=100.2 B=0.293
1 + H——t
9% 100 110 02 025 03 035
o B

Slices of the error surfaces taken across the minimum are shown next for
thefitting in linear scale;
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Dataand fitted trendsfollow. Noticethat errorsin small values gain greater
relative weight in log scale:
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ADDITIONAL PROBLEMS

P8.3 What isan inverse problem? Write a short essay to explain what an inverse
problem is to a colleague in your own discipline. Identify the main chal-
lenges. Highlight guiding principles that prevent pitfalls and facilitateiden-
tifying physically meaningful solutions. Provide persuasive examplesfrom
your field.

P8.4 Discrete formulation. Consider a point load on a beam. Write the Navier's
equation for the elastic deformation of the beam in matrix formy =hx.
Exploretheinvertibility of h to infer the position and magnitude of the Toad
from the measured deformation of the beam.
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TableP8.1 TableP8.2

X y z X y

0 0 9.9 0 10.1
0 5 10.6 1 11.1
1 1 11.2 2 12.3
1 4 11.2 3 13.6
2 2 12.0 4 155
3 3 133 5 18.0
4 1 14.0 6 19.8
4 4 14.5 7 22.0
5 0 15.2 8 242

P8.5 Different norms. Regression analysis. Use the trid-and-error method to fit

P8.6

P8.7

aplane z= atb.xtc. y to the data set given in Table P8.1. Compare
the results obtained with the L,, L, and L, error norms. Plot dicesd the
error surfacesfor the three unknowns (a, b, ¢). Repest for the three norms.
Discuss your results.

Favor simple models. Regression analysis. Fit a polynominad by trial-and-
error to the data presented in Table P8.2. Start by fitting a straight line and
repeet the exercise for increasingly higher orders. In each case: plot the
data set as points and the polynomid as a continuous line, and extrapolate
the polynomia from x = —5 to x = +15. Plot the residua error versus the
order of the polynomid. Discuss your results.

Tomography. Generate the matrix of travel lengths for the set of sources
and receivers and the pixd geometry shown below. (Note: there are 16
possiblerays). Assume straight rays.

r“ & -+ )
) ) 5 & 1 O Recaiver

@ Source
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P8.8 Deconvolution. Given the output signal y=[0,4, 2, - 1, 0.5 -0.5,0, 0"
and theimpulseresponseh=[ 2, —1, 0.5, —0.25, 0, 0, 0, 0]7, determinethe
input signal x. (Hint: form the matrix h - refer to Section4.5)

P8.9 Application. Consder problems in your field of interest. Identify the gov-
erning physical relations. Expresstheserelationsin discreteformy =h - x.
Rewrite the physical relation in terms of dimensionless i ratios. Explore
invertibility.
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Solution by Matrix
lnversion

The inversion of forward problemsy =h - x isexplored in this chapter. The aim
isto obtain a physically meaningful solution x<**> that can adequately justify the
measured data y<™**> according to the assumed physical law or model, while
taking into consideration all availableinformation.

9.1 PSEUDOINVERSE

The forward solution predicts the outcome y<P™>[M x 1] as a function of the
vector of known input valuesx="**>[N x 1] and the transformation matrix h [M X
N], which representsthe physical law that connectsx to y

X@'ed) = 2 : {“me) forward problem 9.1)
In the inverse problem, the M-values y, are measured, and the aim is to estimate
the N-unknown parameters x<*>. In general, h is noninvertibleand a pseudoin-
verse h™® must be used instead:

x(@0 = I=1‘g ymess) inverse problem 9.2)

The pseudoinverse h™® is not the "normd" inverse of the matrix h, and the
products h-h™® and h™® - h are not necessarily equal to the identity matrix I. Let
us explore the implicationsof this observation. The values of y 9" that would
bejustifiedif theinput parameterswere x<** are

X(j‘m) = g . l(m) (93)

Discrete Signalsand Inverse Problems  J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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?nd, 9rel}c;Iaci ng x<**> in terms of the vector of measured values y<me> (Equa-
ion 9.1),

Z<just> — g . I:!—g . X<meas> (94)

The matrix D=h-h7¥[M x M] is called the data resolution matrix. The trace
of Disthe sum of its diagonal elements and it is an indicator of the number of
unknowns that can be resolved. The length of the vector of residuals

lgl — (X<meas> _ 2 . §<est>)T . (Z<meas> - l:1 A §<est>)
is zero when D =1 and increases as D deviatesfrom the identity matrix .
On the other hand, the measured values y<™*> were gatheredin a real event;
thus, y=™*> = h-x<™*> and Equation 9.2becomes

§<est> — g—g . g . l<me> (9.5)

ThematrixG=h"%.h [N x N]iscalled themodel resolution matrix. Equation9.5
indicates that the estimated i-th parameter x> is a linear combination of the
true parametersx <™=, as prescribed by the elementsin thei-th row of G. When
G =, theestimated parametersx<*> are identical to the true parameters x>,

9.2 CLASSIFICATION OF INVERSE PROBLEMS

Inverse problems can be diagnosed and classified by analyzing the available
informationin relation to the requested information and the characteristicsdata
consistency.

9.2.1 Information: Rank Deficiency and Condition Number

The comparison between the number of measurements M and the number of
unknownsN providesthefirstindicationof thetypeaof problemat hand. Theproblem
isunderdetermined if the number of unknowns N exceedsthe number of equations
M, thatisM > N. Theconverseis not necessarily true: interrelated measurements
do not contributeto the pool of availableinformation (Section8.5.1) and problems
that appear even-determinedM = N or overdetermined M > N may actualy be
underdetermined.

The rank r of a matrix is the number of linearly independent rows or columns
(Section 2.2). Therefore, the rank of the transformation matrix r[h] indicatesthat
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the number of independent measurements is r[h] € min(M, N). Yet, rank can be
mideading. Consider the following two matrices:

10 g1 o
10| ™ |1 10

The matrix on the right is rank = 2; yet, the second row is "amogt™ linearly
dependent on the first row and it does not really contribute new information to
the solution of the inverse problem.

Eigenvalue analysis or singular value decomposition (SVD) provide a better
alternativeto assessamatrix. Theconditionnumber i sdefinedastheratiobetween
theeigenvaluesor singular valuesx with maximum and minimumabsol utevalue:

A
max A condition number (9.6)

K=
min x|

The condition number applies only to square matrices. Thisis not a limitation
because the computation of the pseudoinverseinvolveseitherh” -hor h-h” (later
in this chapter). If the matrix is positive definite, al singular values are positive,
and the bars for absolute value can be removed. The condition number properly
captures the transition from invertible to noninvertiblematrices:

Invertible Il-conditioned Noninvertible
Matrix: 10 [1 0_ ] 10
I .
Rank: 2 2 1
Condition number: 2.6 2000000 oo

A matrix is noninvertible when k = . On the other hand, a matrix is
ill-conditioned when k is very large; in this case, numerica inaccuraciesbecome
important to the solution, and errorsin the data are magnified during inversion.
The magnification of numerical noise in computer algorithms with double pre-
cision takes place when k — 10'2. However, the condition number required to
prevent data noi se magnification can be significantly lower and it isrelated to the
noiselevel in the data. (The procedureto identify the optimal condition numberis
outlinedin Section 9.6 — for an example see Chapter 11.) The number of singular
values between max |A| and the minimum acceptablesingular valueis a measure
of the amount of availableinformation.

Singular values are computed for the h™ - h square matrices for the two cases
shown in Figure 9.1. Figure 9.1a presents the singular valuesfor the regression
analysis matrix h developed to fit a fifth-order polynomial to 11 data points.
Thereare M = 11 measurements but only three ""meaningful” singular values if
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Figure 9.1 Singular values. The number p of " meaningful" singular valuesisnot always
trivial, even when a clear bresk is found

the condition number is limited to k =2 x 10*. Figure 9.1b shows the singular
valuesfor the matrix of travel timesin cross-holetomography. ThereareM =25
travel time measurements but only ~14 meaningful singular values when the
condition number is limitedto k = 5 x 102

9.2.2 Errors - Consistency

Rank and condition number permit the assessment of the transformation matrix
h even before data are acquired. Once data become available, the system of
equations can be tested for consistency. The system of equationsis " consistent"
if thereisasolutionx that satisfiesy =h - x. Therefore, therank is

r [g] =r [iz_lzy] 9.7)
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where the expanded or augmented matrix h|y is formed by adding the vector of

measurements y<@=> as the N+| column of h.

Data or model errors make the system of —equations inconsistent. Therefore,
thereis no solution x that can satisfy all the datay, and the vector of residuasis
not the null vector, B

e= -y_(meas) _ 2 . E(est) # g (98)

9.2.3 Problem Classification

The amount of informationthat is available(for an acceptablecondition number)
relative to the number of unknowns is used to classify inverse problems into:
underdetennined, even-determined, and overdetermined.

Very often theamount of availableinformationis not the samefor the different
unknowns and the inverse problem is mixed-determined. Consider the case of
atmospheric data: it is relatively easy to gather information near the earth's sur-
face; however, data become gradually sparser at higher elevations, so that lower
atmospheric layers are overdetennined whereas remote layers remain underde-
termined. Mixed-determined inverse problems are frequently encountered and
they tend to cause uneven data and model error magnification onto the inverted
parameters.

Inverse problems using real data are inherently inconsistent; that is, rfh] <
r[h|y]. Therefore, no solution x can satisfy all equations when there are more
equations than unknowns M > N. In this case, the inverse problem is solved by
identifyinga compromisesolution x <> that minimizesa preselected error norm
such asthe L, norm. Thisleadsto the family of |east-squaressolutions.

9.3 LEAST SQUARES SOLUTION (LSS)

The least squares solution (LSS) is the set of values x that minimizesthe L,
norm or min (eT-¢e), where the square root is herein omitted for simplicity
(Section8.3.2). Individual errors e; = y,<™#> — y,<"*> form the vector of resid-
uals €=y<™*> _h.x. Therefore, the objective function I' to be minimized
becomes B

T

e -€

= (Z(mew ~h- E)T . (X<meas) —h- 5) (9.9)

=z(meas)T_Z(mcas)_X(meas)T_h,x_XT_hT,y(meas)+XT_hT_h,§
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The least squares solution corresponds to the minimum point of the error surface
and it is found by setting the derivative of the objectivefunction I' with respect
to x equal to zero. The derivative of T is computed using the rules derived in

Section 2.3:
i)
_al; =0=0-h"-y"™*—h"-y**+2-h"-h-x (9.10)

If l:1T ‘h isinvertible, the solution for x returns the sought estimate x<**>:

-1
Lss  x®™=(b"-h) ATy (9.11)

This is the least squares solution. The matrix h™-h is square [N x N] and
symmetric; it is invertible when B [M x N] has linearly independent columns so

thet r [ =N.
The corresponding generalized inverse, dataresolution matrixD=h-h

-8
model resolution matrix G = h™* - h become (substitute the solution Equation 9.1
in the corresponding definitions):

= Q

bt =(4h) 4" ©.12)
D=b-(4"h) b ©.13)
6= (") - (i) =1 ©.14

! An aternative demonstration is presented to gain further insight into the solution. The goal is to
determine x so that the justified values X<j“5'> =h.x (in the range of the transformation) lie closest
to the set of measurements y <™**> (which cannot be reached by the transformation). This will be
the case when X<J'“s‘> is the " projection™ of y<™=*> onto the range of the transformation. The vector
normal to the space of y that executes the projection is (y<™*> — fj“s”), and by definition of
normality, its dot product with y <> must be equal to zero. Mathematically,
0 = ylmoT. (y<ms> — i)
The following sequence of agebraic manipulationsleads to the solution:

0=(05)" (s -5-8)

0=g7.y<me85)_]=1T.}__1.§

—1
Finally, if b7 . h iS nonsingular, the sought estimate is x(** = (1_1T . g) A" ytmens)
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As the modd resolution matrix is the identity matrix, the LSS resolves x, but it
does not resolve the datay (Note: D = I when the problem is even-determined).
A solved exampleis presented & the end of the chapter.

9.4 REGULARIZED LEAST SQUARES SOLUTION (RLSS)

The LSS gpplies to overdetermined problems. However, many inverse problems
are mixed-determined. In this case, the inversion - if a al possble - would
unevenly magnify noise in the solution, particularly on vaues of x, that are
least constrained due to limited information. This can be prevented by enforcing
known propertieson the solution x.

It is possible to include available a priori infonnation about the solution x
during the inverson stage. This information is captured in the "regularization
matrix" R and it is added as a second criterion to be minimized in the objec-
tive function. Therefore, the objective function for the regularized least squares
solution (RLSS) includes: (1) the length of the vector of residua e” - e, where
e = y<meas> _ y<iust> and (2) the length of the regularizing criterion applied to
the solution [(R - x)™ - R - )]:

+xT-hT-g-§_+)\-[§T- T-B__-é] (9.15)

where A is the nonnegative regularization coefficient that controls the weighted
minimization of the two functionalsin the objective function. (Note: assuming
that R is dimensionless, the units of A are[A] = [y?/x2].) The partial derivative
of the objective function with respect to x is sat equal to zero

l
I
(=]
I
(=]

—2-h".y®™= —2.h". 9.16)

X - =

HB"
+
»
T
[
e
»

The estimate of x is obtained assuming that (: hTART is invertible, and

resultsin

|
I
'L

-1
RLSS  x® = (b"-b+N-ETR) £ (1)
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A symmetric, positive-definite matrix is invertible (Chapter 2). Therefore, the
effect of regularization is to guarantee the invertibility of (hT h+A RT. R)
by correcting the ill-conditioning of h™ - h and delivering a stable “solution. The
correspondinggeneraized inverse, data resolution matrix D =h - h™#, and model
resolution matrix G =h"%.h are -

-1
1=1-g=(gT-g+>»-§T-§) ™ (9.18)
-1
D=h-(b" b+ -R"R) B 9.19)

T oy
G=(b"-h+\-E"R) -b"-h 920)

The versatileRL SS solution can provide adequate estimateseven in the presence
of data and model errors. The approach is aso known as the Phillips—Twomey
method, ridge regression, or Tikhonov-Miller regularization.

9.4.1 Special Cases

The LSSis obtained from the RLSS when the regularizationcoefficient is set to
zero, A = 0.

If the identity matrix is selected as the regularization matrix R, the solution is
known as the damped least squares solution (DLSS) and Equation 9.16 becomes

-1
xlest = (1_1T -h vt I) .hT-y®™)  damped least squares solution  (9.21)

A solved problemis presented at theend of this chapter. The effect of dampingn?
in promoting a positive-definite invertible matrix is readily seen in this solution
where the main diagonal of k™ -h is increased by m?. Note that (1) the value 2
is always positive; (2) typically, a matrix is positive-definite when the elements
along the main diagonal are positive and large when compared to other entriesin
the matrix; and (3) a positive-definitesymmetric matrix is invertible— Chapter 2.

9.4.2 The Regularization Matrix

The matrix R often resultsfrom the finite difference approximation to one of the
following criteria:

e |f a priori knowledge of x indicatesthat values should be constant, then the
first derivative is minimized.
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o If thelocal variation of x can be approximated with a straight line, then the
second derivativeis minimized. Thisis the Laplacian regularizer.

If the values of x are expected to follow a second-degree polynomial, then
the third derivative should be minimized.

This reasoning can be extended to higher-order variations. Table 9.1 presents
examplesof regularizationmatricesR for applicationsin oneand two dimensions.

Notice that the matrix R is constructed with a criterion that is minimized in
Equation 9.15. Therefore, if a priori information suggests that the solution x
is "smooth, then the criterion to be minimized is "variability", which is often
computed with the second derivative, as shown in Table 9.1.

The regularization matrix can aso reflect physical principles that govern the
phenomenon under consideration, such as heat conduction, chemical diffusion,

Table91 Guidelines to construct the regularizetion matrix R

Expected Criterion Kernel A row in the
variation of regul arization matrix
parameter X

X = constant - fdx

(1D system) m'n(d_p) Binit&alfference [0...01- 10...0]
x=a+b-p . 5‘1’5 Xi+1_2'xi+xi—l -

(1D system) min (dpz Finitedifference [0...01- 210...0]
x=a+b-p+c-p? [ Ex Xipz = 3. %1 T3.x, - %, _

(1D system) min dp® Fntedifeence ~  [0---01-33 -10...0]
x linear in 2 2 0 1 0

pandq min(d—§+9—’2‘) T4 |1 [0..1...1-41...1...]
(2D system) dp”  dq ol 1 |0

Note: Entries not shown in the rows of R are zeros. R;; €lement shown in bold.

Systems. 1D Beam, layered cake model of the near surface.
2D. Cross-section of a body, topographic surfaces, digital images.

Boundaries: *'Imaginary points” follow zero-gradient or constant gradient extrapolation

B R Xi

e =

Imaginary pixel: Imaginary pixd:

x*-—i =X; X*_i = Z'Xi—xi“‘l
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equilibrium and compatible deformationsin a continuum. In this case the con-
struction of the regularization matrix proceeds as follows:

1. Expressthe governing differential equation in finite differencesto determine
the kerndl «.

2. The convolutionof the kernel with the vector of unknownsx would resultin
a new vector x* that would better satisfy the physical law. In matrix form,
x* =k -Xx (Sections4.4 and 4.5).

3. The god of regularizationis to minimize the distance x* — x; hence, the
regularization matrix isR =k — I, where I is the identity matrix.

The kernel that is used to compute rows in R for elements x; away from the
boundary cannot be used for boundary elements. There are two possible alterna-
tives:

e Finitedifference approximation: develop asymmetric kernels using forward or
backward approximationsin the finite difference formulation of differentia
equations.

® |Imaginary elements: create "imaginary" elements outside the boundary of x.
The value of theseimaginary elements must be physically compatiblewith the
physics of the problem. For example (see sketchesin Table 9.1): (@) if there
is zero-gradient or no flow across the boundary, the imaginary value x’_; is
symmetric and adopts the same value as the corresponding point inside the
boundary, x”; =x;; (b) if it is a pivoting boundary, the gradient is constant
acrosstheboundary and x’; = 2x,,, — x;, wherex, isthe boundary valueand x;
itsimmediateneighbor. Onceimaginary elementsare created, theregularization
matrix is formed by running the kernel within the problem boundaries (see

solved problem at the end of this Chapter).

