10th G.A. Leonards Lecture April 13, 2012 - Purdue U.

Understanding

Soil Properties and Behavior - Recent Developments -

A personal journey inspired in Jerry Leonards

J. Carlos Santamarina

Georgia Institute of Technology

1921	Born (April 29, Montreal)
1943	BSc (McGill University)
1944	Army @ McGill
44-45	Canadian Mines & Resources
1945	Married
45-46	Canadian DoT
1948	MSc (Purdue)
1952	PhD (Purdue): Compacted clay
1952	Assistant Professor
1955	Associate Professor
1958	Full Professor
1960	US Citizen
1965	Norman Medal
1976	"Best CE Teacher"
1980 1985 1989	Terzaghi Lecture – Failures Workshop Dam Failures Member NAE
1991 1997	Professor Emeritus Died (February 1)

Taught Mechanics & Drafting "MUD-LAB" (compaction and shear tests) 6 week trip in the USA (Shannon, Casagrande)

Harvard? Caltech? Purdue?

1921	Born (April 29, Montreal)	
1943 1944 44-45 1945 45-46 1948	BSc (McGill University) Army @ McGill Canadian Mines & Resources Married Canadian DoT MSc (Purdue)	Frozen ground Pavements
1952 1952 1955 1958	PhD (Purdue): Compacted clay Assistant Professor Associate Professor Full Professor	Clays: σ-history
1960 1965	US Citizen Norman Medal	Friction (and vibration) Clays - Repeated loading <mark>Cracking Earth Dams</mark> Shallow Foundations
1976	"Best CE Teacher"	Sands: σ-history; vibration; dynamic compaction Fly Ash Failures Pile Foundations
1980 1985 1989	Terzaghi Lecture – Failures Workshop Dam Failures Member NAE	Slope Stability – Landfills – <u>Dam failures</u> Weak seams Lateral Earth Pressure Culverts Undrained loading – Liquefaction of sands Tower of Pisa
1991 1997	Professor Emeritus Died (February 1)	Hydraulic conductivity, piping, erosion

1921	Born (April 29, Montreal)	
1943 1944 44-45 1945 45-46 1948	BSc (McGill University) Army @ McGill Canadian Mines & Resources Married Canadian DoT MSc (Purdue)	Clavs
1952 1952 1955 1958	PhD (Purdue): Compacted clay Assistant Professor Associate Professor Full Professor	Sands Fly Ash
1960 1965	US Citizen Norman Medal	Discontinuities - Weak seams Friction Hydraulic conductivity
1976	"Best CE Teacher"	Piping, erosion Pavements - Culverts Shallow and Deep Foundations Slopes and dams
1980 1985 1989	Terzaghi Lecture – Failures Workshop Dam Failures Member NAE	Lateral Earth Pressure Failures
1991 1997	Professor Emeritus Died (February 1)	Energy Geotechnology

Energy Geotechnology

GAL

Historical Geology (Homework #1)

Energy and Life (Global 2008)

Energy and Life (Global: 2008 – BRIC trends: 1980-2007)

Countries following the same trend: $P \uparrow \rightarrow HDI \uparrow$

Sources – Case: USA

Efficiency in geotechnology? crushing<5% tunneling<< ants!

History of fossil fuels: a δ -function

Geo-Centered Perspective: Spatial Scale

CO₂

Fossil Fuel: ~90%

Energy Geotechnology

FOSSIL FUELS (C-BASED)			RENEWABLE	
Petroleum	Gas	Coal	Wind Solar Biofuels Geo-T Tidal	Nuclear
 fines & clogging sand production shale instability EOR heavy oil & tar sand mixed fluid flow, percolation contact angle & surface tension = f(u_a) 		 characterization optimal extraction subsurface conv. 	 periodic load ratcheting 	 engineered soils decommission leak detect leak repair
GEOLOGICAL STORAGE				
CO ₂ sequestration 10 ⁴ -10 ⁵ yr BTHCM mineral dissolution → shear faults, pipes			Energy Storage CAES, phase-change Cyclic HTCM	Waste storage 10⁵ yr BTHCM

GEO-ENVIRONMENTAL REMEDIATION

CONSERVATION

Lessons Learned

Energy: critical for development

High increase in demand in next decades Resources: C-economy Environmental implications

Geotechnology: Central Role

Production, transport, conservation, waste Rich & complex phenomena - interwoven processes Urgency

Fascinating !

