Innovations, Challenges, and Future Opportunities

J. Carlos Santamarina Georgia Institute of Technology

electromagnetic waves

Maxwell's Equations

Wave Equation

$$\nabla^{2}\mathsf{E} = \mu^{*}\sigma\frac{\partial\mathsf{E}}{\partial t} + \mu^{*}\epsilon^{*}\frac{\partial^{2}\mathsf{E}}{\partial t^{2}}$$

Solution:
$$E_y = E_o e^{-\alpha \times} e^{j(\omega t - \kappa \times)} = E_o e^{j(\omega t - \gamma^* \times)}$$

Then
$$\gamma^* = \alpha + j\kappa = \sqrt{j\omega\sigma\mu^* - \omega^2\epsilon^*\mu^*}$$

Faraday:
$$H_z = -j \frac{\gamma^*}{\mu \omega} E_y$$

Х

Phase Velocity

$$V_{ph} = \frac{\omega}{Im (\gamma^{*})} = \frac{\omega}{Im \left(\sqrt{j\omega\sigma\mu^{*} - \omega^{2}\epsilon^{*}\mu^{*}}\right)}$$

non-ferromagnetic / dielectric		
$\mu^* = \mu_o$	$\mathbf{s}^* = \mathbf{s}'$	$\sigma = 0$

$$V_{ph} = \frac{c_o}{\sqrt{\epsilon' \epsilon_o}}$$

Attenuation

$$\alpha = \text{Re}(\gamma^{\star}) = \text{Re}\left(\sqrt{j\omega\sigma\mu^{\star} - \omega^{2}\epsilon^{\star}\mu^{\star}}\right)$$

$$\begin{array}{l} \textit{non-ferromagnetic} \\ \mu^* = \mu_{\circ} \quad \epsilon^* = \epsilon' + j\epsilon'' \quad \sigma \end{array}$$

$$\alpha = \frac{\omega \sqrt{\epsilon' \epsilon_o}}{c_o} \sqrt{\frac{1}{2} \left(\sqrt{1 + \tan^2 \delta} - 1\right)}$$

For 1D propagation

Skin depth
$$S_d = \frac{1}{\alpha} = \frac{1}{\text{Re}(\gamma^*)}$$

Impedance
$$z^* = \frac{E_y}{H_z} = j\frac{\omega}{\gamma^*}\mu^*$$

Reflection and Transmission

$$R^* = \frac{1 - (z_1^* / z_2^*)}{1 + (z_1^* / z_2^*)} \qquad T^* = \frac{2}{1 + (z_1^* / z_2^*)}$$

Electromagnetic Parameters

Effective conductivity $\sigma_{eff} = \epsilon' \omega \mu_r'' + (\sigma + \epsilon'' \omega) \mu_r'$

details and references in Santamarina, Klein and Fam Soils and Waves – J. Wiley

electromagnetic properties

Conductivity - Electrolytes

Bulk and Surface Conduction

$$\sigma_{soil} = n \sigma_{el} + (1 - n) 2 \rho_p \lambda_{ddl} S_a$$

$$\boldsymbol{\sigma}_{soil} = \boldsymbol{\alpha} \ \boldsymbol{n}^{\beta} \, \boldsymbol{\sigma}_{el} \qquad \text{(Archie)}$$

Conductivity: Archie?

$$\sigma_{soil} = n \sigma_{el} + (1 - n) 2\rho_g \lambda S_a$$

Conductivity - Summary

Polarization – Single phase

Two-phase media - Spatial polarization

Double layer effects

Water-Ion Interaction

Permeability

volume fraction of iron filings

Permeability

iron in kaolinite

All data by Dante Fratta (U. Wisconsin)

TDR measurements

The Cable

Time / ∆t

the probe = complex end-reflector signal changed sign at equipment

The Probe

f~ 1 to 3 GHz dispersion multiples

where is zero-time?

composite reflection at top open and short tip impedance

where is zero-time?

composite reflection at top open and short tip impedance

Boundaries: Normal Plate

does not see ahead of tip

Boundaries: Normal Plate

does not see ahead of tip

Boundaries: Parallel Plate

does not feel outside inter-rod ?

Boundaries: Parallel Plate

H-field effect!

Permeability

Sand +

expect minor effect

Permeability

Sand +

expect minor effect

good assessment of conductivity

Conductivity

Sand

recall skin depth may not see tip reflection

Heterogeneity – Layering

Varved Clay

X-Ray

Photograph

Needle probe measurements

a clay seam may hide the rest (very high mismatch in this case)

more than one primary reflections

Insertion Effects

Undrained

Insertion: Volumetric Strain = f(void ratio)

Large vs. Small Particles $Gravel - d_{50} = 20 mm$

Large vs. Small Particles $Gravel - d_{50} = 20 mm$

higher local porosity in gravel Brillouin LP filter?

Summary

The connection to probe:

sequence of electrical and geometrical changes

response is a function of the soil itself

when is time zero? what signal gets to the soil?

Compare the 2nd and 3rd reflections (if 3rd is not lost in noise)

Geometric dispersion + attenuation: signal widens

Ferromagnetism: expect small effect

Insertion effects and preferential packing (aggravated in coarse soils)

Complex signal: consider spatial variability

multiple interpretations of multiples

many unknowns \rightarrow inversion may be ill defined

Information conservation → simple models (Ockham's criterion)

process monitoring

Measurements

Sedimentation

Pressure diffusion

Pressure diffusion

Cementation

(bentonite-cement)

Cementation

(sand-cement)

A. Fernandez

Gas hydrates

Real Permittivity

Elastic waves

V_p evolution

TS. Yun

Penetration-based Geophysical Systems

SV Source (Fernandez)

3D Geophone (Stokoe – UT)

Conductivity tip

Boundary measurements - Tomography

closing thoughts

Measurement $\kappa^* \sigma \mu^*$ TDR signature = input * (geometry AND spatially varying material)

Better measurement interpretation Inversion: caution... follow Ockham's criterion

Inherent: insertion volume change Consider non-intrusive implementation

Complementary information Electromagnetic & elastic waves Small perturbation & large-strain penetration testing

Wave parameters: relevant to engineering Laboratory and field Wide range of geotechnical processes

Boundary measurements: invert for internal conditions