The complete Laplacian smoothing regularization matrix for a 2D image of
6 X 6 pixelsis shown in Figure 9.2. Symmetric imaginary pixels are assumed
outside the boundary.

Regularizationappliesto unknown parameters x of the same kind (same units),
such as the concentration of a contaminantin a 3D volume, pixel valuesin a 2D
image, or temperatureaong a 1D pipeline.

9.4.3 The Regularization Coefficient A

The optimal & value dependson the characteristicsof the problem under consid-
eration, the quality of the datay and the adequacy of the assumed mode!.
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seoond derivative during the inv

Let us explore the evolution of the residual and the solution x<** for differ-
ent values of A. The following discussion relates to schematic trends shown in

Figure 9.3.

Follow the Evolution of the Residual (Data Space)

Low regularization lets the solution x=***> accommodate to the measured data
y="*> and residuals e = [y<™**> — h.x~**>] are small. Conversely, an increase

in regularizationcoefficient A constrains the solution and the residualsincrease.

Discardtherange of A where the solution stopsjustifying thedatato an acceptable

ef-e

degree. To facilitate this decision, plot the length of the vector of residuals

versus A (Figure9.3b).
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(a) Estimated vs true solution (unknown)

Lengthof
1<tme>_1<est>
Underdamped Overdamped
ill-conditioned disregardsdata
«por A
(b) Data space
Length of
resdual
Optimum
! «porA—
(c) Solution space
Property of
the solution

max(x)

Optimum |
—>§

Rangeof 4q----------~"<z-
possble
material :

properties

min(x) «p or A—

Figure 9.3 Selection of optimal inversion parametersA (includesg?) and p: (a) deviation
of estimated solution x<*t> from the true x<™>. In real cases this plot is not known;
(b) length of residuals; (c) property of the solution. Thefigureshowsa plat of theminimum
and maximum values of x

Follow the Evolution of the Solution x<#*> (Solution Space)

The etimated solution x<*> is very sensitive to data and mode errorswhen A is
low and the problem isunderregularized. However , the solution x<**> is overreg-
ularized and fails to justify the data y<™*> when the regularization coefficient
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A is too high; for example, an overregularizedimage becomes featurel ess when
A is high R is constructed to minimize variability. Therefore, discard ranges
of N where the solution is physicaly unacceptable or uninformative. A robust
approachisto plot salient characteristicsof the solution versusthe corresponding
A values. Consider parameterssuch as (Figure 9.3c):

e The characteristic to be minimized, which is captured in the regularization
matrix, and summarizedin the length [(§-§<°S‘>)T -R-x=)].

Extreme values min(x***) and max(x<*">). Superimpose the physically
acceptablerangefor parametersx.

e Statistical summariesof the valuesin x, such as mean, standard deviation, or
coefficient of variation (standard deviation/mean).

The relative magnitude of parameters (e.g. the smoothnessof the spatial varia-
tion of x<**> can be known a priori such aswhen x relatesto surfaceelevation
or light intensity).

A prevailing trend in the solution x<**> (e.g. ocean temperaturedecreaseswith
depth).

Decision

This discussion highlights the inherent trade-off between the stability of the
solution (improved at high regularization)and the predictability of the data (best
at low regularization). The selected level of regularization A must (1) return a
physically meaningful solution within the context of the engineering or science
problem being studied and (2) adequately justify the data.

It is anticipated that higher levels of dataor mode error and uneven data cov-
erage will require higher level of regularizationA. Detailsare provided in Imple-
mentation Procedure9.1. The RLSSisdemonstratedat theend of thischapter.

Implementation Procedure 91  Optimal regularization coefficient A and
optimal number of singular values p

1. Solve the inverse problem for different values of A (RLSS) or p (SVD
solution; section 9.6).

2. Solutionrelevance. For each solution x <>, computeand plot thefollowing
parametersversus A or p (see Figure 9.3):

® the regularizationcriterion [(R - x<*>)T. (R-x**)]
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e extreme values min(x<*">) and max(x~**>) and superimposethe phys-
ically acceptablerange for parametersx

® mean(x<**>) and standard deviation of the solution x <>
¢ plotthesolutionitself when appropriate, such asasequenceof tomograms
3. Discardthe range of A or p where the solution is physically unacceptable.

4. Data justification. Analyzethe residualse = [y<™*> —h.x<*">] for each
solution x<**>, Computeand plot the following parameters versusA or p:

o L, norm=e¢l e
e L norm = max(e)
e A 3D plot of residualse; vs. measurement counter i, against A or p

5. Discard the range of A or p where the solution stops justifying the data to
an acceptabledegree.

6. Plotof thetraceof thedataresolution matrix tr(D) = tr(h - h™®) versusA or p.

7. Discard the range of A or P that yields trace values much smaller than the
number of equationsM.

8. Select A or p that returns a physically meaningful solution and adequately
justifiesthe data.

9.5 INCORPORATING ADDITIONAL INFORMATION

Regularization permits the addition of known information about the solution x.
Onemay also haveadditional informationabout the datay, the model, or aninitial
guess of the solution x,. The following sections explain how this information
can be incorporated during inverse problem solving. In al cases, incorporating
additional information should lead to a better conditioned inverse problem and
more physically meaningful solutions.

9.5.1 Weighted Measurements

We often have additional information about:

e the model that is assumed to construct the matrix h. For example: a certain
model is not adequate for measurements gathered in the near-field of the source
or for measurements that cause nonlinear effects
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e thequality of gathereddatay. For example: some measurements were gathered
with alow signal-to-noiseratio, few measurementswereobtained by drivingthe
instrumentationoutsideitsrangeor under difficultconditions(e.g. tight comers,
difficult to reach transducer locations, or low-energy directivity angles), a
subset of the measurementswas recorded by atired and i nexperiencedoperator

e the statistics of each measurement. In particular, all measurements can
have the same importance in the solution when the standard error is used
(Section 9.8)

e the presence o outliersin the data. This can be identified a priori during data
preprocessingor by exploring errorse; once a preliminary inversion has been
completed

This information can be incorporated by applying different weightsto each mea-
surement or equation,

w(yy=h X 4... +hyxy)
w(yi=h,x+... +hy-xy) (9.22)

WM (yM =hM,l -Xl + . +hM,N 'XN)
In matrix form

‘X (9.23)

€

.X:

IE:
Hn=*

where the elementsin the [M x M] diagonal matrix W are the weights assigned
to each equation W, ; = w;. Equation 9.22 is equivalent to the system of equations
y = h-x, when the following substitutionsare implemented:

yoW.y ad h>Wh

Then, the LSS and RLSS pseudoinversesol utions become

-1
W-=LSS 5(est) — (gT'ET' g _gT 'ET'E'X(M”) (924)

|

-1
.g.;.)\.&T.R) 'QT'ET'E'X(MS)

W - RLSS l(eSt) — (ET . ET . R
(9.25)

Il
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To avoid any confusion, make these substitutionsin the corresponding objective
functions and retrace the derivations. Furthermore, because these substitutions
affect the objective function, the meaning of the solution has to be reworded
accordingly.

95.2 Initial Guess of the Solution

The estimate x<*'> can be computed starting from an initial guess of the
solution x4, and redistributing the unjustified component of the measurements
(y<™=> —h.x,) according to the generalized inverse solutions derived earlier.
The new set of pseudoinverse solutions is obtained from the original set of
solutions by replacing

X(meas) N (X(meas> —l:l z0) and l(esl) - (K(CSI) __2(‘0)

to obtain

x, — LSS X =x, + (hT .g)_l .gT . (X(meas) ~h- &)) (9.26)

x, — RLSS E<est>=2(_0+(ET.E_H\.gT.E)'I.ET.(X<meas)_g.&))
9.27)

Once again, these substitutions affect the corresponding objective functions and
the solutions gain new meaning. For example, the LSS becomes the solution
with minimum global distance between x=**> and x,. Likewise, the criterion
expressed in the regularizationmatrix R now appliesto (x<**> — x,). Theinitia
guess x, may be the solution of a similar inversion with earlier data in a time-
varying process, it may reflect previousknowledge about the solution, or it may
be estimated during data preprocessing (Chapter 11).

953 Simple Model = Ockham’s Criterion

Available information about model parameters may dlow a reduction in the
number of unknowns, in accordance with Ockham'’s criterion (Section 8.4),

y=h-x=h-O-u (9.28)
The corresponding substitutions are

l(est) — l_l_<e8t) and

=

{
ih=
o
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The Ockham-based LSS becomes

-1
0-L1ss w0 =(0"h"-h-0) -QT-hy"  (929)

The invertibility of (Q".h"-h- Q) is not guaranteed but may be attained when a
sufficiently low number of unknownsremainsin u. Indeed, a salient advantagein
selecting simpler modelsis to reduce theill-conditioning of the inverse problem.

954 Combined Solutions

The previous sections revealed methods to incorporate additional information:
initial guessof the solution x,,, measurementsor equations with different weights
W, regularizationR and Ockham’s criterion O. These methods can be combined
to generate new solutions. For example, a "weighted regularized least squares
with initial guess” is

-1
X(est)_ +(hT T.E'g_l_)\.gT.g) 'hT'ET'W’(y(ms)—h'lo

The meaning of the solution becomes apparent when the substitutionsare imple-
mented in the objectivefunction that is minimized.

9.6 SOLUTION BASED ON SINGULAR VALUE
DECOMPOSITION

The singular value decomposition (SVD) is as a powerful method to diagnose
inverse problems and to assess available information (Section 9.2). It also per-
mits computation of the pseudoinverse of a matrix h[M X N]. The solution
follows immediately from 4= U- A - V" and the orthogonality of the matrices
(Section 2.2.4): B

BE=V.AT-U (9.31)

where the entries in the diagonal matrix A [M x N] are the singular values A,
of h-hT or h".h in descending order, the columns in the orthogonal matrix
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U[M x M] are formed by the eigenvectorsu of h- h" (ordered according to
the eigenvalues) in A), and the columnsin matrix V [N x N] are formed by the
eigenvectorsy of ' h (in the same order as the eigenvalues X\ in A).

In explicit form, the solution x<**> =h 8 . y<™%> phecomes

T <meas>
1y

—X (order p) 9.32)

1

<est> h <meas>

I»4
I
i M'u

This equation indicates that small singular values A; in ill-conditioned problems
will magnify model errorsin h (retained in u; and v;) and measurement errors
in'y. Error magnification is controlled by restricting the summation bound "p" to
take into considerationthe largest singular values. Then, the generalized inverse
of h obtained by keeping the first p singular values and corresponding singular
vectors iS

T
. <pP> -1
SVSS 2 g = ¥ P ) (—A_<p>) . (g<p>) order p
NxM NXxp pxp pxM (9.33)

The data resolution matrix D=h-h™® and model resolution matrix G=h"%.h
can be computed for different values p to further characterize the nature of the
inverse problem, and to optimizeits design. A numerica exampleis presented at
the end of this Chapter.

9.6.1 Selecting the Optimal Number of Meaningful
Singular\alues p

How many singular values should be used in the solution? The selection of an
optimal value of p starts by sorting singular values to identify jumps; in the
absence of jumps, select a condition number that ensures numerical stability. This
isthe presel ectedorder p,. Thenfollow asimilar methodol ogy to the identification
of the optimal level of regularization (Section 9.4.3 — Figure 9.3):

1. Compute the solution x<**> for the preselected order p,.
2. Assess the physica meaningfulness of the solution.
3. Assessits ability to justify the data.
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4. Repeat for larger and smaller values of p around p,.

5. Select the value of p that provides the best compromise between the two
criteria.

Higher dataand model errorslead to lower optimal p-values. Detailsare provided
in Implementation Procedure9.1.

9.6.2 SVD and Other Inverse Solutions

If the measured data y<™*> can be expressed as a linear combination of the
u,. ..U, vectors,then y<™> isin the rangeof thetransformation, and the solution
to the inverse problem is a vector in the space of x that includes the null space.
Therefore, there are infinite possible solutions and some criterion will be needed
to select one. However, if the measured data y<™*> cannot be expressed as a
linear combination of the u,. . . u, vectors, then y<™> isnot in the range of the
transformation and thereis no solution x. Yet one may till identify the solution
that satisfies some criterion, such as the least squares.

When the rank of h is r, and the summation bound "'p"* in Equation 9.32 is
equal to r, the computed estimate x<*'> correspondsto the LSS:

rre ) ey (1) @) e

“

LSS SVD
The RLSS and DLSS convert the matrix h' - h[N x N] into a positive-definite
invertible matrix. When these inversion methods are analyzed using SVD, it
is readily seen that regularization and damping raise the magnitude of singular
values, control the ill-conditioning of the inverse problem, and *'damp' the mag-
nification of errors from the measurements y and the model h onto the solution
x (Equation 9.32). B B

9.7 NONLINEARITY
A nonlinear problem can be linearized around an initia estimate, as shown in
Section 8.2. The iterative Newton-type algorithmincludes the appropriate updat-

ing of the transformationmatrix. In theq T 1 iteration, the estimate (x<**>) ¢, is
computed from the g-th estimate (x<*>), as

(£<est))q+l — (z(est))q + (I__I‘E)q ) [Z<mea8> _ (lzl)q . (l(es‘))q:l (9.35)
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where (h), and (h™8), are computed taking into consideration the g-th esti-
mate (x‘“") Convergence difficulties and the likelihood of nonuniqueness
are exacerbated in nonlinear problems, and different solutions may be reached
when starting from different initial estimates. Other approachesare discussed in
Chapter 10.

9.8 STATISTICAL CONCEPTS - ERROR PROPAGATION

Measurementsy=<™>, any initial guessx, and the assumed mode! are uncertain.
Therefore, the inverse problem can be stated in probabilisticterms. The solutions
that are obtained following probabilistic approaches are mathematically similar
to those obtained earlier.

9.8.1 Least Squares Solution with Standard Errors

M easurementshave the same importancein the L, norm when the standard error
e; isused (Section 8.3):

<meas> __ , <pred>

e = Yi ! standard error (9.36)

O;

whereg; isthe standard deviationfor thei-th measurement. Thevector of residuals
becomese = Q - (y<™*> — h-x) and the diagonal matrix Q [M x M] is formed
with the inverse values of the standard deviationsQ;; = 1/a;. Then, the objective
functionT for the LSSis

T'=¢"-e
=(X(m)‘Q'K)T'QT'&(X““’”)—Q-&) 9.37)

Finally, setting the derivative of the objectivefunction I" with respect to x equal
to zero returns the sought estimate x <**>:

-1
xet = (}le .gT Q- g) 'ET .gT Q- X<m€“> (9.38)

The matrix ) is diagonal; therefore, Q" . Q is also adiagonal matrix with entries
1/a?. When all measurements exhibit the same standard deviation, this solution
becomes the previoudy derived LSS.

Equation 9.38 is the same as Equation 9.24 for the weighted LSS solu-
tion, where 2 = W; by extension, the other solutions obtained with weighted
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measurements can be used to take into consideration the standard deviation of
measurements.

Theseresultscan be generalizedto correl ated measurements: the matrix ar'.Q
(or WT-W in Equations 9.24 and 9.25) becomes the inverse of the covariance
matrix where the main diagonal elements represent the width of the distribution
and off-diagona elements capture the pairwise correlation between measure-
ments. Then the expressionfor the weighted LSS i s mathematically analogousto
the " maximum likelihood solution™. Finally, maximum entropy methods resultin
mathematical expressionscomparableto generalized regularization procedures.

90.8.2 Gaussian Statistics - Outliers

In a broad least squares sense, the statistics of the measurements y<™*>, the
transformation (entriesin h) and an initial guess x, are presumed Gaussian. The
least squarescriterionis apoor choiceif Gaussian statisticsare seriously violated,
for example, when there are few large errors in the measurements. In such a
cae

e Improve the data at the lowest possible level, starting with a proper experi-
mental design (Chapters 4 and 5).

o |dentify and remove outliersduring data preprocessing prior to inversion (see
examplein Chapter 11).

e Guidethe evolution of the inversion with the morerobust L, norm rather than
the L, norm (Chapter 10).

¢ Redefine the objectivefunction I" to consider proper statistics.

e |dentify and downplay outliersduring inversion.

Let usexplorethe last two options. Many inverse problemsrelateto nonnegative
guantities, yet the tail of the normal Gaussian distribution extends into negative
values. Examples include mass, precipitation, traffic, population, conduction,
diffusion, strength, and stiffness. Often, such parameters are better represented
by the log-normal distribution and the error function is computed in terms of
log(y) rather than in termsof y. (Note: y is log-norma when log(y) is Gaussian
distributed- Section8.3.) If regularizationis used, the matrix R must be designed
taking into consideration values z, = log(x,) rather than x,. Once again, the
meaning of the computed solution becomes apparent when the redefined obj ective
functionis carefully expressed in words.
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Finally, outliers can be identified during inversion to reduce their impact on
the final solution. Theinversion solutionis as follows:

1. Invert the data and obtain afirst estimate of the solution x<=t-1>,
2. Computethe error between measured and justified values:

<meas> __ y<just—1> <meas> _ . X<cst——1>

=Z n-x

€=y

3. Form a histogram of e, values and explore whether it satisfies Gaussian
statistics.

4. ldentify outliersy;™*> that exhibit large deviationsfrom the mean.

5. Underweight and even remove those measurements and obtain a new estimate
x<*=2> ysing weighted solutionssuch as W-LSS or W-RL SS (Section 9.5.1).

This approach must be applied with caution to avoid biasing the inversion; place
emphasison large deviations, typically two or more standard deviationsfrom the
mean.

0.8.3 Accidental Erras

Consider a function t =£(s;, ..., sy), where the variables s; follow Gaussian
statistics. The mean of t is the functionf of the means,
My = 1 (IO TP YY) (9:39)

The standard deviation o, is estimated using a first-order Taylor expansion of the
functionf about the mean values y,, assuming that s-valuesare independent (the
covariance coefficientsare zero),

2
) o} (9.40)
s=p

For thelinear inverse problemin matrixform, x = h™ .y, theseequationsbecome
(Note: the values of the estimated parameters x<®> are correlated through the
transformationh™® as indicated by the model resolution matrix in Equation 9.5,
however measurements y<™> are assumed uncorrelated),

of
ﬁ=2(g

i 1

p =h%-p (9.41)
i=h2*.g] (942)
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Eachentry in h278 is the square of the correspondingentry in h™® for the selected
inversion solution, such as LSS, RLSS or their modifications. If the standard
deviationof the measurementsis constant for all measurements and equal to*'c”,
Equation 9.42 becomes

a=c?-h27%. 1 (9.43)

where al entriesin the vector 1 are equal to 1.0. In other words, the standard
deviation of the k-th unknown x, is equal to c-timesthe squareroot of the sum
of all elementsin the k-th row of h27%. Equations 9.42 and 9.43 can be applied
to linearized inverse problems where the matrix 4 correspondsto the current g-th
iteration.