Clays Fly Ash Sands

< 10 µm

> 50 µm

crushed granite

Clay Minerals: Very High Specific Surface

http://www.minersoc.org

 $S_s = 10 \text{ m}^2/\text{g}$ for n=0.2 $d_{pore} = 10 \text{ nm}$ S_s= 50 m²/g d_{pore}=2 nm

S_s= 300 m²/g d_{pore}=0.3 nm

Implications:(1) small pores(2) very low k
gas(3) adsorbed gas (clay)(4) high capillary entry(5) low gas recovery(6) low bioactivity

Grain Size Distribution: The Role of Fines

Sediment	e _{1kPa}	FC*
Silt	~0.7	~ 25 %
Kaolinite	~1.5	~ 20 %
Illite	~3.7	~ 11 %
Montmorillonite	~5.4	~ 8 %

(N. Skipper - UCL)

Skeletal	$\underline{\mathbf{N}} = \boldsymbol{\sigma}' \mathbf{d}^2$	boundary- determined
Weight	$W = (\pi G_s \gamma_w / 6) d^3$	
Buoyant	$U = Vol \cdot \gamma_w = (\pi \gamma_w / 6) d^3$	particle-level
Hydrodynamic	$F_{drag} = 3\pi\mu v d$	
Capillary	$F_{cap} = \pi T_s d$	
Electrical	$Att = \frac{A_h}{d}$	
attraction	$24t^2$	contact-level
repulsion	$\operatorname{Re} p = 0.0024 \sqrt{c_o} e^{-10^8 t \sqrt{c_o}} d$	
Cementation	$T = \pi \sigma_{ten} t d$	

diameter d

Lessons Learned

Soil Properties and Behavior

Soils: particulate media Particle-level forces Transition: d ~10µm

Energy Geotechnology

Fly ash ponds

Resource distribution

Resource recovery

Fines migration and formation damage

Development of discontinuities – Fractures and lenses

Mixed fluid conditions (oil-water; gas-water)

Gas migration

• • •

Hydraulic Conductivity & Fines Migration

Dynamic penetration resistance and the prediction of the compressibility of a fine-grained sand—a laboratory study

C. R. I. CLAYTON, M. B. HABABA and N. E. SIMONS (1985). Geotechnique 35, No. 1, 19-31

Professor G. A. Leonards, A. Alarcon, J. D. Frost, Y. E. Mohamedzein, J. C. Santamarina, S. Thevanayagam, J. E. Tomaz and J. L. Tyree, *Purdue* University

fabric

inherent and stress-induced anisotropy

particle & pore-scale

Mean of d [micron]

Network Models – Upscaling

Poiseuille's Eq.

$$q = \frac{\pi R^4}{8\eta \Delta L} \Delta P \left(\alpha = \frac{\pi R^4}{8\eta \Delta L} \right)$$

Mass Balance at Nodes

$$0 = \sum q_{c}$$

$$0 = \alpha_{a} \left(P_{a} - P_{c} \right) + \alpha_{b} \left(P_{b} - P_{c} \right) + \alpha_{r} \left(P_{r} - P_{c} \right) + \alpha_{1} \left(P_{1} - P_{c} \right)$$

$$\alpha_{r} \left(P_{a} - P_{c} \right) + \alpha_{r} \left(P_{a} - P_{c} \right) + \alpha_{r} \left(P_{r} - P_{c} \right) + \alpha_{r} \left(P$$

$$P_{c} = \frac{\alpha_{a}P_{a} + \alpha_{b}P_{b} + \alpha_{r}P_{r} + \alpha_{1}P_{1}}{\left(\alpha_{a} + \alpha_{b} + \alpha_{r} + \alpha_{1}\right)}$$

System of Equations

$$\underline{\mathbf{B}} = \underline{\underline{\mathbf{A}}} \underline{\mathbf{P}} \qquad \text{then} \qquad \underline{\mathbf{P}} = \underline{\underline{\mathbf{A}}}^{-1} \underline{\mathbf{B}}$$

Spatially Correlated Porosity

Log (d_{pore}/micron)

diameter d

Bridging

Bridging Conditions

Pore throat -to- particle diameter O/d

Grain-Fluid paths

Deviation enhanced: $\rho_s / \rho_f \uparrow ec \uparrow$
Clogging in radial flow

Lessons Learned

Soil Properties and Behavior

Inherent: pore size distribution

Emergent: fluid flow localization → reactive fluid transport ?

