Buenos Aires – November 2015

Soil and Rock Properties

- Preamble -

- 1. Classification → Properties
- 2. Permeability
- 3. Compressibility
- 4. Coupling
- 5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer
- 6. Shear Strength Localization
- 7. Repetitive Loads
- 8. Properties: Database & IT tool

1. Classification → Properties

- 2. Permeability
- 3. Compressibility
- 4. Coupling
- 5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer
- 6. Shear Strength Localization
- 7. Repetitive Loads
- 8. Properties: Database & IT tool

Coarse

Fines:

(Pass #200)

Plasticity LL_{brine}

1. Classification

2. Permeability

Leonardo's Parachute

Hydraulic Conductivity: <u>Physics</u>

Physics-inspired:

Hagen–Poiseuille Kozeny-Carman

 $k = \frac{cg}{\mu_{fl}} \frac{\rho_{fl}}{\rho_m} \left(\frac{1}{S_s}\right)^2 \frac{e^3}{1+e}$

Hydraulic Conductivity: Data

Hydraulic Conductivity: Data

Hydraulic Conductivity

Physics-inspired:

Hagen–Poiseuille Kozeny-Carman

$$\kappa = \frac{cg}{\mu_{fl}} \frac{\rho_{fl}}{\rho_m} \left(\frac{1}{S_s}\right)^2 \frac{e^3}{1+e}$$

Data-driven:

I---► Robust model

$$\begin{cases} \frac{k}{k_o} = \left(\frac{e}{e_o}\right)^b \\ \frac{k_o}{cm_s'} = 10^{-5} \left(\frac{m^2/g}{S_s}\right)^{1.8} \end{cases}$$
 (for water)

$$\frac{k}{\frac{cm_{s}}{s}} = 10^{-5} \left(\frac{\frac{m^{2}/g}{S_{s}}}{S_{s}}\right)^{1.8} e^{b}$$

(for water)

Hydraulic Conductivity

Physics-inspired:

Hagen–Poiseuille Kozeny-Carman

Data-driven:

$$\begin{cases} \frac{k}{k_o} = \left(\frac{e}{e_o}\right)^b \\ \frac{k_o}{\frac{cm_s}{cm_s}} = 10^{-5} \left(\frac{\frac{m^2}{g}}{S_s}\right)^{1.8} \end{cases}$$
 (for water)

-> Robust model

Pore Network

Log (d_{pore}/micron)

preferential flow along interconnected large pores

Hydraulic Conductivity: Fractured Rocks

Marcellus shale outcrop

Don Duggan-Haas

- 1. Classification
- 2. Permeability

3. Compressibility

k_o Compression: Data

k_o Compression: Model

k_o Compression: Model

Compression: Data

Physics Inspired

Boyle-Mariotte $P V = \alpha$ $(\sigma' + \sigma_A - \sigma_R)(V_t - V_s) = \alpha$ van der Waals

	Classical	$e = e_{ref} - C_c \log\left(\frac{\sigma'}{\sigma'_{ref}}\right)$	Terzaghi & Peck (1948) Schofield & Wroth (1968)
Semi-log	Cubic (3 rd order)	$e = e_{ref} - \alpha \cdot \log\left(\frac{\sigma'}{\sigma_{ref}}\right) + \beta \cdot \left[\log\left(\frac{\sigma'}{\sigma_{ref}}\right)\right]^3$	Burland (1990)
	Modified	$e = e_{c} - C_{c} \log \left(\frac{1kPa}{\sigma' + \sigma'_{L}} + \frac{1kPa}{\sigma'_{H}}\right)^{-1}$	
Power	From gas to soil	$e = e_{\rm H} + (e_{\rm L} - e_{\rm H}) \left(\frac{\sigma' + \sigma_{\rm c}}{\sigma_{\rm c}}\right)^{-\beta}$	Hansen (1969) Butterfield (1979) Juárez-Badillo (1981) Houlsby & Wroth, (1991) Pestana & Whittle (1995)
Exponential	Gompertz function	$\mathbf{e} = \mathbf{e}_{\mathrm{H}} + \left(\mathbf{e}_{\mathrm{L}} - \mathbf{e}_{\mathrm{H}}\right) \cdot \exp^{-\left(\frac{\sigma'}{\sigma_{\mathrm{c}}}\right)^{\beta}}$	Gregory et al. (2006) Cargill (1984 – β=1)
Hyperbolic	Hyperbolic function (classical hyp: $\beta=1$)	$\mathbf{e} = \mathbf{e}_{\mathrm{L}} - (\mathbf{e}_{\mathrm{L}} - \mathbf{e}_{\mathrm{H}}) \frac{1}{1 + \left(\frac{\sigma_{\mathrm{c}}}{\sigma'}\right)^{\beta}}$	
Arctangent	S-shaped function	$e = e_{L} + \frac{2}{\pi} (e_{L} - e_{H}) \arctan \left[- \left(\frac{\sigma'}{\sigma_{c}'} \right)^{\beta} \right]$	