9.8.4 Systematic and Proportional Errors

Systematic errors, such as a constant trigger delay in recording devices, do not
cancel out by signal stacking or within LSS. The only alternative is to detect
them and to correct the data. A constant systematic error £ in all measurements
atersthe estimated value of the unknowns by a quantity Ax:

E(CSt)'*'_Al:g_g'(Z-l_g) = A§=g_g-§=8'g~g'l (944)

Therefore, the error in the k-th unknown Ax, is & times the sum of all elements
in the k-th row of the generalized inverseh™®.

Proportional errors occur when a measured valueis equal to a constant atimes
thetrue value, yS™**> = o . y; ™. Often, a proportional error reflectsimproper
transducer calibration and it may be present in conjunction with a systematic
offset. In the general case when all a,-values are different (for example, when

each transducer hasits own calibration), the estimate of the solution becomes

.’S(&‘t) = g_g . dlag ((x) . Z(M) (9.45)

where diag(a) is the diagonal matrix formed by «; valuesin the nai n diagonal.

If alla-vaduesarethesame, a,=... =a, =q, then x=*> = a-g‘g .y, and the
solution that is computed is a times the solution estimated without the propor-
tional error in the data.

9.8.5 Error Propagation - Regularization and SVD Solutions

Poorly conditionedinversionsare characterized by high valuesin h™8. Therefore,
Equations9.42, 9.44 and 9.45 predict that errors will be preferentially magnified
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in some x-valuesmorethan others. Magnificationisrel ated to the amount of infor-
mation that is available to determine each x-vaue: poorly constrained x-values
will magnify data noise the most.

Regularization and SV D solutions(Equations9.17 and 9.33) reduce the effects
of ill-conditioning, limit the high values in h™ and control error propagation as
inherently predicted when these solutions are replaced in Equations 9.42, 9.44
and 945. These observationsare further exploredin Chapter 11 in the context of
tomographicimaging.

A strong correlation between x=<**> and the vectorsh™®-1 and h27%. 1 that
contain the row-sums in matricesh™® and h2™# should be carefully scrutinized:
make sure that the solution is not determined by the combined effects of high
dataerror and uneven distribution of information.

9.9 EXPERIMENTAL DESIGN FOR INVERSE PROBLEMS

The transformation matrix h is a function of the test design and data collection
strategy only. It does not depend on the data y but on sensor location and the
spatial/temporal distribution of measurements. Therefore, the following informa-
tion is known and can be analyzed as soon as the experiment is designed, and
before expensive and time-consuming data gathering:

e transformation matrix g

e the number of meaningful singular values that keep ill-conditioning under
control

e generalized inverseh™® (with some level of regularizationor formed with the
meaningful singular vatues)

e dataand modd resolution matriceﬁg and _g_

o the gpatia distribution of information — a simple estimate is related to the
column-sumof the transformationmatrix 17 - h

e the vectors h™-1 and h27®-1 that contain the row-sums in matrices h™*
and h2 B

Conversely, this information can be used to improve the design of experiments.
Preliminary guidelinesare summarized in ImplementationProcedure9.2. Details
are presented in Section 11.2.
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Implementation Procedure 9.2 Preiminary guidelines for the design of
experimentsleading to inverse problems

1. Design the test to attain maximum informution and stable solutions.
Conceive different realizable experimental configurations. For each con-
figuration:

o Identify/compute and tabulatethe number of measurements M, the num-
ber of unknowns N, and the trace of the gT l=1 matrix.

e Computethesingular valuesof the transformation 4 Plot sorted singular
values and identify the number p of singular values that satisfy an
acceptable condition number.

o Monitor thespatial distributionof informationby computingthe column-
sum of the transformation matrix 17 -h.

e Compute the row-sumsh™ -1 and h272- 1 to explore the propagation
of systematicand accidental errors onto each parameter in the solution
x> _ For thisstep, computethe generalized inversefor variousrealistic
levels of regularization.

e Computethedataresolution matrix D = h - h™ and the model resolution

matrix G =h™% . h. Analyze their resemblancewith the identity matrix
and calculate their trace.

e Prevent spatial and temporal aliasing in measurements.

2. For a similar number of measurements M, favor test configurations that
providehigh amount of information, evenly distributed and with controlled
error propagation.

3. Utilize the insight gained from the initial test configurations to generate
new ones, as needed.

4. Design the test to gather high-quality data. Carefully select transducers
and peripheral electronics. Create testing conditionsthat minimize noise.
Implement signal processing algorithms that facilitate measuring the data
with minimum error. Remove the effects of transducers and periphera
electronicsfrom the measurements.




274 SOLUTION BY MATRIX INVERSION

9.70 METHODOLOGY FOR THE SOLUTION
OF NVERSE PROBLAEMVIS

The elegant close-form solutions obtained using the L, norm facilitate the anal-
ysis of inverse problems, provide diagnostic tools to identify difficulties and
limitations, and permit incorporatinginformationin the form of an initial guess,
regularization, relative weights, and model characteristics. These solutions apply
to linear problems and are extended to linearized nonlinear problems within the
context of iterative algorithms.

We must pay specia attention to the choices that are made and track noise
magnification during the inversion so that the solution is controlled neither by
data errors and mode errors, nor by our own preconceptions. Guidelinesfor the
solution of inverse problems are summarized in Implementation Procedure 9.3.
A comprehensive methodology is proposedin Chapter 11.

Implementation Procedure 93 Preliminary guidelinesfor the solution of
inverse problemsin matrix form

1. Roperly design the experiment (ImplementationProcedure 9.2).

2. Gather high-quality data. While conducting the experiment, identify mea-
surementsthat present unique difficulty and repeat doubtful measurements.

3. Accumulate additional information that may be later incorporated during
inversion.

4. Select amode! to relate the unknowns x to the measurements y <> that
adequately capturesall essential aspectsof the system or process.

5. Favor simplicity - limit the number of unknowns in the representation of
the problem.

6. Reanalyze the data y=™*> to identify trends and outliers. This step may
help define an initial guess of the solution x,,.

7. Implement more than one pseudoinverse.

8. Vay inversion parameters such as the regularization coefficient A or the
number of singular values p while monitoring changesin the solution and
in the residual s (Implementation Procedure 9.1).



9. Gradually incorporate additiona information, such as an initial guess x,,

10. Computetheresidualse = y<™> — h. x<**> | ook for trendsin the mean,
11. Underweight or remove equations that are clear outliers and rerun the

12. Compute the column-sum 1" - h, the row-sums h™®-1 and h27®.1. Plot
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informationabout the solution (regularizationR) and information about the
data (W).

median, extreme values, and histogram.

inversion. This can be a dangerous step!

these vectors versus x<*t>. Carefully scrutinizeany apparent correlation.

13. Thefinal solutionx <**> must justify thedataand be physically meaningful.

Note: Chapter 11 presentsa more comprehensive approach and examples.

The generalized inverse expressions derived in this chapter include various

matrix operations such as addition, multiplication, transpose, inverse, eigenvec-
torsand eigenval ues. Efficient computer implementati onsare devel oped to reduce
datastorageand processingtime. These a gorithmsrecognizetheinherent charac-
teristicsof the matricesinvolved, which can be positive-definite,sparse, diagonal,
symmetric, Toepliz, and so forth.

911 SUMMARY

Thegoal of inverseproblemsolvingistoidentify the parametersof a physicaly
meaningful solution x<***> that can adequately justify the data y given an
acceptable model that is capturedin h.

A problemis " well-posed” when a unique and stable solution exists. Thisis a
rare situationin real inverse problems.

Elegant expressionscan be obtained for the solution of discreteinverse prob-
lems expressed in matrix form. The L, error norm plays a preponderant role
in these derivations. The least squares criterion is a poor choice if Gaussian
statistics are serioudly violated, for example, when there are few large errors
in the measurements.

Additional informationavailableto the analyst may be considered. Information
about the solution x is included through the regularizationmatrix R, Ockham'’s
matrix O, or as an initial guessx,. Information about the measurements or the
mode! is incorporated through weights W.
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e SVD is a powerful tool to diagnose the transformation matrix h. The relative
sizeof singular values gives an indicationof rank deficiency in the transforma-
tion, shows how close the system of equationsisto a system of lower rank, and
provides a reliableindicator of ill-conditioning. The pseudoinverse computed
by SVD explicitly showsthe amplificationof data and mode error caused by
small singular values.

e Well-posed problems satisfy the requirements of existence, uniqueness, and
stability. Sufficientinformationis required to securethefirst two requirements.
Stability can be controlled with proper regularization. Regularization makes
the matrix h" . h invertibleand increases the size of small singular values.

o |ll-conditioningis determined by experimental design, rather than by the accu-
racy of data. Consider various viabledistributionsof transducersand measure-
ments and evaluate them to select the optimal one.

e Data errors are magnified during inversion. Therefore, experimental design
must al so attempt to minimizemeasurementerrors through careful selection of
transducersand peripheral electronics, calibration of the measurement system,
and noise control. Outliers can have a mgor impact on the quality of the
solution and should be removed during data preprocessingor downweighted
as part of an iterativeinversion strategy.

e Mode errorsare amplified as well. Focus on the physicsof the problem. Select
the simplest model that can properly justify the data.

® Successful inverse problem solving is strongly dependent on the analyst. The
analyst designs the experiment, chooses the physical model, selects the inver-
sion strategy, recognizesand incorporatesadditional information, and identifies
optimal inversion parameters such as the degree of regularizationor the number
of singular values.

® Remain skeptical. Make sure that the solution is not a consequence of your
preconceptionsand choices, but that it justifies the data and truly reflects the
nature of the phenomenon or system under study.
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SOLVED PROBLEVIS

P9.1 Underdeteimined problems: the minimum length solution (MLS). There is
an infinite number of solutions that result in null prediction error e =0
when the problem is underdetermined and consistent (hnumber of equations
M < N number of unknowns; and r{h] =rhly]). Identify the MLS.
Solution: The objective function I that is used to identify the minimum
length solution (MLS) minimizes the Pythagorean length of the solu-
tion xT-x=x?+.. + x* subject to the constraint of error minimization
(see constrained minimization using Lagrange multipliersin Section 2.3):
Ix) =xT-x+AT- ( <ms>—h-5).

There are N-unknown v al ues x and M-unknown Lagrange multipliers
in A. The resulting system of N +M simultaneousequationsis

| N-equations Q=2.x-— 1=1T .\ (partial derivativesof T with respect tox)
| M-constraints 0 = y=™*> —h-x

Replacing x from the first set of equations into the second set, and
assuming that h- l=1T is invertible, the vector of Lagrange multipliersis

A=2-(h- hT)‘ -y=™*>. Finally, replacing A in the first set of equations,
the MLS estimate x<**> is

MLS x*9 =1 (g ET) Ly

I'sthe MLS estimate physically meaningful to your application?

P9.2 Least squares solution. Given the following stress-strain data, identify the
model parametersfor a linear elastic behavior ¢; = g, +E. g where E is
Young's modulus and the sitting error o, is due to the early localized
deformation at end platens.
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Strain: ' =[01234567]-107
Stress: " =[5.19 6.61 8.86 11.8 136 155 17.6 19.7]-10°-kPa

Solution: The LSS transformation matrix is (the transpose is shown to
facilitate the display):

o[l 1 1 1 1 1 1 1
|0 0001 0002 0003 0004 0.005 0006 0.007

The LSS generaized inverseis h™® = (h"-h)~' - h" and estimated model
parametersare x <> = h & , y<mess>

Results: 0y =4.93-10% - Pa and E,, =2.11-10".Pa

Residuals e=y<™®> _h.x<*>, Norm of residuals e'-e=6.932.
105 . Pa? - - Lo

Mode! resolution matrix isG = (h*.h)~'.h"-h= [O 1]

Therefore, the LSS resolves the unknowns x. " B

P9.3 Singular value decomposition. Compute the SVD of

1 4
h=|2 5| (M=3N=2)
Solution: the eigenvalues > eigenvectors of matricesh-h" and h' . h are

17 22 27
h-h"=[22 29 36

27 36 45
[0.429 0.806 —0.408
90.403 & |0.566] 0.597 | 0.112 ~0o | 0.816
| 0.704 ~0.581 —0.408

v 14 32 0.386 ~0.922
2= [32 77} 20403 < [0.922] 0.597 « [0.386]

Matric&é, X, and g are

[9.508 0 :| 429  0.806 —0.408:' v_[0'386 _0'922]

=

0 0773| U=|0566 0.2 0816
0 0 | |o704 -0581 —0.408 0.922 0.386

(§zeM x N) (5zeM x M) (8zeN x N)
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Matrices U and V are orthogonal, i.e. the inverse equalsthe transpose:

1 0 07 1 0
Ut-U=|0 1 0| and f-y:[o 1]
=~ oo 1 - =
1 4
Verificationof SVD: U-A YT=|2 5| whichisequaltoh
=4 X 3 e a

Generdized inversefor p=2:

b=y ( é<,,>)—1 _ (gq»)T _ [—0.944 -0.111 0.722]

0444 0.111 -0.222
- 1 0
an t.h=
d h™-h [0 1]

P9.4 Deconvolution as a least squares inverse problem. Given the measured
output signal y<™*> and the impulse response h, determine the input
signal x.

Output signdl: y=[0 0 2 -1 05 -05 0 © ]T
Impulseresponse. h=[0 -1 05 025 0 0 0 0]

Solution: the matrix h is assembled with time-shifted copiesof the vector h

(Section 45):
[ 0 0 0 0 0 0 0 07
-10 0 0 0 0 0 0 0
050 —-10 0 0 0 0 0 0
ne| 025 050 -10 0 0 0 0 0
==] 0 -025 050 -10 O 0 0 0
0 0 —025 050 —-10 0 0 0
0 0 0 -025 050 -10 0 O
0 0 0 0 -025 050 —10 O |

Clearly, the matrix h is noninvertible (zeros on main diagonal). A damped
least squares approach is adopted, that is, the RLSS

é(est) — (hT . .h+ - ._R_T . B)"1 . __h_T . y(meas)
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where R =1. The optimal value of A is found following the methodol ogy
outlined in Implementation Procedure9.2. First, solutionx<***> is computed
for arange of X-values, then, results are analyzed as follows:

Residual error: 6 ! ' '
(y<mcas> —h- L<est>)T . (X<meas> ~h- L<es|>)
4+
2 -
0 ]
110 001 01 1 10 100

Maximum of x> 2

Minimum of X% ¢

1

-1 | ! | |

11073 0.01 0.1 1 10 100
! A
1
1
1

107 ;; T T

Traceof D: Tr(h. h°8) 1

5 1 _
1
|
1

0 | 1 | |

111072 001 0.1 1 10 N 100

Estimated x<**> and true values x <™*> are compared next (Note: x <™ is
not known in real problems):
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Input signal x T T T

x> withA=0.010

PR B W— x> with A =0.316

— - x**\ithA=10.00 -

-------
-

P9.5 Regularization matrix. Consider the beam below. The support on the left
allowsvertical displacementbut it doesnot allow rotation, while the support
on theright allowsrotation but it prevents vertical displacement. Construct
the regularization matrix R that will be used to invert for the load distri-
bution on the beam knowing the vertical displacementsmeasured at points
#1 through #11.

joXe]
Q0

Solution: the deformed shape is assumed smooth (a priori information),
and the adopted regularization criterion is the minimization of the sec-
ond derivative. The corresponding regularization kernel is (1 -2 1). The
kernel is applied at end points #1 and #11 by assuming imaginary points
that are compatible with boundary conditions. The imaginary point on the
left is computed assuming zero rotation or symmetric boundary, x; = X..

The imaginary point on the right is computed assuming constant gradient
Xp — Xjy = Xy — X9, therefore x, =2x,; — x,9. Each row in the regular-
ization matrix corresponds to the kernel applied at different points along
the beam, starting at the left boundary point #1, and ending at the right
boundary point #11. The resulting regularization matrix R is shown below.

Why is the last row zero? When the kernel is centered at node #11,

X0 = 2X(1 + Xg = Xy — 2Xq; + (2% —X49) =0
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Indeed, a constant slope has zero second derivative! Therefore constant
gradient extrapolation combineswith the Laplacian kernel to return a zero-
row for the x;; entry. In this case, the last row should be computed with
the forward second derivative, without assuming imaginary points, to avoid
zerorowsin R.

-212 10 (0|0 |0 |00 {0 |00 | atpoint#
-1 |(-2|-1]0 [0 |0 |0 ([0 |0 |0 |0 |atpoint#
0O |-1{-2(-1{0 |0 |0 |O |0 |0 | O |atpoint#3
0({0 |—-1|-2|-1]0 ([0 [0 |0 [0 |0 |atpont#
0100 |-1|=2|=-1]0 |0 |0 0|0 |atpont#s
00100 (-1|-2|-1({0 |0 |0 |0 |atpont#o
0{0]|0 |0 |0 |-1|=2|-1{0 [0 [0 |atpoint#
0O{o0o ;000 |0 (|[-1|-2|-1]0]0 |atpont#8
OO0 }j0 |0 |O]O|[O |0 |-2|-110 | atpoint#9
0|00 |0 {00 ([O]O |-1|=2]|-1]|atpoint#i0
00 |0 |00 |00 |0 |00 |0 |atpont#li

ADDITIONAL PROBLEMS

P9.6 Conditions for the pseudoinverse. Verify whether the RLSS and SVD
solutionsfulfill the Moore—Penrose's conditions:
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Pseudoinverse: hand calculation. Giventhe matrix 4, compute: (@) therank
of h; (b) the singular values of h' -h; () the least square pseudoinverse;
(d) the corresponding data and model resolution matrices; (€) the singular
valuesof (h".h+0.1.1); and (f) conclude on the effects of damping in
the DLSS. Observations apply to the RLSS as well.