Fines migration \rightarrow retardation \rightarrow bridging

Emergent: clogging ring at characteristic length scale

Energy Geotechnology

Oil and gas recovery

Geothermal

CO₂ injection (....but different)

Discontinuities

GAL Cracks

Weak seams

Journal of the

SOIL MECHANICS AND FOUNDATIONS DIVISION

Proceedings of the American Society of Civil Engineers

FLEXIBILITY OF CLAY AND CRACKING OF EARTH DAMS

By G. A. Leonards,¹ F. ASCE, and J. Narain,² M. ASCE

Desiccation Cracks

cm

Surface Tension

BBC News In pictures Visions of Science.jpg

Desiccation Cracks - Evolution

Desiccation Cracks

Desiccation Crack: Capillary Forces

Soil is in compression EVERYwhere

Forced Invasion of Immiscible Fluid

Forced Fluid: Oil

Apparent Tensile Strength

$$\sigma_T \le u_0 \frac{2\sin(\phi')}{1 + \sin(\phi')}$$

Invasion vs. Open-mode Discontinuities

Forced Miscible Fluid: Hydraulic Fracture

Hosung Shin

Hydraulic Fracture: Seepage Drag Forces

Soil is in compression EVERYwhere

Miscible and/or Immiscible Fluid Invasion

CO₂-H₂O Interfacial Interaction ?

High P

Surface Tension and Contact Angle

Water droplet in

N. Espinoza

Lessons Learned

Soil Properties and Behavior

Effective stress analysis: NO tension anywhere

Particle-level forces:

skeletal-capillary

skeletal-drag

Energy Geotechnology

Resource recovery: oil, shale gas, hydrates, coalbed CH_4 , geoT Development of discontinuities – Fractures and lenses Unsaturated soil behavior: GREAT (but adapt) Common: Mixed fluid conditions: oil-H₂O; CH_4 -H₂O; CO_2 -H₂O

Lateral Earth Pressure

Lateral Earth Pressure

Jacky 1944 Brooker and Ireland 1965 Schmidt 1966 Andrawesand El-Sohby 1973 Abdelhamid and Krizek 1976 Mayne and Kulhawy 1982 Feda 1984 Kavazanjian and Mitchell (1984) Leonards 1985 Mesri and Hayat 1993 Michalowski 2005 Castellanza and Nova 2004

.... among others....

For all soils [NC and OC], K_o should asymptotically approach unity

Mount St. Helens – May 18, 1980

Mount St. Helens – May 18, 1980

Mount St. Helens – May 18, 1980

Volcanic Ash Soils: Formation

 $k_o = 1 - \sin \varphi$

 $S_s = 50 - to - 200 \text{ m}^2/\text{g}$

k_o: Experimental Results

k_o: **DEM Simulation**

N= 9999 (in 2D) - 8000 (in 3D) cov particle diameter: 0.25 Interparticle friction: 0.5 Simulation: reduce D or G

k_o: DEM Simulation

k_o: DEM Simulation – Pressure Solution

Polygonal Fault Systems

1km

Lessons Learned

Soil Properties and Behavior

Discussion by G. A. Leonards⁷

The existing state of stress in the ground is needed to predict ground deformations due to construction operations; to assess the potential for hydraulic fracturing; for reconsolidating clay samples to in-situ conditions, to measure strength and deformation properties; to assess the longterm lateral earth pressure against restrained retaining walls, and so on.

Dissolution and diagenesis: affect k_o

Emergent phenomena: shear localization

Complex geo-plumbing

Energy Geotechnology

Resource accumulation (oil, gas)

Gas recovery from hydrate bearing sediments

Leakage (C-sequestration)

Frozen Ground

GAL: Pavements Teton Dam

United States Patent Office

3,250,188 Patented May 10, 1966

15 Claims. (Cl. 94-7)

Briefly, the present invention comprises the employment of a high insulating layer in between the layer of a nonfrost susceptible material and the frost susceptible material, which substantially reduces the depth of freezing to the point where a given depth of insulating material can be substituted for an equivalent of several times this depth of gravel. It is necessary that this insulating layer have certain qualities of insulation, heat capacity, imperviousness to vapor transport, compressibility, strength and thermal conductivity to prevent detrimental effects. The type and location of these layers are factors determined by the principles of this invention.