- 1. Classification
- 2. Permeability
- 3. Compressibility

4. Coupling - Implications

Compressibility + Permeability: Coupled HM

$$e = e_{\rm H} + (e_{\rm L} - e_{\rm H}) \left(\frac{\sigma' + \sigma_{\rm c}}{\sigma_{\rm c}}\right)^{-\beta} \qquad \qquad \frac{k}{k_{\rm o}} = \left(\frac{e}{e_{\rm o}}\right)^{\rm b}$$

Oedometer

Compressibility + Permeability: Coupled HM

$$e = e_{\rm H} + (e_{\rm L} - e_{\rm H}) \left(\frac{\sigma' + \sigma_{\rm c}}{\sigma_{\rm c}}\right)^{-\beta} \qquad \qquad \frac{k}{k_{\rm o}} = \left(\frac{e}{e_{\rm o}}\right)^{\rm b}$$

suction caissons

cake formation & borehole stability

seafloor & pumping

Compressibility + Permeability: Hydro-Frac.

Compressibility + Permeability: Hydro-Frac.

5cm

Hydraulic Fracture: FEM

(MCC - <u>no</u> cohesion)

HF in Soils: ab initio

Soil is in compression EVERYwhere

HF in Pre-structured Media (Shales)

opening

closing

Self-propping

HF in Pre-structured Media (Shales)

- 1. Classification
- 2. Permeability
- 3. Compressibility
- 4. Coupling

5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer

k_o Loading

Oedometer: Improvements

Oedometer?

Small Strain Stiffness

k_o Loading: Fabric change

V_s measurement: Contact deformation Stiffness @ constant fabric

Velocity-Stress: Soils

Velocity-Stress: Fractured Rock

- 1. Classification
- 2. Permeability
- 3. Compressibility
- 4. Coupling
- 5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer

6. Shear Strength - Localization

Sediment Response During Shear

Plane Strain

Contractive sample: rnd(e)=0.92-1.02 (Note: $e_{cs}=0.82$)

 $\delta\text{-fields} @ \epsilon_z\text{=}20\%$

Sediment Response During Shear

Plane Strain

At Critical State: rnd(e)=0.77-0.87 (Note: e_{cs} = 0.82)

$\delta\text{-fields} @$ end of test

H. Shin – Ulsan Univ.

Localization?

Strain localization shear band compaction band

Grains migration

clogging piping erosion sand production

Fluids

viscous fingering density tears

Fluid-driven

desiccation cracks gas or oil-driven hydraulic fracture

Lenses ice & hydrate

Dissolution shear in contraction piping & wormholes

- 1. Classification
- 2. Permeability
- 3. Compressibility
- 4. Coupling
- 5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer
- 6. Shear Strength Localization
- 7. Repetitive Loads

Stress - Strain - Void Ratio First Cycle

Settlement k_o Conditions (coarse sand)

Eugenia Canyon

Masada (Israel)

Masada (Israel)

Grand Canyon Skywalk

Delphi - Greece

Brezno (Czech Republic)

4/18/2013

Jan.Novotny@arcadis.cz

Brezno (Czech Republic)

7/29/2013

Jan.Novotny@arcadis.cz

- 1. Classification
- 2. Permeability
- 3. Compressibility
- 4. Coupling
- 5. Stiffness: $G_{max} \leftrightarrow G_{tan}$... Oedometer
- 6. Shear Strength Localization
- 7. Repetitive Loads
- 8. Properties: Database & IT tool

Properties: IT Tool

NETFLIX

Soils:

Dr. M. Terzariol (KAUST)

Fractured rocks:

Dr. L.G. Cruz (U. Cauca)

Closing Thoughts

Geotech 100 yrs:	comprehensive revision + pruning + expansion (starting with classification)
Models & correlations	<i>physics inspired data driven</i> geo-databases: ready for a global community effort
Properties:	revolution in experimental methods boundaries, variability and internal scales <i>what we want to measure what we think we measure</i>
Coupled HTCBM:	complex even σ^{\prime} (the most common HM)
Repetitive loading:	ubiquitous fertile territory for research
Localizations:	ubiquitous and problematic

Characterization, Modeling, Monitoring, and Remediation of FRACTURED ROCK

The National Academies of SCIENCES • ENGINEERING • MEDICINE

This presentation and support information:

(2) egel@kaust.edu.sa or uperc.kaust.edu.sa

Reason for 3 great geo-conferences in Argentina

how can we -GeoEngineers- contribute?

how can we -GeoEngineers- contribute?

Soil & rock = terroir (latin)

in Argentina → *Malbec, Torrontes…*

how can we -GeoEngineers- contribute?

Soil & rock = terroir (latin)

in Argentina → *Malbec, Torrontes…*

We did not develop TRUBALL (DEM)

we developed GREATBALL !

how can we -GeoEngineers- contribute?

Soil & rock = terroir (latin)

in Argentina → Malbec, Torrontes...

We did not develop TRUBALL (DEM)

we developed GREATBALL !

It takes two to tango

enjoy wonderful colleagues !

Welcome to Argentina !!

Peck Terzaghi