=
Il

for M = 4 measurementsand N = 3 unknowns

PR o

0
1
0
2

Minimum length solution. Extend the MLS solution (Problem 9.1) to
incorporate an initial guess x,. Make the corresponding substitutionsin
the objectivefunction and clearly state the meaning of the solution.

Error propagation. Demonstrate Equation 9.42 that predictsthe propaga
tion of uncertainty in the measurements onto the model parameters(Hint:
work equation by equation.) Explore the matrix h2™% for a problem of
your interest.

P9.10 Application: ARMA model. Consider the ARMA solution for an oscillator

P9.11

P9.12

developed in Section 7.8 (a) Forward simulation: Assume a sinusoidal
input (frequency f =5Hz) and compute the response for a single DoF
with spring constant k increasing linearly with timet: k(t) = 1[kN-m™!.
s~']-t[s]. (b) Use the LSS to invert for the time-varying system response
with a two-term AR and two-term MA model. (c) Repesat the solution for
afive-term AR and five-term MA model. (d) Conclude.

Wiener filters. Wiener filters can be used to compute deconvolutionin a
least squares sense when the matrix h is not square. Simulate a signal x
and a shorter array for the impulse response h. Compute the convolution
y =x *h. Then, compute the deconvolutionof h and y as a least squares
inversion (see Solved Problem 9.4). Add noiseto y and repeat. Extend the
methodology to system identification. Analyze advantages and disadvan-
tages with respect to the determination of the frequency responsein the
frequency domain outlined in Implementation Procedure 6.6.

Application: beam on elastic foundation. Consider the deflection of an
infinite beam on a bed of linear springs al with the same spring con-
stant. Design an experiment to gather data for the following two inverse
problems. (1) apply a known load and infer the beam stiffness and the
spring constant; and (2) measure the deformed shape of the beam and
infer the position and magnitude of the applied load. Simulate a data
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P9.13

SOLUTION BY MATRIX INVERSION

set using the forward model y =h-x. Add random and systematic noise
to the simulated data set. (Note: The relevant equations to construct the
transformationmatrix h can be found in mechanics books.)

Application of your interest: RLSS and SVD solution. Describe the mea-
sured datay="*> and the unknown parametersx. Then devel op an appro-
priatemethodology to i dentify the optimal number of singular values p and
the optimal valuefor regularizationcoefficient A. Takeinto consideration
datajustificationand the physical meaning of the solution. Providespecific
measures and decision criteria. Obtain a data set, test the methodology
and explore the effect of data noiseon the optimal valuesof p and A.
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Other Inversion
Methods

Elegant solutions for linear inverse problems are presented in Chapter 9. Their
salient characteristics are summarized next and compared against alternative
requirements for inverse problem solving.

Methodsin Chapter 9: Alternative requirements:

Operations are implemented in the space Study solutionsin the Fourier space

of the solution and the data Condder parametric representations
Solutionsare based on L, norm Implement the L, norm (noisy data), or
theL,, norm (uneven information
density)
Solutions presume Gaussian statistics Accommodate any statistics
Methods apply to linear problemsor Exploreagorithmsthat can be applied to
problems that ar e linearized both linear or nonlinear problems
They involve memory-intensive Can be implemented in effective
matrix-based data structures meatrix-freealgorithms. Minimize

storage requirements

Solutions exhibit convergencedifficulties Capable of finding the optimal solutionin

in linearized problems nonconvex error surfaces
They are able to incorporate additiona Retain flexibility to incorporateadditional
information information

Discrete Signals and Inverse Problems  J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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The methods explored in this chapter include transformed problem postulation,
matrix-free iterative solutions of the system of equations, fully flexible inver-
sion by successiveforward simulations, and heuristic methods from the field of
artificia intelligence. These agorithms bring advantages and associated costs;
trade-offsare identified in each case.

101 TRANSFORMED PROBLEM REPRESENTATION

Three methods are explored in this section: the parametric representation of a
presumed solution, the low-pass frequency representation of the solution space,
and the Fourier transform of the solution and data spaces.

10.1.1 Parametric Representation

Imagine trying to find a small ringing buzzer in a dark room 10m x 10m x 4m
(Figure 10.1). You walk along the walls and gather M = 100 measurements of
sound amplitude. Then, you attempt to invert the data to infer the location of the
buzzer. Inversionusing methodsin Chapter 9 starts by dividing the volumeaf the
roominto small voxels(0.1m x 0. m x 0.1m) and invert boundary measurements
y; dongthewallsto determinethe soundlevel x, generatedat each voxel. Clearly,

10m / \/

Figure 10.1 Finding a buzzer in a dark room



TRANSFORMED PROBLEMVI REPRESENTATION 287

theinverted x <> should justify the measurements y given areasonablephysical
model in h, such as the 3D geometric attenuation of sound. However, there are
only M =100 measurements and N = 400000 unknowns (room volume/voxel
volume). While a larger voxel size would reduce the number of unknowns, it
would also cause adecreasein resolution. On the other hand, regularizationwould
reduceill-conditioning, but it would smear the source. Certainly, the voxel-based
representation of the solution space is inappropriatein this case.

Instead, the problem can be cast as the identification of the spatial location
Pouzs Qpug» aNd 1y, OF @ single source. There are only three unknowns in this
representation. (Note: the buzzer intensity is al so unknown but the problemcan be
cast in terms of normalized amplitudes.) The solution would proceed as follows:
guess the buzzer position (Pyyz» Guuzs Tewe) <" » Predict the sound amplitudesalong
the wall y=<P=%>, compare with measured amplitudes y<™*> and modify the
estimateof the buzzer positionuntil measured and predicted amplitudesminimize
some error norm (any norm could be selected).

Trade-offs

A priori information about the system is readily used; for example, a single
point source is assumed above. Thisis a strong restriction on the solution but
it permits high resolution to be attained in the inverted results. The solution
cannot be computed as a one-time matrix inversion problem, but it requires
successiveforward simul ations(di sadvantageswith this approachare addressedin
Section 10.3). In some cases, the number of unknownscan be reduced even further
if the problem is expressedin termsof dimensionlessiT ratios (Buckingham’s |7
theorem, Section 84). Examples are presented in Chapter 11 in the context of
tomographic imaging.

10.1.2 Hexible Narrow-band Representation

The parametric representation suggested above is too restrictive when there is
limited information about the solution or if the physical phenomenon is not well
defined, asin the case of a diffused sound source or the evolution of a chemical
reaction in a body.

Flexible representationsof the solution space can be attained with a limited
number of unknowns within the spirit of Ockham’s criterion. Consider the tomo-
graphic problem or other ssimilar boundary value problemsdf the formy=h-x.
The unknown field of slownesscan be approximated with a Fourier series with
a limited number of terms*'c" (procedurein Sections8.4.2 and 9.5.3). Then, the
pixel valuesx [N x 1] are expressed as

x=8-X (10.1)

{lvn
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where the vector X [c X 1] contains the ¢ unknown coefficientsin the series, and
each entry in the matrix S [N x c] depends on the known coordinates p and q
of each pixel. The original inverse problemy=h-x becomesy=h-S-X. The
least squares solution of this problem is (Section 9.3) -

X<est> — (§T 'E-T ,2,5_)—1 .87 .gT Yy (102)

and from Equation 10.1,

§<est> — §'§<est> =§‘ (§T 'QT .2 'g)—l ‘§T .gT X (10'3)
This transformation has advantages when the number of unknowns is reduced
from the original problem, ¢ < N. The invertibility of the matrix ST -1:1T-h-§

[c x c] should not be an issue because the order of the Fourier series “c” is
selected to avoid ill-conditioning.

10.1.3 Solutionin the Frequency Domain

The flexible narrow-band representation introduced above is a preamble to the
solution of inverse problemsin the frequency domain discussed here. The pro-
cedure consists of transforming the inverse problem to the frequency domain,
assembling the solution in the frequency domain, and computing its inverse
Fourier transform to obtain the solution in the original space. Although this may
sound impractical a first, the advantages of implementing convolution in the
frequency domain suggest otherwise (Section 6.3). This formulation applies to
problemsin which boundary measurementsy are line integrals of the unknown
field parameter x(p, q) that variesin the p—q space

y= [ x(p.q)dr (10.4)

ACTross
space

Tomography is a clear example: the field parameter is either lownessor attenu-
ation, and boundary measurements are travel time or amplitude.

Let usassumeastraight ray propagation model and defineaparallel projection
as the line integral of the parameter x(p, q) aong pardlel rays, as shown in
Figure 10.2. To facilitate the visualization of the problem, assume a body with
some opacity in the p—q space x(p, q), a long fluorescent tube on one side a an
angle a, and a screen on the other side also at an angle a. The shadow on the
screenis the parallel projection of the body in the a-orientation.
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Figure 10.2 Paralld projection. The paralld projection ar " shadow” obtained from illu-
minating a medium with an inclusion x(p, q) istheline integral of the host medium and
the inclusion, from the source on one boundary to the screen on the other boundary

The Fourier Slice Theorem

The 1D Fourier transform of a pardld projection & an angle ais equal to a
concentric dice taken at an anglea of the 2D Fourier transformof the p-q space.

Figure 10.3 presentsa graphica confirmationof the Fourier dicetheorem. The
image involves a square medium discretized in 32 x 32 pixels and an inclusion.
The 2D transform o the image is shown at the top right-hand sde. The three
framesin the first row present the horizontal projection, the 1D Fourier transform
of this projection, and the dice taken from the 2D transform of theimagein a
direction paralle to the projection. The second row presents the same sequence
of frames for the vertica projection. The equality between the 1D transform of
the projections and the corresponding dices of the 2D transform of the image
confirms the theorem.

L et usnow proceed with an analytical demongtration. The 2D Fourier transform
of the mediumis (Equation 5.37 - Section 5.8)

Xpo= T [Exi,k-e"'(”'%k)] et i) (105)

i=0 { k=0
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Medium with inclusion 2D Fourier trandorm

Vertical

/
Horizontal

Horizontal projection 1D transform Sliceof 2D transform
1 I T
i 41— M = M
| 1
0 32 0 32 0 32
Vertical projection 1D tranform Sliceof 2D transform
i I T
= - —— MMJ =
1 i l
0 32 0 32 0 32

Figure 103 Graphical verification of the Fourier dlice theorem. Observe the identity
between the 1D Fourig trandorm of the projectionsand the corregponding dlices of the
2D Fourier trandorm of the medium with the inclusion

For simplicity and without loss of generality, consider the paralel projection
along the g-axis(Figure10.4). Accordingto the Fourier slice theorem, thisshould
correspond to the slice of the 2D Fourier transformof the object for v =20,

u [ MZ:I |:Z X k] 'j(“'zﬁﬂ'i) (106)

i=0 | k=0

However, the term in bracketsis the summationof x;, on k, whichisthe parallel
projectionof x along the g-axis. Therefore, this proves that the slice of the 2D
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Figure 10.4 Analytical demondration of the Fourier slice theorem. The DFT of the
paralld projection of the medium in the g-direction yieldsthe 2D transform of x for v =0

discrete Fourier transform of the object x is the 1D Fourier transform o the
corresponding paralle projection. B

Inversion

One gpproach to invert the boundary measurements follows directly from the
Fourier dicetheorem: (1) Compute the 1D discrete Fourier transformof measured
projections, (2) assemble the 2D discrete Fourier transform of the medium X
as prescribed in the Fourier dice theorem (k,—k, space), and (3) compute the
2D inverse discrete Fourier transform of X to determine x which is the sought
variation of the parameter x; , in the p—q space (Implementation Procedure10.1).



292

OTHER INVERSION METHODS

1

4.

1.

Implementation Procedure 101 Inversionin transformed space — Fourier
dlice theorem

Basic procedure

Determineparalldl projections at different anglesa: proj“*”. Thisisan array
of parallel measurements in which sources and receivers are aligned at an
angle a with respect to areferenceaxis. Each measurement isalineintegral
of the spatial parameter x(p, Q).

Compute the 1D-DFT of each projection: PROJ<*> = DFT(praj~*").

Assemble the projectionsPROJ™*> in the Fourier space, according to their
orientationsa, along aradia line from the origin (u =0, v = 0). Interpolate
the values from the radial line to the Cartesian grid (u, v). Thisis the 2D
Fourier transformof the image X.

Computex = IDFT(X). Thisisthe discreteversion x in the original domain.

Filtered back-projection

Determine projections, proj=*~. Compute the 1D-DFT of each projection,

M<a> — DFr(pm}<oT

Multiply each PROJ<*> by alinearly increasing high-pass filter. The value
of thefilter at frequency « is equivalent to the width of the wedge between
projectionsin the Fourier space. For example, if thereare''g" equally spaced
projections, the filter at wavenumber k has a value 2w -k/g. This is the
filtered transformed projection FPROJ <.

Compute the inverse 1-D Fourier transform of FPROJ**> to abtain the
filtered projection fproj=*> in the space of the image.

Smear the inverted filtered projections fpraj**> onto the p—q space, along
the ray paths, interpolatingamong cellsin the p—q grid.

Add the contributionof all filtered back-projections on each pixel in the p—q
space to obtain the sought solution x.
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The following observations permit the development of an even more effective
dgorithm:

e The matrix X in the frequency domain is assembled by gradualy adding 1D
transformed projections. Given the linearity property of the Fourier transform,
thefield x in theoriginal domain can beconstructed as asummationof inverted
trandform—ed projections.

e The assembled 1D transformed projectionsfan out in k,~x, space, and they
are independent in the k,—x, space except from shared static DC component
a (u=0,v=0).

Asthe wavenumber increases, the separati on between recordsincreases. There-
fore, there is an uneven coverage of the frequency domain (high coverage
close to the static component but decreasing away from it). This can be cor-
rected by multiplying the transformed projection by a function that increases
linearly with the wavenumber k. Thislinear high-passfilter cancelsthe shared
static component at the origin; hence, filtered transformed projectionsbecome
independent of each other.

Thefiltered back projection algorithmoutlinedin ImplementationProcedure10.1
improvesthe original procedure introduced earlier following these observations.

Trade-offs

Thefiltered back projection algorithmstartsformingtheinvertedsolutionx <= as
soon asthefirst projectionis obtained, and it only requires 1D Fourier transforms.
Therefore, inversions are computed very fast and with significant savings in
memory requirements. A disadvantagein this agorithmis the need to interpolate
diagona entries along the projection directions onto the 2D Cartesian space of
the solution.

10.2 [TERATIVE SOLUTION OF SYSTEM OF EQUATIONS

Matrix inversion can be avoided by solving the system of equations y<m> =
h-x<**> using iterative algorithms (also known as the Kaczmarz solution of
simultaneousequations). Iterative algorithms gradually correct the estimate of x
in order to reduce the discrepancy between the measured data y<™=*> and the
predictionsy <P#> made with the current estimate x<*> after the s-th iteration.
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10.2.1 Algebraic Reconstruction Technique (ART)

ART updates the vector of unknown parametersx by redistributing the residual
every timeanew measurement isanalyzed. Updating startswith thefirst measure-
ment i = 1, proceedsuntil the last M-th measurement i s taken into consideration,
and continues starting with first measurement again. The agorithmis stopped
when residuals reach a predefined convergence criterion. Each updating of the
solution x is considered one iteration.

Theresidual for thei-th measurementafter the s-thiteration (e,)<*> iscomputed
with the s-th estimate x<*>:

) =%, = (y,""™*)™"  for thei-th measurement

=y""" =2 h,.x >  afer thesthiteration  (10.7)
k

Thisresidual is distributed among values x<*> according to their participation in
the i-th measurement. The new st 1 estimate of the solution x is computed as

h,
XS g St e) . —E based on the i-th measurement
k Xk 1 Z(hl )2
o afer the sth iteration (10.8)

Note that when the i-th measurement is being considered, the k-th unknown
x, IS updated only if it is affected by the i-th measurement; in other words,
if hy # 0.

Implementation Procedure 10.2 presents the step-by-step algorithm for ART.
The solution of a simple system of equations using ART is presented at the end
of this chapter together with insightful error evolution charts.

Implementation Procedure10.2 Iterative solution of equations— ART

Algorithm

1. Start with an initial guess of the solution x<¢>.

2. For the fust iteration s=1, consider the first measurement i = 1. Update
the values of the solution x as prescribed below.

3. Repeat for other measurements. If the last measurement has been considered
i =M, start from thefirst measurement i = 1 again. Thecounter for iterations
S continues increasing.
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4. Monitor the residual e and the solution x. Stop iterations when the residual
reachesa predefined|evel or when the solutionfluctuatesabout fixed values.

Updating procedure

During the s-th iteration, the solution x is updated to justify the i-th measure-
ment as follows:
* Predict the value of the i-th measurement ;%>

: given the current estimate
of the solution x>

(yi<pred>)<5> = Zhi,k . (xk<est>)<s>
k

e Computetheerror e; between thei-th measurement y;***> and the predicted
value y<pred>

(€)™ =y, ™ — (=)™
e Distributethiserror so that the new estimateof x for thes+| iteration becomes
<s+1> <est>) <5> <s> hi,k
(%) = (x5"")" + (&)= - —=— (update all N unknowns)

L

Note: the k-th unknown remains the same if it is not involved in the i-th
measurement <0 that h;, =0.

10.2.2 Simulataneous lterative Reconstruction
Technique (SIRT)

SIRT also distributes the residual onto the solution x, but x is not updated
until al measurements have been considered. Then, each value x, is updated
"smultaneoudly" considering all corrections computed for all M measurements
or equations. Each simultaneous updating of the solution x is considered one
iteration.