Accordingly, prior limiting assumptions not included in the approach of the present invention, are as follows: (1) Specific heat and thermal conductivity of the soil are independent of temperature, (2) the heat capacity of the soil can be neglected, (3) the temperature at which water first freezes in the soil pores is independent on time and space, and (4) at the freezing front, when nucleation first occurs, all of the water in the soil pores freezes instantaneously. Layered systems are treated only by crude approximations in the prior approaches.

1965 Highway Research Board "Best Paper Award"

Ice Lenses

Kaolin

Viggiani – Grenoble

Ice Lens Formation Under Stress Boundary

Taesup Yun

Hydrate lenses – Pressure cores

Percussion Core - KUB
Hydrate Bearing Sediments

Sheng Dai

Lessons Learned

Soil Properties and Behavior

FIELD: lens formation = Normal to thermal front MORE GENERAL: also affected by effective stress

Energy Geotechnology

Frozen ground engineering GREAT but... generalize Hydrate distribution

Friction & Repetitive Loading

- <3500 BC Mesopotamia
- ~2750 BC Egyptians
- 1452-1519 L. da Vinci
- 1663-1705 G. Amontons
- 1736-1806 C.A. Coulomb

The wheel Sliding on sand and on wet silt $T \neq$ (apparent contact area) Re-discovered da Vinci's

Referred to Amontons observations

EXPERIMENTAL STUDY OF STATIC AND DYNAMIC FRICTION BETWEEN SOIL AND TYPICAL CONSTRUCTION MATERIALS

Strength and Repeated Loads Larew & Leonards (1962)

Subsidence and Vibration Brumund & Leonards (1972)

Friction and Vibration Brumund & Leonards (1973)

Dynamic Compaction Leonards, Cutter & Holtz (1980)

Undrained Monotonic And Cyclic Strength Alarcon, Leonards & Chameau (1988)

Bearing Capacity – Ng factor

Macroscale Response in q, p', e, ε

Constant Volume Shear

Gye-Chun Cho

Dilatency Angle Ψ

(Been and Jefferies 1985)

Peak Friction Angle

□ (DEM 3D from Thornton 2000), ■ (DEM 2D from Kruyt and Rothenberg 2006), Drained TC(\triangle), Undrained TC(\blacktriangle), Drained TE(TM), Undrained TE([°]) (DEM-3D from Yimsiri 2001), * (experiments) and \diamondsuit (DEM 3D from Suiker and Fleck 2004), ◆ by the authors.

Residual Friction Angle ϕ

Note: clay fraction must exceed ~20%

particle alignment

size segregation

shape segregation

Macroscale Response in q, p', e, ε

Repetitive Loading – Terminal Density

Guillermo Narsilio

Lessons Learned

Soil Properties and Behavior

Friction: complex parameter !

 ϕ_{cv} particle shape

- ψ packing density (OC), shape, cementation
- $\phi_{p} = \phi_{cv} + 0.8 \ \psi$
- ϕ_r clay(PI) or mica >~20% ... also segregation

Repetitive loading: further work needed

Energy Geotechnology

Vibration and repetitive loading: common ! stress: e.g., foundations temperature: energy piles miscible/immiscible fluid fronts: e.g., geo-storage

Slopes Instability & Dam Failures

GAL's analysis of failures: GAL's life:

: Multiple working hypotheses + Falsification either PASSIONATE or SKEPTICAL

Vajont Landslide 9 October 1963

L. Muller L. G. Belloni J. Hendron F.D. Patton

http://www.landslideblog.org

Baldwin Hills Reservoir

14 December 1963

R.F. Scott

http://www3.gendisasters.com

Teton Dam June 5, 1976

M. Duncan J. Sherard J.W. Hilf

http://www.geol.ucsb.ec

TP.

10

Malpasset Dam December 2, 1959

P. Londe J. L. Serafin W. Wittke

The Man In A Red Turban Jan van Eyck (1433 - Oil)

Conclusions

G.A. Leonards: (1) deepest clear-thinker (2) passion

Emphasized: Understanding Historical geology Discontinuities – Weak seams Multiple working hypotheses + Falsification

Contributions: soils, geo-processes, engineering

Renewed relevance in the context of energy geotechnology

Fascinating field !!

Closing Remarks Workshop on Dam Failures

" Speaking for myself, in the future I will be more humble and more tolerant of the errors and omissions that may befall a fellow engineer

and [I will be] a lot more careful before taking a decision that could affect the security of an important structure"

Leonards 1985

Thank you !