ALERT 2012 - Aussois

Geophysical Characterization

J. Carlos Santamarina

Georgia Institute of Technology

Mechanical Waves

Electromagnetic Waves

Thermal Phenomena

Processing

description estimation lab & field examples (process monitoring)

concepts & caveats

<u>Mechanical</u> Waves

Electromagnetic Waves

Thermal Phenomena

Processing

Wave Equation

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \left(M - G \right) \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_y}{\partial x \partial y} + \frac{\partial^2 u_z}{\partial x \partial z} \right) + G \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

Mechanical Waves

attenuation
S-waves

P-waves

1: Effective Stress

1: Effective Stress

Degree of saturation S

3: Cementation

3: Cementation - Loading

ס' <mark>increases</mark>

σ' decreases

T.Y. Yun

3: Cementation - Unloading

3:
 Sampling effects

V. Rinaldi

Laboratory Testing

S-monitoring: Excavation & Retaining Walls

Field: Surface Waves (non-invasive)

Sensor Arrays

Field: Penetration-based (invasive)

Mechanical Waves

attenuation

S-waves

Bulk Stiffness

$$V_{\rm P} = \sqrt{\frac{M}{\rho}} = \sqrt{\frac{B + \frac{4}{3}G}{\rho}}$$

Saturation

$$V_{P} = \sqrt{\frac{\left(B_{sk} + \frac{4}{3}G_{sk}\right) + \left[n\left(\frac{S}{B_{w}} + \frac{1-S}{B_{a}}\right) + \frac{1-n}{B_{g}}\right]^{-1}}{(1-n)\rho_{g} + nS\rho_{w}}}$$

K. Ishihara

P-monitoring: Bio-gas

Paracoccus denitrificans Nitrate broth F110 + 3%Kaolin

V_P and V_S

Poisson's ratio (~dry)

Porosity (S=100%)

Venice (M. Jamiolkowski)

New Phenomena: Polygonal Faults

J. Cartwright - www.3DLab.org.uk

500m

Massive Landslide - Storegga

J. Cartwright - www.3DLab.org.uk

Summary: P- and S-waves

- WavesSmall-strain phenomenaMay be used to monitor large-strain processes
- V_s Skeletal stiffness: G → Geo-mechanical design Effective stress, suction, cementation Sampling: pronounced effect → measure in situ ! Simple lab & field devices and methods
- V_P Fluid & skeletal stiffness: B & G Proximity to full saturation
- V_P &V_s: Dry → skeletal Poisson's ratio Saturated → porosity Spatial variability

Mechanical Waves

Electromagnetic Waves

Thermal Phenomena

Processing

Maxwell's Equations

Maxwell's Equations – Wave Propagation

$$\nabla^{2}\mathsf{E} = \mu\sigma\frac{\partial\mathsf{E}}{\partial t} + \mu\epsilon\frac{\partial^{2}\mathsf{E}}{\partial t^{2}}$$

Permittivity $\kappa = \varepsilon/\varepsilon_0$

Permeabilityμnon-ferromagnetic μ=1

Electromagnetic Wave Propagation

$$V_{ph} = \frac{\omega}{Im\left(\sqrt{j\omega\sigma\mu^* - \omega^2\epsilon^*\mu^*}\right)}$$

$$S_{d} = \frac{1}{\text{Re}\left(\sqrt{j\omega\sigma\mu^{*} - \omega^{2}\epsilon^{*}\mu^{*}}\right)}$$

Electromagnetic Wave Propagation

Skin Depth

Electromagnetic Properties

permeability conductivity permittivity

Kingston Fossil Plant (12/22/2008)

[Photo: U.S. Environmental Protection Agency]

XRD: Mill Creek Hopper

Magnetically separated fraction:

hematite Fe_2O_3 (weakly magnetic), magnetite Fe_3O_4 and maghemite Fe_2O_3 (both strongly magnetic).

Electromagnetic Properties

permeability

permittivity

Electrical Conductivity of the Pore Fluid

At low concentration (P. Annan):

 σ_{fl} [mS/m] = 0.15 · TDS[mg/L]
Electrical Conductivity of Soils

Pore fluid (pores)

Surface conduction

Wet Soil

 $\sigma_{soil} = n\sigma_{fl}$

Electrical Conductivity of Soils

mixture conductivity, σ_{mix} [S/m]

Summary: Electrical Conductivity

Laboratory: Electrical Needle

Electromagnetic Properties

permeability

conductivity

Free Water - Consolidation

Orientational Pol.

Permittivity of Wet Soils

Summary: Relative Permittivity

water 78			
ice	~3	air, gasses	~1
most organic fluids	2-6	minerals	5-10

$$\kappa_{soil} < (1-n)\kappa_{m} + n(1-S) + nS\kappa_{w}$$

Linear mixture

$$\kappa_{\text{soil}} = \left[(1-n)\sqrt{\kappa_m} + n(1-S) + nS\sqrt{\kappa_w} \right]^2$$

CRIM

$$\kappa_{soil} = 3.03 + 9.3\,\theta_v + 146.0\,\theta_v^2 - 76.7\,\theta_v^3$$

Topp et al. 1980

TDR Probe – Honeycombs

Cone in TDR-mode

GPR - 2D & 3D

www.sensoft.ca

GPR on Ice

GPR: Saltwater Intrusion

www.sensoft.ca

Summary: <u>EM-waves</u>

- μ typically non-ferromagnetic caution otherwise (e.g., some mine waste, fly ash)
- σ ionic concentration ... and mobility
 fresh water: clay surface conduction
 Simple measurement: ERT, Needle Probe (invasive)
- κ free water orientation (microwave frequency)
 GPR TDR probe (invasive)