In particular, the correction of the k-th unknown x, owing to thei-th equation
can be made proportional to thevalueof h; , relativeto thesum of all coefficients
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in the k-th column of h - h; ./ Z‘h, «- Within this weighting scheme, the equation
to update the solution in S| RT becomes

h, ik
X, <S> =x, <5 +Z(e )<s>. 3 e based on all M measurements
Z(h‘ ) Zhik after the sth iteration  (10.9)

Because matrix multiplication involvessummation, thisequation can be rewritten
in matrix form:

§<s+l> — §<S> +_‘I£ . QT i A _<s>
=§<S> +g.g<s> (10.10)
where
x> and x***1> solution vectors [N x 1]  after s and s+ 1 iterations

-1
Ve = [Zhi,k:l diagonal matrix [N x N]

0., = (h,)° matrix of size [M x N]

A= [Z (hi,k)21 diagonal matrix [ M x M]

<S>

& vector of residuals| M x 1] after the sth iteration

M is the number of equations and N is the number of unknown parameters.
Equation 10.10 is written in terms of three matrices ¥, ® and A to highlight
the correspondencewith Equation 10.9. However, the f)?od_uct II =¥.0"-Ais
a matrix that depends on the entries h;, and is computed once. While Equa-
tion 10.10 is based on matrix operations, it does not involve computing the
inverse of a matrix. The agorithm proceeds as follows. (1) compute the resid-
uals€  for a given estimate x=*, (2) update the estimate as x<*+> = x<* +
[1-e=*>, and (3) repeat. A solved example is presented at the end of this

chapter.
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10.2.3 Multiplicative Algebraic Reconstruction
Technique (MART)

Iterative dgorithms can adso be developed to reduce deviations from 1.0 when
the meesured value y=™*> is divided by the predicted value y; "%

<meas>

<meas>
= fﬁ: for the i-th measurement

Yi
<85>

(yf""d>) i R after the sth iteration  (10.11)

The MART agorithm updatesthe estimate of x to satisfy ys™> /y P> = 1.0;

<meas>
X, <17 = (y— x> updatex, only if b, #0 (10.12)
;hi,k ,xk<s> *

Note that the x, should not be updated if h;; = 0 when thei-th measurement is
being consdered. Furthermore, factorial updating requires that the initial guess
of the solution to be nonzero, x;=%> # 0 for dl i. A solved problem at the end
of this chapter showsthe first few iterations and the evolution of the solution and
the residual.

10.2.4 Convergencein lterative Methods

Iterations proceed until an acceptableresidual is obtained or a convergencecrite-
rionisfulfilled. The smultaneousupdatingimplementedin SIRT resultsin more
dable convergencethan ART and MART (see Solved Problems at the end of this
chapter). Dataincons stency preventsstandard iterative a gorithmsfrom converg-
ing to a unique solution: once the minimum residua is reached, the estimated
parametersfluctuate as iterations progress.

If data are noisy, the amount of updating can be decreased to facilitate con-
vergence. On the other hand, if the degree of inconsistenciesis small, the rate of
convergencecan be" accderated" by overcorrecting. Accelerationor deceleration
is controlled by a coefficient imposed on the second term in Equations 10.8 and
10.9 for the ART and SIRT dgorithms. The same effect is achievedin MART by
adding an exponent to the parenthesesin Equation 10.12. Accelerationdtrategies
must be cautioudly selected. In particular, thefina fluctuations when the solution
converges will be exacerbated if the acceleration coefficient increases with the
number of iterations™'s".

The rate of convergence in ART can be improved when the sequence of
equationsis arranged so that subsequentequationsi and i + 1 are most dissimilar.
This observation suggests the reordering of equationsto optimize convergence.
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10.2.5 Nonlinear Problems

The solution of nonlinear problems with iterative algorithms faces difficulties
related to nonconvex error surfacesand multipleminima. Weakly nonlinear prob-
lemscan belinearized using afirst-order Taylor approximationwithin asequential
linearization and inversion scheme: (1) compute the coefficientsh;;> assuming
a linear modd; (2) solve the system of equations y<™> =h<% .x using the
selected iterative algorithm, the vector of unknowns x is the first estimate of

x<%>; (3) determine the new coefficients hi> using the nonlinear model and

<°> ; and, (4) repeat from step 2 until the preeﬂabllshed convergence criterion
|sfulf|IIed

10.2.6 Incorporating Additional Information in Iferatfive
Solutions

Information available to the analyst can be included as additional equations to
the original system of equationsy =h-x:

Y1 hyy by, oo iy X,

. cee x
M = hM 1 hM 2 e hM,N ) .2 (1013)
¢ hyp h2 --- IN Xx

where the coefficientsr and ¢ capture the additional information or constraints,
such as solution smoothness. Equationscan be weighted. Finally, aninitial guess
X, Can be incorporated by inverting the system of equations Ay =h- Ax*** to
obtain Ax**"*, where Ay = y<™*> _h.x,. When an initial guess is used, the
final estimateis x<*> = x, + Ax<*".

10.3 SOLUTION BY SUCCESSIVE FORWARD
SIMULATIONS

Inverse problems can be solved by tria and error through successive forward
simulations. This completely general approach is summarized as follows:

e Generate an estimate of the solution x<¢*>,

* Useforward simulationto compute y<P*#> = f (x<*>).

e Determine theresidua between X<P“"d> and y<m*> using a sel ected error norm.



SOLUTION BY SUCCESSME FORWARD SIMULATIONS 299

o Generate another estimate and repeat.

e Continue until a physically meaningful estimate is found that adequately jus-
tifies the data.

The main disadvantagein inverse problem solving by successiveforward smula-
tionsis the massive demand for computer resources. Therefore, the applicability
of this approach is enhanced when considering the following improvements.
(The algorithmis outlined in Implementation Procedure 10.3.)

Implementation Procedure 103  Successiveforward simulations

Goal

Tofind aphysically meaningful solutionx givenaset of measurementsy <>
by successiveforward simulationswith a physical mode that relatesx to y.

Procedure

1. Make aninitial guessof x<%> = (x7%,.... x7%, ..., x7%).

2 Computethe predicted values of y<P*> using the forward simulator.

3. Compute the residual s between the predicted and the measured values of
with an error definition that weights measurements equally (Section 8.3).

4. Evaluate the norm of residuals. Select the L, norm to lower the sensi-
tivity to outliers, the L, if Gaussian conditions are expected, or the L,
norm when low-noise data are available and the information density is
uneven.

5. Generate a new solution and repeat from step 2. A new solution may be
obtained at random (MonteCarlo) or it can evolvefrom the previoussolution
guided by some a priori information about the solution or by the local
gradientsin the error norm surface.

6. Repeat steps 2-5 until the norm of the residuas between the mea
sured y<™*> and predicted y<P=> values is acceptable (data are justi-
fied or a minimum is reached) and a physically meaningful solution x is
obtained.
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Notes:

e The method is applicable when the number of unknown parametersis small.

® When a minimum is reached, explore the space of the solution in its vicinity
to verify that the global minimum was found.

. Reduce the number of unknowns. The technique can be efficiently combined
with transformed solution spaces that reduce the number of unknowns, such
as parametric characterization (Section 10.1). As the number of unknown
parameters decreases and the model definition increases, the general inverse
problem turns into parameter identification.

. Start from a suitable initial guess. Data preprocessinghelpsidentify aninitial
guessof the solution (detailsin Chapter 11). When the inverse problem is not
one of akind but repetitive, forward simulation permits assembling a library
of "solved cases”. Then, a suitableinitial guessis identified by matching the
measured data y<"**> against the smulated data in stored cases.

. Use fast forward simulators. The physical model f(x) that is used in the
forward simulation can be as complex as needed (for example, a nonlinear
finite element simulation with intricate constitutiveequations). However, it is
often possibleto replace complex simulators with effective models that prop-
erly capture the governing processes and parameters (for example, Green's
functions).

. Implement a meaningful evaluation scheme. The goodness of a given predic-
tion y<P*4> can be assessed in relation to y<™=> using any error definition
and norm (Section 8.3). Furthermore, estimated solutions x<**> can also be
evauatedin termsof physical significance(thisisequivalenttotheroleof reg-
ularizationin matrix methods - Section 9.4). Select a computational effective
and physical meaningful evaluation procedure.

. Adopt efficient search algorithms. Successive estimates of the solution do
not need to follow a grid-search pattern where the space of the solution
X is systematically searched. Instead, the solution can be explored with a
Monte Carlo approach by generating estimates of the solution x<** with a
random number generator. The Monte Carlo method is compl etely general and
it does not get trapped in local minima. Furthermore, it providesinformation
that can be used to determine statistical parameters.
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Grid-search and MonteCarlo methods are computer intensive. Instead, the opti-
mal solutionestimatex <**> can beidentifiedfollowing the steepest descent along
the error surface until the minimum error is reached. The solution proceeds by
changing one parameter x, at the time and keeping track of variationsin the error
surface with respect to changesin each parameter to update gradients. Converge
difficultiesarise near local minima and when error surfaces are nonconvex.

104 TECHNIQUES FROM THE HELD OF ARTIFICIAL
INTELLIGENCE

Several techniquesfrom the field of artificial intelligence can be applicable to
the solution of inverse problems. Selected examples are explored next.

10.4.1 Artificial Neural Networks (Repetitive Problems)

Artificial neural networks(ANNs) are intended to reproduce cognitive processes
by simulating the architectureof the brain. An ANN consists of layers of "neu-
rons” that are mathematically interconnected so that they can relate input to
output (Figure 10.5a). Whileeach neuron can perform only a simple mathematical
operation, their combined capability permits solution of complex problems.

A Neuron

Consider a neuron in an internal "*hidden layer” (Figure 10.5b). The tota input
is a weighted combination of the incoming values v; that were produced by
neurons in the previous layer, according to the weights w; of the corresponding
connections:

input=>_v,.w; (10.14)

Weightsw; establish the relativeimportanceindividual input values v, have. The
"activation function™ determines the " neuron response’; the sigmoid function is
commonly used:

response= sigmoid function (10.15)

1 + e—inpul
and the response varies between 0 and 1 for any positive or negative input.
Nonlinear activation functions provide the network with the flexibility that is
required to model nonlinear transformationsbetween the input and the outpuit.
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Figure 105 Artificd neurd network. (8) The network condsts o a structure o cork
nected layers o dementsor ""neurons”. The output and input are rdated through smple
operations paformed a eech dement. (b) The input d a single neuron is alinear com
bination d output vaues from the previous layer. The output d the neuron is computed
with the activation function

Network Design

The activation function and the architecture of the network are selected first.
The network is designed with a defined set of layers, neurons, and interconnec-
tions. The number of elements in the input vector x does not have to be the
same as the number of parametersin the output y. Typica networks involve
hundreds of neurons that are distributed among the-input and output layers and
two or more hidden layers. Such a network includes thousands of connections
(thisis a measure of the number of unknowns).

Training

A critical stepin the ANN methodology isthe™ assimilation' of the network tothe
nonlinear transformationthat is intrinsically embedded in available input—output
data. These data are the training set. During " network training”, the weights w;
aredetermined for al connections. Thetraining procedureisan inversionexercise
itself: compute the output for a given input, compare with the known output,
compute the residual for each parameter, and " back-propagate’ the difference
onto the network readjusting the weights; repeat for al case histories. Once
trained, the network is used to process new cases outside the training set.
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Trade-offs

ANNs are versatile. The power of an ANN is evidenced in the solution of
nonlinear problems when the underlying transformation is unknown or time-
variant, or when the event takes place in a noisy environment. However, the
methodology provides no physical or mathematical insight into the underlying
transformation.

Multiple similar cases are needed to train the network; therefore, this approach
is reserved to inverse problems involved in repetitive tasks, for example the
identification/characterization of objects on a conveyor belt in a productionline.

The network’s ability to capture the transformationand to match the training
set increases with the number of hidden layers and connections. However, large
networks are less reliable when addressing problems outside the scope of the
training set. In other words, an ANN does not escape the trade-off between
accuratefitting prior data and credible prediction of new data (Section 8.4).

104.2 Genetic Algorithms

Geneticalgorithmscombinea constrained Monte Carlo generator of new potential
estimates of the solution x<**> with a forward simulator to compute y<#¢>,
Although the method does not seem differentfrom thosediscussedin Section 10.3,
itis uniquein the way it generates potential solutions x<es>,

In this context, the vector of unknown parametersx is the gene. Then, given a
coupleof initial estimatesof the solution, the goal of the algorithmisto gradually
enhance the estimate x<**> by "reproduction™ and "' natural selection™. There are
five sequential and repetitive stages (Figure 10.6):

e The algorithm starts with two guessed solutions (genes x<'> and x<2>).

® The combination operator generates new solution alternatives (genotypes) by
randomly cutting existing solutions (parents x<*> and x<?>) and forming new
ones (offspring x<*> and x<**).

® As in natural genetics, mutations are needed to introduce genetic variety.
Mutation is implemented by randomly changing a site x, in a new solution,
with some probability "p". The new value for a mutated site x, is selected
within a physically possible predefined range.

e Evolutionmay get trapped in local minima because many mutations must occur
at specific sites in order to improve the solution. The probability of getting
out of thisstageis very small. To help overcomethis difficulty, a pennutation
operator is added. This operator exchanges sites on the gene; for example, the
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Figure 106 Genetic algorithm. A genetic algorithm darts with guessed solutions a
"genes' x. Thesegenes are manipulated by repeating combination, mutation, per mutation,
evaluation, and sdection, until an acceptable solution is obtained

value x; is placed in location r and the value x, is placed in location i. This
operation is done with its own probability.

e Genes (x<1>, x<?, x<*, x<*) are evaluated to identify the fittest ones. This
operation starts by computing the values y<P®> for each gene by forward
simulation (the transformation may be linear or nonlinear). Then, the fitness
of each geneis assessed by computing the residual e = y<Pred> — y<meas> (any
error definition and norm may be used). The evaluation criterion may also
consider the physical meaningfulnessof genes x<¥>. Forward simulation and
eva uation are the most computationally expensive steps in the agorithm.
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e Thefittest genes survive, and the process is repeated. Eventually, the solution
x<¥ of the inverse problem gradually evolves towards the optimal solution.

In summary, the genetic agorithm approach to inverse problem solving is a
semianchored Monte Carlo forward simulation where the search is conducted by
hopping in the solution space x guided by the Darwinian process.

Evolution or convergencetowardsthe optimal solution may stop when a very
low mutation rate is used. However, when the mutation rateis too high, offspring
are not selected and the convergence rate decreases because genetic information
becomeseasily corrupted; anchoringis lost, and the approach becomes the stan-
dard Monte Carlo. The probability of mutation for a given site in a gene near
the optimum solution is about p = 1/N (where N is the number of elementsin
a gene). At intermediate solutions away from optimum, other rates of mutation
may be preferred. In general, the probability of permutationis smaller than the
probability of mutation. Mutation and permutation probabilities are selected in
an attempt to minimizethe number of solutionsx<**> that are forward simulated
and evaluated, while preventing entrapment in local minima.

Trade-offs

The solution progresses relatively fast in early iterations, even when many
unknowns are involved. However, the algorithm does not guarantee reaching
the optimal solution. Still, a " near optimal** solution may be sufficient for many
inverse problems, for example when thereis high uncertainty in the input param-
etersand in the transformation.

10.4.3 Heuristic Methods - Fuzzy Logic

Recall the problem of finding a buzzer in a dark room (Section 10.1). Our brain
does not perform aformal inversionin termsof voxelsor even with a parametric
representation. Instead, we identify the possible position of the buzzer following
simple heuristicsand fuzzy logic.

Let us explore our natural ability to solve inverse problems further. Consider
the study of projectilepenetrationin an opagque body using X-ray plates, as shown
in Figure 10.7. Where is the projectile? The shadow detected on each plate is
back-projected towards the source to constrain the volume where the projectile
may be, and more importantly, where the projectile cannot be. Therefore, the
location of the projectile becomes better defined as additional shadows are taken
into consideration.

This heuristic approach can be computerizedassuming that each projection pis
afuzzy set. Membership values are back-projected onto the space of the problem.
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Source
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can only be in
this region
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| The anomaly cannot be here |
Source = Source#
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The anomaly cannot hehere ‘ |

Shadow

Figure 10.7 Fuzzy logic. Two flashlightsilluminate the medium in different directions.
(a) The presence of an anomaly causes shadows. (b) These shadowsare back-projectedto
congrain theregion in the space wherethe anomaly cannot be

The membership value of the i-th pixel w; to the set "background medium™ is
obtained as the minimum membership value of the back-propagated projections.
Conversely, the membership value of the i-th pixel to the set "projectile” is
obtai nedas the maximum of back-projectedmembership values. Finally, voxelsin
the body can be colored according to their membership values. If therearelimited
illuminationangles, the location of the projectile would not be fully constrained
and it would appear elongated in the direction of prevailing illumination. The
algorithm can be expressed in the context of matrix data structures, as described
in Implementation Procedure 10.4.

Implementation Procedure 104 Fuzzy logic for anomaly detection in
tomographic imaging

Goal

To constrain the regions of the image where the anomaly cannot be.
Procedure
1. Dividethe medium into a discrete set of N pixels.

2. Computethe length traveled by each of the M raysin each of the N pixels.
Store these valuesin a matrix 4 [M x N], asshownin Section 8.1.3.
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3. Convert travel times to ray-average slowness (ras) for eachi-th ray:

t
2 by

k

ras, = (the denominator is the length of the i-th ray)

4. Computethe matrix P (M x N) of "touched pixels": divideeach entry h; , by
the pixels sizew, and round to either 0 or 1 If h; , is much smaller than w,
theray touchesthe pixel but thetravel timeis not significantly affected by it.

|
- | Shadedpixelsare
i-th ray #~_| | p

. I~ "significantly” touched

v& by the i-th ray
wy | |||

5. Back-project the ray-average downess: replace the nonzero entries in the
i-th row of P by the corresponding average slownessras; computed for the
i-th ray. This is the matrix Q.

6. High slowness regions: extract the minimum value of each columnof Q

sk<min-ave> — min[g<k column>]

7. Low slownessregions: extract the maximum value of each column of Q

<max-aves
Sk

= max[gd{ oolumn>]

8. Plot atomogram by coloring pixelswith the computed vectors of maximum
or minimum average slowness.

Trade-offs

Heuristic methods often permit the identification of salient characteristicsof the
solution with minimum effort; however, they fail to provide the full solution
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(such as the true voxel valuesin the example above). The result can be used to
generate an initial guess x<% for other algorithms(Section 9.5.2).

