Integrated Ground Behavior

Part A: Particle-level Phenomena & Macroscale Behavior (J. Carlos Santamarina)

Georgia Institute of Technology

soil

fine-grained soil fabric coarse-grained soil packing platy particles

conduction diffusion energy coupling stiffness threshold strain strength (scales) rheology diagenesis

Ionic concentration pH= 7 *_acid* basic, ⁶ OH[−] H+ igodolHCI 🍐 🍃 NaOH

Minerals

OH-

O=

montmorillonite

kaolin

Al octa

Si tetra

MDL / www.soils.wisc.edu/virtual_museum/index.html

Diffuse double layer

bulk electrolyte

Mixed fluid phase

Interacting menisci:

θ non-constant

Particle Forces		#200		
Skeletal	$\underline{N} = \sigma' d^2$			
Weight	W = $(\pi G_s \gamma_w / 6) d^3$		skeletal & weight (Terzaghi)	
Buoyant	$\mathbf{U} = (\pi \gamma_{\rm w} / 6) \mathbf{d}^3$		(101_0.g)	
Hydrodyn.	$F_{drag} = 3\pi\mu v d$	fines detach	→ coarse v↑	
Capillary	$F_{cap} = \pi T_s d$	capillary		
El. attraction	$Att = \frac{A_h}{24t^2} d$	electrical		
El. repulsion	$\operatorname{Re} p = \frac{24\sqrt{c_o}}{10000} e^{-10^8 t \sqrt{c_o}} d$			
Cementation	$T = \pi \sigma_{ten} t d$	μ m	mm	
		diameter d		

Size and Surface - Surface Phenomena

Size and Surface - Surface Phenomena

Fines migration and bridge formation

D/d=2.4

D/d=6.5

Pore size / d_{fines}

Particle Shape

Particle Shape

Fabric map

kaolinite

Stern potential and R_{DL} decrease van der Waals attraction prevails

Clay minerals – Differences

different faces different from edge edge contribution charge change ζ / particle thickness hiding edge DL

Coarse particles: relative size

D/d=1.37

D/d=5.3

random packing:

volume fraction of small particles

and...

Relative size and shape

Platy particles: bridging

soil

fine-grained soil fabric coarse-grained soil packing platy particles

conduction diffusion energy coupling stiffness threshold strain strength (scales) rheology diagenesis

Small-strain stiffness: Contact-controlled

coarse grains

(Frocht, 1941)

 $V_{\rm S} = \alpha \left(\frac{\sigma'}{kP_{\rm a}}\right)^{\beta = \frac{1}{6}}$

fine grains

(N. Skipper - UCL 2002)

$$V_{s} = \alpha \left(\frac{\sigma'}{kP_{a}}\right)^{\beta < \frac{3}{4}}$$

Stiffness-Stress: contact behavior & fabric changes

Stiffness: platy particles

β**= 0.36 -** α/700

Particle shape effects

Drying – Unsaturated media

Degree of saturation S

Stress change and cementation

Load (no unloading)

Unload and reload

Strain regimes

	Small Strain	Large Strain
Deformation	at contacts	fabric changes
Stiffness	maximum	decreases
Losses	very low	large - frictional
Volume Change	minimal	potentially large
Diagenetic effects	potentially high	small in drained shear
Fabric	constant	changes towards CS
Fabric	constant	changes towards CS

Threshold strains - Ranges

soil

fine-grained soil fabric coarse-grained soil packing platy particles

conduction diffusion energy coupling stiffness threshold strain strength (scales) rheology diagenesis

Stress-dependent strength and ϵ_{vol}

Chain buckling: coordination↑

Rotational frustration: coordination↓

Effect of roundness on Φ_{cv}

Evolution of internal micro-scale – 3D

Constant angle of repose?

Narsilio, Dodds, Fugle, Trott, Kim, Yun

Anisotropy in ϕ - Clays

Undrained strength anisotropy

Controlled by the generation of pore pressure

- chain buckling and skeletal stiffness
- spatial variability of e

pore size (in log scale)

Undrained strength anisotropy

Controlled by the generation of pore pressure

- chain buckling and skeletal stiffness
- spatial variability of e
- threshold strain

Mayne and Holtz 1985

Undrained strength anisotropy

Controlled by the generation of pore pressure

- chain buckling and skeletal stiffness
- spatial variability of e
- threshold strain
- fabric anisotropy

100

Vaid and Sivathayalan 1996

Scales

soil

fine-grained soil fabric coarse-grained soil packing platy particles

conduction diffusion energy coupling stiffness threshold strain strength (scales) rheology diagenesis

			C _u >4, 1≤C _c ≤3	GW
COARSE	Gravel: > 50% retained sieve #4	< 5% fines	else	GP
			Below 'A' line	GM
		> 12% fines	Above 'A' line	GC
> 50%			C _u >6, 1≤C _c ≤3	SW
retained sieve #200	Sand:	< 5% fines	else …	SP
	< 50% retained	porosity	Below 'A' line	SM
sieve #4		> 12% fines	Above 'A' line	SC
FINE < 50% retained sieve #200	LL<50	60 minor	A line	ML
		$\frac{\times}{9}$ ⁵⁰	re fluid	
			СН	OL
	LL>50	Dlasti	OH or MH	МН
		10 CL OL CL-ML OL ML ML	. or -	СН
		0 10 20 30 4 lic	0 50 60 70 80 90 100 Juid limit	ОН

	. =0/ 61	C _u >4, 1≤C _c ≤3	GW	
pore fluid (ex		plicitly)	else	GP
COAR <mark>S</mark> EGTE®%Ofat sieve #4	ree%ofasati	turation fines	Below 'A' line	GM
	sieve #4		Above 'A' line	GC
_{> 50%} particle shape - coarse c _u >6, 1≤c _c ≤3				SW
retained sieve # <mark>300</mark> 0	retained < 5% fines sieve #specificardurface - fines (explicitly)			
< 50% retained > 12% fines extent sofe diagenesis Above 'A' line			SM	
			Above 'A' line	SC
inherent anisotropy				ML
FINE	LL<50	× 50 ap U 40		CL
spatial variabil у сн			OL	
< 50% stoin bio-activity and bio-viability				МН
sieve #200	LL>50	$\begin{array}{c c} 10 \\ CL-ML \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		СН
		0 10 20 30 40 liqi	uid limit	ОН