V V
$$\downarrow$$
 when σ_{el} \uparrow and $\kappa\uparrow$

- $S_d = S_d \downarrow$ when σ_{el} (
- Use volumetric water content consolidation advect./diffus. fluid fronts salt water intrusion freezing fronts hydrates spatial variability buried anomalies

Mechanical Waves

Electromagnetic Waves

Thermal Phenomena

Processing

Particle-level Experiments

Heat source

k= f(contact quality)

Thermal Conductivity: Dry vs. Wet Soils

 $k = f(w, \sigma')$

Thermal Conductivity: Dry Soils

k= f(n)

Thermal Conductivity in Soils

particle conduction contact conduction

radiation particle-particle radiation

particle-fluid conduction particle-fluid-part. cond.

pore fluid conduction pore fluid convection

fluid, S% D₁₀

mineral

c#, n, σ'

Thermal Conductivity: Values

Material	k _τ (W/mK)
Air	0.02
Water at 21 C	0.72
Ice at 0 C	2.2
Sand, dry	1.1
Sand, ω= 18% (unfrozen)	3.1
Sand, ω= 18% (frozen)	3.8
Clay, dry	0.9
Clay, ω= 25% (unfrozen)	1.2
Clay, ω= 25% (frozen)	1.5
Quartz	8.4
Stainless Steel	~20
Copper	400

 $k_{gas} < k_{water} < k_{ice}$

k_{dry} < k_{wet} < k_{frozen}

general
trends $k_{gas} < k_{dry} < k_{wet} < k_{frozen} < k_{min}$ $k_{clay} < k_{sand}$

Lab & Field: Needle Probe

Application: GeoThermal

Narsilio & Johnston Melbourne U.

Application: Cities = Thermal Islands

Sacramento, California

Application: Climate Change

T_{atm}=Sinusoidal (2°C)

Summary: Thermal Properties

Conductivity k \uparrow Porosity n \downarrow

Effective stress \uparrow (heat transfer at contacts \uparrow)

Water content

Quartz content ↑

Frozen

Coarser grains

Implications Energy: Geothermal, Nuclear (foundations & waste), ... Climate change Urban settings

Mechanical Waves

Electromagnetic Waves

Thermal Phenomena

Processing

Wave phenomena Signal processing Inversion

Interference

Reflection

van Gogh - La Nuit Etoilee

Scatter

St. Peter - Rome

Diffraction Healing

defects in piles? honeycombs in concrete? tunnels (KMZ, US-Mx, Israel-Palestine)?

Vertical Heterogeneity

Homogeneous Isotropic Linear Elastic Vertically heterogeneous Cross-anisotropic Linear Elastic

Signal Processing: FFT

Fourier Transform = curve-fitting the signal using the Fourier Series

(caution with BE !)

Signal Processing: Tracking Small Changes

dry Ottawa sand

Coda Wave Analysis: Creep in Dry Sand

Coda Wave Analysis: Creep in Dry Sand

Inversion: Tomography

Numerical and Experimental Study

high conductivity anomaly

JY Lee see also Fotti et al.

Around tunnels: velocity tomograms

Pixel

Parametric

Summary: Processing

Waves: complex phenomena yet... information-rich

Signal Processing:

needed to extract information may be misleading...

Inverse Problems:

how much information is in the data? ill-posed ?

Closing Thoughts

Mechanical Waves

Electromagnetic Waves

Thermal Phenomena

Processing

Geophysical methods extend our senses...

Mechanical waves

- V_s : skeletal stiffness (σ ', cement, suction)
- V_P: saturation

Electromagnetic Waves

- **κ: volumetric water content (porosity if S=100%)**
- **σ: pore fluid conductivity** (and... specific surface)
- **μ: ferromagnetism**

Thermal:

Effective stress & water content (frozen?)

Mechanical waves, EM waves and thermal:

Complementary information

Physically sound concepts

Parameters critical to geotech design

Low perturbation -> process monitoring

Boundary measurements **→** tomography

Spatial variability and anisotropy

Some complexity... but information rich

Add sensors to all cells

CAUTION: processing ...

Process Monitoring:

Sedimentation Ageing **Drying – Unsaturation Ionic diffusion** Dynamic energy coupling **Stochastic resonance** Ground modification Freezing Failure Fabric anisotropy

Pressure diffusion **Thixotropy and Creep** Cementation / de-cementation Chemo-osmosis Seismic-electric coupling Liquefaction **Mixed fluid-phase Hydrates** Stress tomography **Spatial variability**

Acknowledgements

G.G. Cho	KAIST	J.Y. Lee	KIGAM
A. Fernandez	GMI-Tx	D. Fratta	UWM
H.K. Kim	Kookmin U.	M.S. Cha	GaTech
K.A. Klein	Guelph	J.S. Lee	Korea U.
G.A. Narsilio	U. Melbourne	V. Rebata	Petro-Tx
V.A. Rinaldi	U. Cordoba	N. Espinoza	L. Navier
Y.H. Wang	HKUST	T.S. Yun	Lehigh U.
S. Dai	GaTech	F. Wuttke	Bauhaus U.

Great colleagues at Georgia Tech

Organizers