105 SUMMARY

e Various strategies can be applied to solve inverse problems, including those
outlinedin this and the previous chapters and suggested as exercisesat the end
of this chapter.

e The selected method reflects the analyst's perception of a viable approach. It
must be compatiblewith the problem at hand, data availability, and computer
resources.

e The Monte Carlo generation of possiblesolutionsx, combined with successive
forward simulations, is the most flexibleinversionapproach. Itis also the most
computer intensive. It can be applied to solve any type of inverse problem
and it can involve complex physical models. Furthermore, this approach may
accommodate any error definition, error norm, and additional evaluation crite-
ria. Therefore, one can test the ability of the solution x<¢**> to justify the data
y<mea> as well as the physical meaningfulnessof the solution.

e Monte Carlo searches can be guided to limit the number of possible solutions
that are run through the simulator and evaluation functions. Guiding criteria
should prevent entrapment in local minima.

e The parametric representation of the problem in terms of a small number of
unknowns leads to robust inversions.

e Efficient algorithms can be developed when the problem is carefully ana-
lyzed. Examplesrangefrom Green's functionsfor forward simulators, heuristic
approaches, and solutionsin transformed domains.

e Increased efficiency is often accompanied by lessened flexibility and more
restrictive assumptions.

e The trade-off between variance and resolution is inherent to all methods.
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SOLVED PROBLEMIS

P10l Iterative solution of system of equations. Use ART, SIRT, and MART to
- X, where

solve the system of equations y<™> = h
5 10
10 12
(meas) __ —
y = h=1,3
13 14

N W WN

ART solution (Equation 10.8): Thefirst few iterationsare

Error distributiony 3o(y; meas> _ y; <pred>y
s | x1<s+lA>= X2<5+l>= X3<5+|>= y; <meas> }g:ub: . . 7 error distributiony
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4 T ] kD T L] 1 1
x=3
A 1
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=
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0 1 1 1 1 1 Il 1
0 20 40 60 80 100 120 140 s
Iteration numbers| ]
’_'50 T T T T T T T
— .
g

20

120




310 OTHER INVERSION METHODS

SIRT solution (Equation 10.10): x=***> = x<s>+ . @T. A .e<>> where

- 020 0 0 10 4
0333 0 0
0 00710 0 14 9
y=| 0 o111 0 | A= 0=
0 0 0.100 0 0 0.056 0 09 9
’ 0 0 0 0.048 1164
x]<s+l> — x;s+1> = xs<s+l> = emeass <ored> Error distribution
s x; +4x; Xy + A%y x3 +Ax3 i Yi = hik %k (y;<mess> _y, <pred>\T (7. @. )
Ax; Axsy Axy
1 1.00 1.00 1.00 5,10, 9, 13 | 3.00, 6.00, 6.00, 7.00 0.324 0.802 0.681
2 1.32 1.80 1.68 5,10, 9,13 | 469, 9.97, 10.45, 11.89 0.039 0014 ~0.024
3 1.40 1.82 1.66 5,10,9,13 | 4.68,9.97, 1042, 11.94 0.039 0.012 -0.023
4 1.44 1.82 1.63 5,10,9, 13 | 4.67,9.96, 11.39, 11.98 0.039 0.010 —0.021
5 1.48 1.84 1.61 5,10,9, 13 | 4.67, 9.96, 10.35, 12.02 0.039 0.009 -0.020
6 1.52 1.85 1.59 5, 10,9, 13 | 4.67, 9.96, 10.32, 12.06 0.038 0.008 -0.019
4 T T T 1 T T 1
s x;=3
§ 2= Xp=2
) M
Xa=
0 1 1 1 1 i 1 1
0 20 40 60 80 100 120 140
s
LI | i | ! 1 I
— 50 =
g
=
o™
-1
0 Lﬁ—-—l-‘ I 1 L i 1 [l
0 20 40 60 80 100 120 140
MART Solution (Equation 10.12). Updateif h; , # 0. First few iterations,
s i <> | X375 - | H y; <Pred> = correct; = New valuesxy <s+1> =
X) 2 X3 ¥y <me&> <>
%hi,k “ X -1—“ pred> (x <57} - correct;
x'<er]> X2<ﬂ—‘l> x;s+l>
1 T1e00 [TM|Im 5 3 1.667 1.667 1.000 1.667
2 2 1667 1.000 1.667 10 8.667 1.154 1923 1154 1.923
3 3 1923 1.154 1.923 9 9.231 0975 1923 1125 1.875
4 4 1.923 1125 1875 13 10.173 1.278 2457 1.438 23%
5 1 2457 1438 23% 5 7.250 0.690 1695 1.438 1653
6 2 1.965 1438 1653 10 9.528 1.050 1.779 1.509 1.734
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4 1 1 T I T T T
X1= 3
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Note typical early oscillationsin ART and MART algorithms.

P10.2 Successive forward simulations. Solve problem P10.l using successive

forward simulationsand the L,-norm.

Solution: Let usfix x, and x; and vary x,. We find the value of x; that
minimizes the L, norm, and then x, while keeping x, and x; fixed, and
so on. Let us start at the initial guess: X, =x, =x; =2 The following
sequence of slices summarizesthe search:

x,=0.67;x3=2 x;=0.67;x,=1.69

ix,=1.69

X1 =1.66; X3= 1.91

vx2=2.36
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X,=2.36;x3=1.09 x1=3.55;,x3,=1.09 x,=3.55;x,=1.89

i Xx,=1.89 1 X3=0.99

5

X3

x1=3.28;x,=1.95

Note: Thefinal resultisx; = 3,x, = 2,x; = 1.

ADDITIONAL PROBLEMS

P10.3 Iterative solution. Invert the following system of equationsusing iterative
algorithms. (a) Comparetheevolution of the solutionwith ART and SIRT.
(b) How many iterations are needed to reach 5% error? (¢) Compare the
resultswith the least squares solution (L SS). (d) Attempt the solution with

MART. Discuss!
9.8 10
121 _[1 1] fa
142 |71 2 b
15.7 13

P10.4 Transform methods. reducing the number of unknowns. Study the ill-
conditioning of ST-h™-h-S for different numbers of terms ¢ (Equa-
tion 10.3). Modify the equation to improve frequency control. Discuss.
Relateto RLSS.

P10.5 Other methods. Investigate other methods that can be used for the solu-
tion of inverse problems. Include: (a) linear programming and SIMPLEX
algorithm, and (b) graph-search strategies. Outline the solution strategy in
each case.

P10.6 Application: parametric representation. Consider a problem in your area
of interest. Following Ockham's recommendation, cast the problem in
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P10.8
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parametric form using the smallest number of unknowns while still cap-
turing the most important characteristics of the problem. Simulate data
with noise for a given set of parametersx<™¢>, Explore the invertibility
of the unknowns around x <> for different levelsof noise. Plot slices of
error surfacescomputedwiththe L, L, and L., norms. Recast the problem
in terms of dimensionlessit ratios and compare against the dimensional
approach. Draw conclusions.

Application: solutions by forward simulations.Consider a ssimple inverse
problemin your area of interest. Program the forward simulator and time
it. Detail the algorithm to solve the inverse problem using Monte Carlo,
genetic algorithms, and ANNS.

Application: transformation methods. Consider a problem in your area of
interest. Can the inverse problem be inverted through a transformation?
(Review the Fourier slice theorem in this chapter.)
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11

Strategy for Inverse
Problem Solving

Inverse problemsarefrequently encountered in engineering practiceand scientific
tasks. The solution of an inverse problem requires adequate understanding of the
physics of the problem, proper experimental design, and a good grasp of the
mathematics of inverse problem solving to recognize its inherent effects.

This chapter bringstogether knowledge gained in previous chaptersto develop
a comprehensive approach to inverse problem solving (review Implementation
Procedure 9.3). The caseof tomographicimagingis used to demonstrate concepts
and methods. The experience gained from thisexampleis readily transferable to
other inverse prablemsin engineeringand science.

1.1 SIEP |: ANALYZE THE PROBLEM

Successful inverse problem solving starts long before data inversion. In fact,
the first and most important step is to develop a detailed understanding of the
underlying physical processes and constraints, the measurement procedures, and
inherentinversion-rel ated difficulties. Then onemust establish clear and realizable
expectations and goals.

Let us analyze the inverse problem of tomographic imaging (recal
Section 8.1.4). Thefollowing restrictions and difficulties must be considered.

11.1.1 Identify Physical Processes and Constraints

Tomograms can be generated with different physical processes and forms of
energy. Commercially available devices include X-ray CAT scan, radar and

DiscreteSignals and Inverse Problems J. C. Santamarina and D. Fratta
© 2005 John Wiley & Sons, Ltd
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seismic tomography, ultrasonic imaging, positron emission tomography (PET),
magnetic resonant imaging (MRI), and electrical resistivity tomography (ERT).
The decision to use one form of energy determinesthe type of information that
can be obtained from the tomographic image. For example, a tomogram gen-
erated with mechanical wave measurements captures the spatia distribution of
elastic and inertia properties in the medium; on the other hand, a tomogram
developed with electromagnetic wave propagation measurements reflects the
spatial variability in electrical resistivity, dielectric permittivity, and magnetic
permeability.

Wave propagation involves various intricate, albeit information-rich, pheno-
mena that can be easily overlooked or misinterpreted. The most relevant com-
plications related to the nature of wave propagation follow (see sketches in
Figure 11.1):

Receivers

(d)

(c)
Lu ‘
” I ~Ty
sarcod 3T (1ot
)

Figure 111 Tomographicimaging: (&) problem representation; (b—d) wave phenomena
ray bending, diffraction and Fresnel’s dlipse

Fresnel's ellipse
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e Attenuation. Geometric spreading and materia attenuation cause amplitude
decay. Typically, high-frequency components are attenuated at higher rates.
Low-pass materia filtering incrementally roundsthe wavetrain and biases the
interpretation of signalswith increasing travel distance.

e Attenuation and noise. Noise restrictsthe size of the body that can be imaged
or demands higher input energy. Signal stacking and postprocessing may be
required to improvethe signal-to-noise ratio.

o Trade-off: skin depth vs. resolution. Long wavel engths are needed to penetrate
large objects; however, long wavelengths provide lower spatial resolution.

e Ray curvature. Linear inversion presumes straight ray propagation. Spatia
variability (the purposeof tomographicimaging) causesreflections, refractions,
and ray bending (Figure 11.1b).

® Anisotropy. Materialssuch as wood, laminates, fiber-reinforcedpolymers, and
rock masses can exhibit significant degree of anisotropy, which causes energy
splitting or birefringence.

® Diffraction. Diffraction hides the presence of low-velocity anomalies
(Figure 11.1c).

e Fresnel’s €llipse. Wave propagation samplesa region of the medium, not just
theray path. Thisregionis related to the wavelength and the distance between
the source and the receiver (Figure 11.1d). A "thick ray" may be preferred as
a propagation model.

11.1.2 Address Measurement and Transducer-related
Difficulties

Deficienciesduring data gathering result in noisy data. Common testing difficul -
ties in wave-based tomographicimaging include:

e Source energy and frequency content. In genera, the frequency of emitted
signals decreases with increasing source size and delivered energy.

e Transducer directivity (sourcesand receivers). A receiver positioned outside
the radiation field of the source (and vice versa) will not detect the wanted
signdl.

® Near field. Sourcesand receiversin close proximity may operatein their near
fields. Physical modelsfor datainterpretationare typicaly derived for far-field
conditionsand fail to explain data gathered in the near field.
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e Measurement precision &, and transducer separation. Neighboring transduc-
ers need not be closer than /2-L .V, &, where L is the distance across
instrumented sides, V,,.4 IS the wave propagation velocity in the medium, and
g, is the precision in travel time measurements.

e Fresnel'sellipse and transducer separation. Thereis no significant advantage
in placing neighboring sources and transducers closer to each other than the
width of the Fresnel's region: \ﬁ LoV & T (Vo /9%

e Detectability. Thetravel timein themedium, acrossadistancel ist, =L/V 4-
The changein travel time &t due to the presence of an inclusion size d,,. and

velocity V.. is
8‘1 _ d'inc Vmed 1
t, L \Vp

0

The value 8t must exceed the precisionin travel time measurements g, (aver-
aging and error cancellation may improve this requirement).

e Noise. In most cases, background noise can be reduced with proper electrical,
mechanical, and thermal isolation. Transducers and periphera devices may
add noise.

e Systematic triggering error. It cannot be corrected by stacking, but through
calibration (it may be detected during data preprocessing).

e Precision in travel time determination &, Travel time determination is
enhanced in high-frequency signals. Automatic detectionisfast, repetitive, and
precise, but not necessarily accurate.

1113 Keep in Mind Inversion-related Issues

e Number of unknowns. The number of unknown pixel values is N=L-H/
(Ax. Az), where Ax and Az definethe pixel size(refer to Figurell.1a). Evena
low-resol utiontomographic image made of 30 X 40 pixelsinvolvesN = 1200
unknown pixel values.

e Number of measurements. Assuming that transducers are mounted on each
boundary pixel dong vertical sides and a measurement is conducted between
each source and receiver, the number of measurementsis M = (H/Az)?. Such
a transducer configuration in the 30 x 40 image discussed above results in
M = 40 x 40 = 1600 measurements or equations.

o Availableinformation. Alarge number of rays (equations) does not necessarily
imply an overdetermined condition when M > N. Many measurements may
eventualy provide the same information, effectively reducing the number of
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Fgure 11.2 Experimental design: analysis of the transformation matrix. Generalized
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(sv's) correspond to condition number k > 10*. The quantity tr(D) is the trace of the data

resolution matrix. 2k regions correspond to low values (either low information density
or low eror propagation)
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independent observations. The availability of information can be studied with
singular value decomposition (SVD), as discussed in Section 9.2. Figure 11.2
shows two configurations of sources and receivers, each ray represents a
measurement. The singular valuesfor the matrix of travel lengthsh are shown
for each configuration. -

e Large and sparse matrices. The matrix h [M x N] in tomographic imaging
problemsis large and sparse (Equation8.14). In the previousexampleof alow-
resolution 30 x 40-pixel tomogram, the matrix h is [1600 x 1200]. However,
each ray touches between one and two times the number of pixels across the
image; therefore, only 30—60 out of the 1200 elementsin each row are nonzero.
Therefore, the transformation matrix h is decisively sparse.

e Uneven spatial coverage. Measurementsdo not sample the properties of the
medium evenly, as shown in Figure 11.2.

e |nversion parameters. Inversion parameters(such as type and degree of regu-
larization) should not determinethe results of the inversion.

o Nonlinearity. When significant ray bending takes place, the tomographic prob-
lem becomes nonlinear: the estimate x<**> is computed knowing h, whose
entriesh, , are determined with the ray paths that are controlled by the spatial
distribution of pixel values x. The straight ray assumption appliesto medica
X-ray applications, but it is deficient in geotomography.

172 STEP 2: PAY CLOSE ATTENTION TO EXPERIMENTAL
DESIGN

The viability of a solution and the attainable resolution are determined at this
stage. Experimental design should address two critical aspects. distribution of
measurementsto attain agood coverageof the solution space, and instrumentation
selection to gather high-quality data (ImplementationProcedure9.2). In addition,
keep in mind that inverse problems can be data-intensive and costly; therefore,
the sel ected test configurationshould avoid unnecessary measurement duplication
while preventing aliasing.

1121 Design the Distribution Measurements to Afain
Good Spatial Coverage

Available information, the even or uneven coverage of the solution space, the
degreeof ill-conditioning,and the potential for error propagation can be explored
as soon as the matrix h is formed, and before any data are gathered.
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Let us apply guidelines in Implementation Procedure 9.2 to the tomo-
graphic inverse problem. Figure 11.2 shows results for two source and receiver
configurations, including: (a) tabulated number of measurements, number of
unknowns, and the trace of the data resolution matrix D ="h-h"%; (b) a plot of
sorted singular values; (c) the vector of column-sums 17 -h presented as a 2D
imageto gain a preliminary assessment of spatial coverage of the solution space;
and (d) the vectorsh™® - 1 and h278 - 1 that contain the row-sumsin matricesh™®
and h2# (also presented as 2D images to identify pixelswith highest potential for
error magnification). Similar plots are generated for various test configurations
until arealizabletest design is identified to obtain adequate data.

[1luminationanisotropy, particularly in the cross-wall configuration, will €lon-
gate the shape of inverted anomaliesin the direction of prevailing illumination.

11.2.2 Design the Experiment to Obtain High-quality Data

Low-noise high-quality data are needed to reduce the effects of error magnifica-
tion during inversion (Sections9.6 and 9.8). The general tenet of experimentation
"improvethe test at the lowest possiblelevel™ gains even higher significancein
inverse problems. Sel ect appropriatetransducersand periphera electronics, shield
them from external noise, and implement proper signal recording and processing
methods. Correct measurements for the frequency response of the measurement
system (review Implementation Procedures 4.1, 5.2 and 6.6).

11.3 SIEP 3: GATHER HIGH-QUALITY DATA

Look at theraw datawhilethey are being generated. | dentify asuitabledisplay that
permitsdiagnosing test problemsand even hel psidentify salient characteristicsof
the system. The simultaneousdisplay of signalsgatheredat neighboring locations
or time stepsis particularly convenient to spot sudden changesin the system, to
diagnose and remediate testing difficulties, and to identify possible outliers that
can be retested.

114 SIEP 4: PREPROCESS THE DATA

Data preprocessingrefersto simple computationsand graphical display strategies
that areimplemented to gain insight about the measurements(noise level, outliers,
spatial coverage) and a priori characteristics of the solution (mean properties,
spatial trends, presence of anomalies). These resultsfacilitate the selection of the
physical model, providevaluable informationto guideand stabilizethe inversion,
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and can be used to generate a viable initial guess of the solution x <°>. Several
preprocessing strategiesaimed at tomographic inversion are presented next.

11.4.1 Evaluate the Measured Data y~meas

Data errors are magnified during inverse problem solving, affect the rate of con-
vergence, and increasethe presenceof ghostsin thefinal images. Error magnifica-
tion can becontrolledwith regul arization,but itisoften at theexpenseof resolution.

Systematic BEror

A constant shift in travel time is most likely caused by the acquisition system,
for example, trigger delay. This systematic error in the data can be identified by
plotting travel timevs. travel length. If the medium is homogeneous and isotropic,
measurements should plot on astraight line with zero timeintercept; theinversedf
theslopeisthe wave propagation vel ocity in the medium. A nonzero timeintercept
is the systematic error, and it can be removed from the data set beforeinversion.

Accidental Erors

Random errorsin travel times are often associated with the determinationof first
arrivals. Accidental errors can be detected on average vel ocity plots. The average
velocity for aray is computed as the Pythagorean distance between the source
and the receiver divided by the measured travel time.

