

The Revised Soil Classification System RSCS

The accompanying Excel-sheet facilitates the implementation of the Revised Soil Classification System RSCS. The recommended procedure for soil classification follows:

[1] Input Parameters.

- Obtain the gravel fraction F_G (where G > sieve No. 4), sand fraction F_S (sie ves No. 200 < S < No. 4) and fines fraction F_S (passing sieve No. 200) by mass.
- Provide the percentage of the soil fractions passing Sieve #4 and Sieve #200.
- For gravel fraction F_G : determine e^{max} and e^{min} . For estimates of e^{max} and e^{min} , use the coefficient of uniformity C_u and grain roundness R (correlations for e^{max} and e^{min} as a function of C_u and R are built in the Excel-sheet).
- For sand fraction F_S : determine e^{max} and e^{min} for each fraction. For estimates of e^{max} and e^{min} , use the coefficient of uniformity C_u and grain roundness R (once again, correlations for e^{max} and e^{min} as a function of C_u and R are built in the Excel-sheet).
- For fines fraction *F_F*: determine three liquid limits using (1) deionized water LL_{DW}, (2) 2 M-NaCl brine LL_{brine}, and (3) kerosene LL_{ker}. Use the fall cone method for repeatability (BSI 1990).

[2] Soil Classification Charts.

- <u>Triangular textural chart.</u> The Excel-sheet automatically generates the triangular textural chart to identify the fraction that controls the mechanical behavior and the fraction that controls fluid flow.
- <u>Fines classification chart.</u> The liquid limits (LL_{DW} , LL_{brine} , and LL_{ker}) determine the fines plasticity and the electrical sensitivity S_E (Note: when $LL_{ker}/LL_{brine}=1$ and $LL_{DW}/LL_{brine}=1$, fines are not sensitive to pore fluid changes the electrical sensitivity is $S_E = 0$).

[3] Final Classification - Reporting.

- Classify a given soil according (Triangular textural chart). If the soil group includes either "F" or "(F)", determine its plasticity and electrical sensitivity (Fines classification chart).
- Report the final nomenclature. For example, S(F) HI :
 - S Sand controls the mechanical response.
 - (F) Fines control the fluid flow
 - HI The fines exhibit high plasticity and intermediate electrical sensitivity.
- Report all input parameters, the soil classification, and include the triangular chart (soil-specific) and the fines classification chart.

Contact us

For further details or advice, please contact Junghee Park: junghee.park@kaust.edu.sa or Gloria Castro: gloria.castroquintero@kaust.edu.sa

References

BSI (British Standards Institution). (1999). Code of practice for site investigations. BS 5930, London.

- Jang, J., and Santamarina, J. C. (2016). Fines classification based on sensitivity to pore-fluid chemistry. *Journal of Geotechnical and Geoenvironmental Engineering*, 142(4), p.06015018.
- Jang, J. and Santamarina, J.C., 2017. Closure to "Fines classification based on sensitivity to pore-fluid chemistry" by Junbong Jang and J. Carlos Santamarina. *Journal of Geotechnical and Geoenvironmental Engineering*, 143(7), p.07017013.
- Park, J., and Santamarina, J. C. (2017). Revised soil classification system for coarse-fine mixtures. *Journal* of Geotechnical and Geoenvironmental Engineering, 143(8), p.04017039.
- Park, J., and Santamarina, J. C. (2017). Revised soil classification system RSCS. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 2017. p.1081-1084.
- Park, J., Castro, G. M., and Santamarina, J. C. (2018). Closure to "Revised Soil Classification System for Coarse-Fine Mixtures" by Junghee Park and J. Carlos Santamarina" *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE (in print).