Cutliers

Gross measurement errors can be identified in average velocity plots and corre-
spond to points that deviate few standard deviations away from the mean value.
Obvious outliers should be removed from the data set. An equation is lost in
y =h-x, but the solution becomes more robust.

Case History: Kosciusko Bridge Pier

Tomographic data were obtained for a massive concrete pier underneath the
Kosciuskobridgein New Y ork City, under very noisy operating conditions. The
cross-section of the pier and the location of sources and receivers are shown in
Figure 11.3a. Travel time and mean ray velocity are plotted versusray length in
Figures 11.3b and c. A systematictriggering error, accidental errors, and outliers
are evident.
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11.4.2 Infer Outstanding Characteristics
of the Solution x<">

A glimpseat thecharacteristicsof thesolution x <, includinggenera background
characteristicsand the presenceof anomalies,can begainedby plotting projections
of ray-averagevelocitiesversus position or direction. The compilationof all pro-
jectionsforms a 3D array called a sinogram; in parallel projections, the 3D array
consistsof the measured value vs. the projection direction and the sensor position.
Anomaliesthat do not detectably affect proj ecti onsor sinograms cannot beinverted.

Case History: Korean Tunnel

A cross-hole geotomographic study was conducted to detect a tunnel in Korea.
Travel times were measured between two paralel boreholes. Measurements were
repeated every 0.2m for each of seven ensonificationangles: +45°, +30°, +15°,
0°, —15°, -30°, and —45°, for a total of M = 1050 measurements (see sketch
in Figure 11.4a). The ray-averagevelocity projection in Figure 11.4b showsthe
increasein background vel ocity with depth. On the other hand the variationof the
ray-average velocity with ray angle in Figure 11.4c indicates global anisotropy
in the host medium. All 1050 measurements are shown - the scatter reflects the
variation of ray-averagevelocity with depth identified in Figure 11.4b.

Case History: Balloonin Air - Transillumination

A balloon filled with helium was fixed at the center of an instrumented frame
in ar and cross-holetravel time data were obtained using 16 sources mounted
on one side of the frame, and 16 microphones mounted on the opposite side,
for atotal of M = 256 measurements (Figure 11.5a - the velocity of sound in
air is 343m/s; the velocity in hdlium is greater than air; the gas mixture and
pressure inside the balloon are unknown). The complete sinogram and selected
ray-average velocity projectionsor "shadows" are shown in Figures11.5b and c.
They clearly denote the high-velocity inclusion. Apparently accidental errorsin
the projections are actually coherent time shifts when all projections are seen
together in the sinogram.

11.4.3 Hypothesize Physical Models that Can Explain
the Data

Data preprocessing should also be implemented to gain information that can be
used to select the physical modd that relates the unknowns x to the measured
data ¥<meas>.



STEP 4: PREPROCESS THE DATA 325

0
/U/ Tl ! ]
» —
I &
S 20
. a
J ] |
8 1 E
2 13 . .
2 y = 0 ] ]
o y & 4000 4500 5000
.3. ! g Velocity [m/s]
r (b)
"
; 5000 T T T T
02m() 4 q | I
2 4500 l l I N
¥ g B
-~ 152m —> £ I
>
(a) (c) 1 1 1 I 1

~60 -40 -20 0 20 40 60
Angle[degl

Figure 114 Tunnel in Korea (a) source and receiver locdions. Data were generated
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pe source); (b) gradud increese in velocity with depth (ray-average velocity projection
a +15°); (c) the effect o anisotropy: ray-average velodity versus ray indination (Data
ocourtesy of Dr R Rechtien and Dr R. Ballard)

Case History: Concrete Monolith with Open Crack

Ultrasound transillumination data were gathered for a concrete monolith with
an open crack cut across the block (Figure 11.6a). Travel time and ray-average
velocity are plotted vs. ray length in Figures 11.6b and c. There are two distinct
trends. Pointson the linear trend in Figure 11.6b plot with constant ray-average
velocity ~4700m/s in Figure 11.6¢c; these points correspond to measurements
where the source and the receiver are both either above or below the open crack.
How isenergy propagatingwhen the sourceand thereceiver are on oppositesides
of the crack? Virtualy no energy goes across the open crack, and the detected
signals correspond to wave propagation pathsthat go around the crack. The extra
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Figure 116 Concrete block data: (8) location of sources and receivers, (b) the travel
time versus ray length plot suggests two definite propagation modes (c) the average
velocity versusray length plot confirms that one mode of propegation takes place through
amedium o congant velocity. The other trend gpproaches the constant velocity data as
the ray length increases (Data courtesy of Ontario Hydro)

lengthin the out-of -plane path affects short rays more than long rays, according to
the Pythagorean relation, and causes the trends observed in Figures 11.6b and c.

115 SIEP 5: SHECT AN ADEQUATE PHYSICAL MODEL

The physical model selected to relate the measurementsy<™> and the unknown
parametersx must capture the essential features of the problem. An inappropriate
model adds model error and hinders the inversion of a meaningful solution. In
addition, the time required to compute the model is most important if a massive
forward simulation strategy will be implemented for data inversion.
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The simplest wave propagation model for travel time tomography is a straight-
ray and it can be selected when ray theory applies and the spatid variation in
velocity is small. The entries in the matrix h are computed as the Pythagorean
length between the intersections of the ray with the pixel boundaries. A sim-
ple exampleis shown in Figure 11.7. If the number of pixelsis very large, the
computation of accuratetravel lengthslosesrelevance, and the Pythagorean com-
putation can be reduced to "touched = 1” and "not touched = 0” (the row-sum
of h is then matched to the ray length).

Ray bending in heterogeneous media requires the development of efficient
ray-tracing algorithms. Ray-tracingis a two-point boundary value problem: the

H——z—*i
r Ray 1
H o 4 2
o lllc ¥
Ray 7 .
@ @ Ray3®
Lo @ o)

p=| - . e e e e .. |{Rowsrepresent rays

Col ums represent pixel's

Figure 11.7 Ray trading. Computing the entriesof the matrix h assuming sraight rays
Therows shown in matrix h correspond to the actual travel lengths of rays 1, 3,7 and 9
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end points of the ray are the known source and receiver positions, and the god
is to determine the ray path that satisfies Fermat’s principle d minimum travel
time. Close-form solutions for the ray path can be derived for smple velocity
fields; an exampleis summarized in Table 11.1.

Table 111 Ray pathsin a heterogeneousand anisotropic velocity field

Veodtyfield. It is defined as
Vertical wave velocity V,: linear withdepth g v (q) =ath'q

Constant anisotropy between V, and V,,: c= v {q}
Elliptical variation of velocity with ray angleq’:  V{(q,q) =V, {(q)- ﬁq—,,
The a, b, and ¢ parametersdefine the wave velocity field V(q, q).

Ray path: The source and the receiver are at horizontal positionsp<*> and p=<5>,
and their vertical positions are such that the vertica velocitiesare Vi*> and
V5> respectively. The depth q of theray a position p<®><p<p=<5> is

<§> V<R>2 V<S>2
q =\/(V ) +@-p=5)- [%!?ers;—) +ct- (p*> —'P)] -
thisis the ray path.
Travel time. A differential of theray length “de” isd¢=dp-/1+ (q)%, where.the
dopeq’ of theray a position p is obtained by differentiating the ray path,
VfR>2—V‘fS>2
q= [Ez oy T (P +p<S —2'P)] b v
Finaly, the travel timeis obtained by numericd integrationaong the ray path:
R / 2 4q?

= et~ [l

V(g.q') (a+bq)
Examples:
Source b Receivers  Source Receiver
1F
4-a=100 m/s
b=00s"!
Depth . c=|1'0 L1 Depth
aml "9 3 4 6 8 10 q[m]

Digancep [m] Digancep [m]

Note: Derived using calculusof veriation — collaboration with M. Cesare.
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Diffractiontakes place when the wavel ength approachesthe size of the anoma
lies. In this case, full-wave solutions are preferred. Diffraction around low-
velocity anomalies"heds" the wavefront and hinderstheir tomographic detection
(Figure 11.1c).

Whendiffractionor ray bending take place, the selection of astraight ray model
for tomographicinversionresultsin poor quality images due to the amplification
of modd error.

11.6 SIEP 6: EXPLORE DIFFERENT INVERSION METHODS

Invert the data using different inversion methods. Guided by Ockham’s criterion,
atempt to reducethe number of unknowns. Consider the parametric representation
of the problem and invert the data by forward simulations. Then, explore less
constrained representations, for example within the framework of matrix-based
inversion. For repetitiveproblems, run multipleforward simulationsand assemble
alibrary of "solved cases” that can be used to identify an initial guess by data
matching. Do not hesitate to explore other inversion strategies that may result
from a detailed mathematical analysis of the problem or even heuristic criteria
Theresult x<**> should reflect a balance between justifying the data y <> (low

error norm) and the physical meaningfulnessof the solution x <=,

11.6.1 Heuristic Methods

Heuristic inversion procedures are demonstrated next for data gathered in tran-
sillumination and reflection modes.

Case History: Steel Pipe in Air = Echolocation

Echolocation is extensively used by bats and dolphins, and in applicationssuch
as radar, sonar, and ultrasonic nondestructivematerial eval uation; the underlying
physical concepts led to ultrasound imaging in medical diagnosis. Laboratory
dataweregathered using a hollow steel cylinder asan anomaly in air; short sound
signals were emitted with a speaker and microphones detected the reflections.
The sourceand receiver positions for each measurement are the foci of an ellipse
that constrains the possiblelocation of the reflecting anomaly: the length d the
string that is used to draw the dlipse is the velocity of the medium times the
measured travel time. Ellipsesfor all measurements are shownin Figure 11.8 for
three different positions of the anomaly. The true location of the anomaly is aso
shown. Thisis the most rudimentary form of a geophysical technique known as
migration! The graphica solution readily shows uncertainty in the inversion of
R;,. (see Solved Problems at the end of this chapter for more details).
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Figure 118 Constrainingthe position and size of the reflector with ellipses. Thefoci of
each ellipseare at the source and the receiver locationsfor the corresponding measurement
(along the centerline). Note the enhanced delineation of the first anomaly which is closest
to the string of transducers (Datacourtesy of S. Sloka)
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Case History: Balloon in Air = Transillumination

The 16 ray-averagevelocity projections(Figure 11.5) are back-projected to con-
strain the location of the high-velocity anomaly following the fuzzy-logic proce-
dure introduced in Section 10.4 (Implementation Procedure 10.4). The resulting
image presented in Figure 11.9 clearly denotes the anomaly, which appears elon-
gated in the direction of prevailing illumination.

11.6.2 Parametric Representation = Successive Forward
Simulations

Data for three case histories are inverted next. The first example is the Korean
tunnel and it is used to invert for the velocity field of the host medium. The
other two examples address the detection of an anomaly using either reflection
or transilluminationdata

Case History: Korean Tunnel

The 1050 measurements in Figure 11.4 are analyzed using the close-form solu-
tion in Table 11.1. The goal is to identify the parameters of the velocity field
by successive forward simulations guided by the L, and L, error norms. Four
possible media are considered: homogeneous-isotropic (a# 0, b=0,c=1.0),
homogeneous—-anisotropic (a # 0, b=0, c # 1.0), vertically heterogeneous and
isotropic (a#0,b# 0,c=1.0), and vertically heterogeneous and anisotropic
(a# 0,b#0, c # 1.0). The comparisonsbetween cal culated and measured travel
times and inverted velocity parameters are summarized in Figure 11.10. The
heterogeneous—ani sotropicmedium fits the data with the least residual; although

1
|

|

Figure 119 Tomographic study with hdium ballon (laboratory data - Figure 11.5).
Image generated with fuzzy-logic solution
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Assmed medum a b c Squareserror - Absoluteerror
(8 Homogeneous- isotropic 4510 0 1.00 3.49 2.79
(b) Homogeneous- anisotropic .~ 4890 0 112 278 2.35
(©) Heterogeneous- isotropic 3270 120  1.00 273 2.42
(d) Heterogeneous- anisotropic 3560 130 112 162 1.26

Figure 1110 Tunnd in Korea - assessing the host medium (refer to Figure 11.4).
Inversion by successiveforward simulations. Assumed modd: close-formsolution for the
ray path in vertically heterogeneous, anisotropic media (Table 11.1). Plots show travel
time versusray number. (Note the seven data sets for different illumination angles; there
ae N = 1050 measurements.) The continuous and dotted lines correspond to measured

and predicted travel times, respectively
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this material model has more degrees of freedom, data preprocessing resultsin
Figure 11.4 clearly support it.

Case History: Steel Pipe in Air = Echolocation

Theinverse problem in Figure 11.8 is cast in terms of four unknown parameters:
the inclusion position and size p;., qi,e» SiZe R;,. and the velocity of the medium
Viea A Straight ray model is used for forward simulation, and convergenceis
guided with the L, norm. The optimal solution for each of the three tests is
summarized in Table 11.2 (additional insight is gained by analyzingresultsin the
solved problem at the end of this chapter). The distance to the anomaly from the
string of transducersg,. is resolved better than the anomaly position p,,. pardlel
to the string of transducers. The anomaly size is poorly resolved, and thereis a
strong interplay between the size R, and the distance q;,, so that the value that
isresolved best is q;,. —R;,.- A careful analysisof the heuristicsolutionin Figure
11.8 elucidatesthese observations.

Table 11.2 Inversion of reflection data by successive forward simulations

Field ﬂup Solution v"‘ed Pinc Qine Rinc qinc_Rinc
Casel Experiment 343 0.80 0.41 0.16 0.25
Inverted (L,) 381 086 029  0.02 0.27
Case?2 Experiment 343 0.80 0.66 0.16 0.50
Inverted (L,) 38 08 056 001 0.55
Case 3 Experiment 343 0.80 0.91 0.16 0.75
Inverted (L,) 38 08 085 0.1 0.74
Note:

Test stupsareshown in Figure 11.8.

Inversonsare based on trave times— no additional data.

Convergence is driven to minimizeL, norm.

Data and modd errors enhance the trade-off between gy, and Ryy.

The point on the anomaly closest to the line of transducersis (g, —Rine) @way.

Case History: Anomaly in Air = Transillumination Data

The parametric representation invol vesfive unknowns: the vel ocity of the medium
V ed» 8Nd the properties of the inclusion including positionp,,. and q sizeR,,
and velocity V.. A straight-rayforward simulator is used first. Slicesof theerror
surfacesobtained with L;, L,, and L, normsare presented in Figure 11.11.
Two important observationsfollow from these results. First, the resolvability

of the vertical position of the inclusion q,,. parallel to the instrumented sidesis
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Figure 11.11 Inversion of transmission data by successive forward simulations. Para-
metric representation. Helium ballon in air (details in Figure 11.5): Py, 20,, Rines Vines
Vimed: Slices of theerror surfacenear optimum. (O)L; norm; (@) L, norm; (0) L,, norm.

(Data courtesy of A. Reed)

significantly better than for the horizontal position p,,.. Theincorrect location of
the anomaly in the horizontal direction affects mostly the same rays as the true
location (this is equivalent to the elongation of the anomaly in the direction of
illuminationobservedin Figure 11.9). By contrast, theincorrect g-location affects
a significant number of rays: originally untouched rays become touched by the
inclusion, and several of the rays that traverse the inclusion in the true location
are not touched in the new assumed position.

Second, L, and L, error surfacesare nonconvex in theg-direction,and inversion
may divergefrom the minimum. Why does this occur? As discussed above, when
the anomaly is displaced upward, many rays will be affected, either becausethey
used to traverse the anomaly or because they did not. But if the anomaly is
considered totally outside the region, only those rays that traverse the anomaly
initstrue position contribute to the residual, and the total misfit measured by the
L, and L, norms decreases. However, the L, norm is only concerned with the
worst residual for any ray, so it remainsconvex. This confirms that the L., norm
is insensitiveto uneven informationdensity, as noted in Section 8.3.

The minimum value of the error surfaceis a measure of model and dataerrors
(Section 86). Errorsraise the error surface, reduce convergencegradients, round



336 STRATEGY FOR INVERSE PROBLEM SOLVING

the error surface near the minimum, and hinder the unequivocal identification of
the unknowns. Data noise may also cause local minima.

The draight-ray model predicts a significantly larger inclusion size
(Figure 11.11) because the inclusion is a high-velocity anomaly and acts as a
divergent lens. The inclusion size is correctly predicted with curved rays (not
presented here).

71.6.3 Matrix-based Inversion

Case History: Balloon in Air = Transillumination

The data are inverted using the regularized | east-squares solution. The selected
regularization criterionis the minimization of variability. Therefore, the regular-
ization matrix is constructed with the Laplacian kernel and imaginary boundary
points satisfy zero gradient across the boundary. Resultsfor different regulariza-
tion coefficientsA are summarizedin Figure 11.12. To facilitate the comparison,
tomograms are thresholded at a mean measured velocity of 370 m/s. The follow-
ing observationscan be made:
e Normalized errors (y=mes> — y <4ty jy<meas> gecrease towards zero when the
inversion is underregularized (low\). Therefore, the data are better justified
when \ is low.

The spread in pixel values is small when a smoothness criterion is imposed
and the inversion becomes overregularized (highX). Eventualy, a featureless
image is obtained when a very high regularizationcoefficient is used.

Data and mode errors are high. (Results shown in the figure are computed
with straight rays.) The spread in prediction errors remains £1% even as the
problem becomesiill-conditionedfor low A values.

Clearly, the inversion cannot be data-driven only. Instead, the characteristics of
the solution must be taken into consideration as well.

11.6.4 Investigate Other Inversion Methods

Physicd insight and mathematical analysis may help identify exceptional inver-
sion strategies besides those explored in this book. The solution of tomographic
imaging in the frequency domain using the Fourier slice theoremis an excellent
example (Section 10.1). Its extension to the diffraction regime provides further
evidence of the benefits that insightful inversion approaches can have when
combined with a detailed analysis of the problem (Fourier diffraction theorem).
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Figure 11.12 Regularizedleast squares solution —helium ballon. Tomograms are thresh-
olded a 370 m/s. Notice the trade-off between data jugtification(e; hisogram) and image
quality (hisogram of pixel valuesand tomograms)
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177 SIEP 7: ANALYZE THE FINAL SOLUTION

Inverse problem solving may appear simple at first glance, but there are plenty
of potential pitfalls along the way. The solution may be completely wrong even
when the data y<™*> are well justified and the residuals are small. Indeed, this
is very likely the casein ill-conditionedand underregularized problems. Remain
skeptical!

Reanalyzethe procedurethat wasfollowedto obtain the measurements: did you
measure what you think you measured, or are measurements determined by the
measurement system (instrumentation and distribution of information density)?
Reassess the underlying physical processesassumed for inversionin light of the
results that were obtained. Consider all information at your disposal.

Plot the solution estimate x<**> against the following vectors. column-sums
1T . h indicativeof informationcontent, row-sumsh™® - 1 indicativeof systematic
error propagation, and row-sums h27# . 1 indicative of accidental error magnifi-
cation. Scrutinize any correlation. In the case of tomographic images, no clear
correlation should be observed between tomogramsin Figure 11.12 and the 2D
plotsin Figure 11.2.

Finally, the well-solved inverse problem can convey unprecedented infor-
mation, from subatomic phenomena, to the core of the earth and distant galaxies.
Indl cases, the physicsof the problem rather than numerical or computer nuances
should lead the way.

71.8 SUMMARY

e |nverse problem solving may appear deceptively simpleat first; however, there
areplenty of trapsalongthe way. To stay on course, retainaclear understanding
of the problem at al timesand stay in touch with its physical redlity.

e Successful inverse problem solving starts before data collection. The following
steps provide a robust framework for the solution of inverse problems:

1. Analyze the problem. Develop an acute understanding of the underlying
physical processes and constraints, measurement and transducer-related
issues and inherent inversion difficulties. Establish clear and realizable
expectationsand goals.

2. Pay close attention to experimental design. The viability of a solution is
determinedat this stage. Design the distributionof measurementsto attain a
proper coverageof the solution space, and select transducer and electronics
to gather high-quality data.
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3. Gather high-quality data.

4. Preprocess the data to assesstheir quality, to gain aglimpseof the solution,
and to hypothesize physical models. Data preprocessing permits identifi-
cation and removal of obvious outliers and provides valuable information
that is used to guide and stabilize the inversion.

5. Sdect an adequate physical model that properly captures all essential
aspects of the problem. Fast model computation is crucia if the inverse
problemis solved by successiveforward simulations.

6. Invert the data using different inversion methods. Consider a parametric
representation of the problem combined with successive forward smula-
tions, as well as less constrained discrete representationsin the context of
matrix-based inversion strategies. Do not hesitate to explore other inver-
sion strategiesthat may result from a detailed mathematical analysisof the
problem or heuristic criteria.

7. Analyze the physical meaning of the solution.

Discrete signal processing and inverse problem solving combine with today's
digital technology to create exceptional opportunitiesfor the development of
previoudy unthinkableengineering solutions and to probe unsolved scientific
guestions with innovative approaches. Just ... image!

SOLMVED PROBLEVIS

P1l.I Study with simulated transmission data: parametric representation. Con-

sider the helium balloon problem in Figure 11.5. Simulate noiselessdata
assuming a straight-ray propagation model. Then, explore the error sur-
faces correspondingto L,, L, and L, error norms.
Solution: Assumed model parameters: velocity of the host medium V.., =
343m/s, velocity of the helium baloon V. =410m/s, radius of the
balloon R;,. = 0.23m, and the coordinates of the balloon p,,. =0.75m
and q;,. = 0.75m. Travel times are computed. Then, the simulated travel
times are inverted as if they have been measured t<™*>. Slices of the
error surfaces across optimum are generated as follows: (1) perturb one
model parameter at the time; (2) compute the travel time "> and the
residual e; = (1> — tfp‘“'>) for al N rays, and (4) evaluate the norm
of the residual. Results are plotted next (L, and L, norms are divided by
the number of rays N to obtain the " averageresidual error per ray™):
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Results alow the following observations to be drawn (compare to
Figure 11.11 - review text):

e The cross-section of the error surface along different variables shows
different gradients. The L., norm presents the highest gradientsfor all
five parameters. In the absence of model and measurement error, all
norms reach zero at the optimum.

e The velocity of the host medium affects all rays, and for most of their
length. Hence, the convergenceof the background vel ocity is very steep.
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e Theresolvability of the vertical position of theinclusiong;,. pardle to
theinstrumented boreholesis significantly better than for the horizontal
position p,,.. The incorrect location of the anomaly in the horizontal
direction mostly affects the same rays when the inclusion is horizon-
taly shifted. By contrast, the incorrect g-location affects a significant
number of rays.

e Thedtrikingfeatureisthat theL, and L, error surfacesare nonconvex.
Thisis critical to inversion because algorithms may converge to local
minima, thus rendering inadequate tomographic images (see discussion
in text).

Repeat the exercise adding systematic and then accidental errors, and
outliers to the " measurements’.

Sudy with simulated reflection data: parametric representation. Recall
the reflection problem in Figure 11.8. Simulate noiseless data for the
following test configurations, assuming a straight-ray propagation model,
and explore the L, error surfacein each case.

Setup 1 Setup 2

« Source and
receiver

1!"
th
=i

_ Setup3

* Source
* Recelver

Solution: Travel timesare computed by identifyingthe point on thereflect-
ing surfacethat renders the minimum travel time. It can be shown that the
reflection point is approximately located at an anglea=( a, +a,)/2 (see
sketch above). The L,-norm error surface is studied near the optimum,
following the methodology in ProblemP11.1. Slices of the error surfaces
are shown next:
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Resultsindicate that thereis no mgjor differencein invertibility given the
datafrom the different field test setups. Theinvertibility of the size of the
anomaly is poor compared to the position of the anomaly. Furthermore,
thereis a strong interplay between the size R, and the depth g, of the
anomaly, as shown in the last figure. Therefore, it is difficult to conclude
using travel time aone whether the reflector is a distant large anomaly or
a closer anomaly of smaller size. The value that is best resolved is the
distance from the line of transducersto the closest point in the anomaly,
Qinc — Ryne- Compare these results and observationsand those presented in
Table 11.2 and related text.

ADDITIONAL PROBLEMS
P11.3 Graphical solution. Back-project the average velocity shadows plotted in
Figure 11.5 to delineate the position of the helium balloon.

P11.4 Transformation matrix. Complete the matrix of travel lengths in
Figure 11.7.

P11.5 Attenuation tomography. Express the attenuation relation in standard
matrix form so that the field of materid attenuation can be inverted from
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a set of amplitude measurements (correct measurements for geometric
spreading first).

n
Attenuation equation: A(k) = A, . (5:) LeT

Experimental design. Design atomographic experimentto identify anoma-
lies in a block size 2m x 2m. Expect a wave velocity between 4000
and 5000mvs. Follow the step-by-step procedureoutlined in this chapter;
simulate data and explore different simulation strategies.

Application of tomographic imaging. Travel time data are gathered for
three different locations of a single helium balloon in air. A total of 49
measurements are obtained in each case with seven sources and seven
receivers(Table P11.1).

e Preprocessthe data to determine the characteristicsof the background
medium. Assess accidental and systematic errorsin the data.

e Plot average velocity shadows. Constrain the position of the anomaly
using the fuzzy logic technique.

e Capture the problem in parametric form, and solve by successivefor-
ward simulations.

e Then usea pixel-based representationand solvewith L SS, DL SS, RL SS,
and SVDS. Identify optimal damping and regularization coefficients
and the optimal number of singular values. Add aninitial guessobtained
from previous studies.

Sources Receivers,

@

Helium balloon

| {

‘ Background
| & medium: Air *
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Table P1l.l Travel time tomographic data for theimaging of a helium ballon

Source positions[m] Receiver positions[m] Travel times[mg]

P q P q Cael Case 2 Case3
0 0.0762 1.5320 0.0762 4.38 452 4,38
0 0.0762 1.5320 0.3048 442 456 4.42
0 0.0762 1.5320 05334 4.54 458 4.58
0 0.0762 1.5320 0.7620 4.80 4.74 4.79
0 0.0762 15320 0.9906 5.06 5.06 5.06
0 0.0762 15320 1.2190 5.42 5.50 5.38
0 00762 15320 1.4480 5.78 590 5.76
0 0.3048 1.5320 0.0762 4.50 454 4.46
0 0.0348 1.5320 0.3048 442 4.30 4.40
0 0.3048 15320 05334 4.50 418 442
0 0.3048 1.5320 0.7620 4.62 432 4.54
0 0.3048 15320 0.9906 4.84 4.60 4.76
0 0.3048 15320 1.2190 5.10 500 5.04
0 0.3048 15320 1.4480 536 5.56 544
0 05334 1.5320 0.0762 4.68 4.50 4.58
0 05334 1.5320 0.3048 4.52 424 4.40
0 05334 1.5320 05334 4.46 412 4.34
0 05334 1.5320 0.7620 4.32 428 4.39
0 05334 15320 0.9906 4.34 454 4.50
0 05334 15320 1.2190 4.52 482 4.76
0 05334 15320 1.4480 4.92 524 5.08
0 0.7620 15320 0.0762 4.90 4.62 4.82
0 0.7620 1.5320 0.3048 4.46 4.38 4.56
0 0.7620 1.5320 05334 4.20 424 4.36
0 0.7620 15320 0.7620 4.14 4.36 4.30
0 0.7620 1.5320 0.9906 422 4.46 4.38
0 0.7620 15320 1.2190 4.42 4.62 4.56
0 0.7620 15320 1.4480 4.78 4.90 4.84
0 0.9906 15320 0.0762 4.84 4.92 5.14
0 0.9906 15320 0.3048 4.56 4.68 4.78
0 0.9906 15320 05334 4.38 456 4.52
0 0.9906 1.5320 0.7620 4.26 452 4.42
0 0.9906 1.5320 0.9906 4.32 448 4.38
0 0.9906 15320 12190 444 450 444
0 0.9906 1.5320 1.4480 4.58 4.60 4.60
0 1.2190 1.5320 0.0762 5.30 532 542
0 12190 15320 0.3048 5.00 508 5.04
0 12190 1.5320 05334 4.74 492 4.74
0 1.2190 1.5320 0.7620 4.60 470 4.56
Source positions[m] Receiver positions [m] Trave times[ms]

P 4 P 4 Cae1 Case2 Cae3
0 1.2190 1.5320 0.9906 446 456 446
0 1.2190 1.5320 1.2190 442 448 442
0 1.2190 1.5320 1.4480 4.44 452 4.46
0 1.4480 1.5320 0.0762 5.86 5.80 5.86
0 1.4480 1.5320 0.3048 5.46 554 546
0 1.4480 1.5320 0.5334 5.10 5.16 5.12
0 1.4480 1.5320 0.7620 4.82 488 482
0 1.4480 1.5320 0.9906 458 4.68 4.58
0 1.4480 1.5320 1.2190 444 452 4.46
0 1.4480 1.5320 1.4480 436 442 4.40
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P11.8 Application: gravity anomalies. Consider the problem of the local gravity

P11.8

field caused by a0.5 m? gold nugget cubehidden 1.5 munder asandy beach.

e Study the problem. Evaluate its physical characteristics, measurement
issues, transducer difficulties.

e Design the experiment to gather adequatedata, consider the spatial and
temporal distributionof dataand proceduresto obtain high-quality data.

e Simulate datafor the gravity anomaly (search for Bouguer equations).

e Develop versatileand insightful strategiesfor data preprocessingto gain
information about the data (including biases, error level, outliers) and
a priori characteristicsaf the solution.

e |dentify the most convenientinversion method; includeif possiblereg-
ularization criteriaand other additional information.

e Prepare guidelinesfor the physical interpretationof thefinal results.

Application: strategy for inverse problem solving in your field of interest.
Consider a problemin your field of interest and approach its solution as
follows:

e Analyze the problem in detail: physical processes and constraints, mea-
surement and transducer-related issues. Establish clear goals.

e Design the experiment. Include: transducers, electronics, and the tem-
poral and/or spatial distribution of measurements. Identify realizable
and economically feasible configurationsthat providethe best possible
spatial coverage.

e Gather high-quality data. If you do not have accessto datayet, simulate
data with a realistic model. Explore the effect of dataerrors by adding
a constant shift, random noise, and outliers.

e Develop insightful preprocessing strategies to assess data quality, to
gain aglimpseof the solution, and to hypothesize physica models.

e Sdlect an adequate physical model that properly captures all essential
aspectsaf the problem. Fast model computationiscrucial if theinverse
problemis solved by successiveforward simulations.

® |nvert the data using different problem representations and inversion
methods. Explore other inversion strategies that may result from a
detailed mathematical analysisof the problem or heuristic criteria

o |dentify guidelinesfor the physical interpretation of the solution.
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apriori information 255
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absoluteerror 230
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amplitude modulation 63
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Cholesky decomposition 27
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coefficient of variation 165
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continuous signal 35
convergence 114
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Cooley 11,112
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cross-correlation 77, 79, 147
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damping 86

dataerror 240
dataresolutionmatrix 250
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detrend 66, 76
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echolocation 3,330,334
eigenfunction 137

eigenvalue 26, 32

eigenvector 26, 32

energy 116

ensembleof signals 41

ergodic 40, 62, 64

error 228, 322, xvi

error norm 228

error propagation 271

error surface 231, 240,241,335, 340
Euler's identities 20, 132, 179
evensigna 37

even-determined 253

experimental design 74, 129, 166, 272, 273
exponential function 19, 47

fast Fourier transform 112

feedback 5, 58

Fermat's principle 329

filter 70, 73, 151

filtered back-projection 292,293

f-k filter 157

forward problem 2, 215, 249

forward simulation 298, 311, 332
Fourier 11

Fourier pair 110

Fourier series 104, 131
Fourier dice theorem 289

Fourier transform 51, 105

Fredholm 11, 218

frequency response 138, 140, 157, 161, 165
frequency-wave number filter 157
Fresne!’s ellipse 316, 318

fuzzy logic based inversion  £306, £332

genetic dgorithm 303
gravity anomay 345
Green's function 11, 218

Hadamard transform 136
Hammingwindow 123
Hanning window 123, 171
harmonics 198

Hermitian matrix 22, 120
Hessian matrix 28

heuristic methods 306,330
high-passfilter 152

Hilbert transform 11, 179,200
hyperbolic model 220

ill-conditioned 251

image compression 34

impulse 45, 50

impulseresponse 85, 86, 140

inconsistent 253

information content/density 238, 239

initial guess 264

instantaneous amplitude 182

instantaneous frequency 182

integral equation 218

inverse problem 2, 215, 249

inverse problem solving 242, 274, 316,
338,345

invertibility 56

iterativesolution 193

Jacobian matrix 28, 228

Kaczmarz solution 293
kernel 70, 94, 153
Kramers-Kronig 200

Lagrange multipliers 29, 277
Laplace transform 52, 110
Laplacian 72

leskage 121

least squares 231

least squares solution 254, 277
linear time-invariant 56
linearity 54.60, 112
linearization 227,244,267
linear-phasefilter 153, 171
L-norms 230
low-passfilter 151

LTI (seelinear time-invariant)

MART (see Multiplicative Algebraic
Reconstruction Technique)

matrix 21

maximum error 230

maximum likelihood 269

median smoothing 74

Mexican hat wavelet 213

minimum length solution 277, 283

min-max 231

modd error 240, 327

model resolution matrix 250

MonteCarlo 300

Moore-Penrose 11, 282
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moving average 70, 76
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Multiplicative Algebraic Reconstruction
Technique 297, 309
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near field 317
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noise control or reduction 75, 76, 151, 154
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noninvertiblematrix 23
nonlinear system 197, 211
nonlinearity 227,267, 298, 320
nonstationary 175

notch filter 152

null space 24

Nyquist frequency 43, 109

Ockham 11,234,264,287
octaveanaysis 135

odd signal 37

Oh..!? 177

one-sided Fourier transform 115, 134, 149
optimization 28

orthogona 103

oscillator 85, 138, 140, 197, 206
overdetermined 253

padding 123,135

parald projection 289

parametric representation 286, 332,
339, 341

Parseval'sidentity 116

passiveemission 4

periodicity 38, 114

phese unwrapping 158

Phillips—Twomey 256 (see regularization)

pink noise 48

positive definitematrix 25

preprocessing 321

profilometry 8

proportional error 230

pseudoinverse 218, 249, 282

randomsigna 48,202
range 24
rank 24
rank deficiency 250
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ray curvature 317

ray path or tracing 328, 329

regression analysis 220, 245
regularization 255,257,271,281,337
resolution 117, 124, 185

ridge regression 256 (see regularization)
robust inverson 231

samplinginterval 36

selectivesmoothing 74

sdlf-cdibration 5

short time Fourier transform 184

sgna 1,35

signal recording 128

signal-to-noiseratio 65, 164, 172

Simultaneous lterative Reconstruction
Technique 295,309

sinc 48, 213

single degree of freedom oscillator (see
oscillator)

singular matrix 23

singular value decomposition 27, 34, 251,
265,271,278

sinogram 326

sinusoidal signal 47

SIRT (see Simultaneous Iterative
Reconstruction Technique)

skindepth 317

smoothing kernel 72

SNR (see signal-to-noiseratio)

sourcelocation 224

gae matrix 320

spatia distribution of information 239, 320

spikeremoval 66

squared error 230

stability 55

stableinverson 231

stacking 66, 76, 100

standard error 230, 268

stationary 40, 62, 64

detigtics 60, 68, 164,268

step 46

stock market 13

successiveforward smulations 298,
311,332

superposition principle 55, 57, 59, 89

symmetric matrix 22

synthesis 61.64, 107
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systemidentification 2,9, 88, 95,219
systematicerror 271, 322

tail-reverse 94, 147, 169

Taylor expansion 227, 267

thresholding 74

tide 12

Tikhonov-Miller 256 (see regularization)

timedomain 51

timeinvariance 55

time-varying sysem 204

tomography 10, 221

truncation 121

Tukey 11, 112

two-dimensiond Fourier transform 127, 133
two-sided Fourier transform 115, 149, 180

uncertainty principle 118, 186, 193
underdetermined 253
undersampling 63

unwrapping (see phase unwrapping)

variance 164
Volterra 11, 218

Walsh series, transform 52, 135
wavelet 48

wavelet anaysis, transform 51, 191, 192
weighted least squares solution 263
whitenoise 48

Wiener filter 283

window 121, 188



