GeoCongress 2006 - Geotechnical Engineering in the IT Age

Geotechnology: Paradigm Shifts in the Information Age

J. Carlos Santamarina

Georgia Institute of Technology

Information Technology - Synergism:

microelectronics

computers

data storage and display

sensors

digital data analysis

inverse problem solving

numerical methods

communications (cell phones - internet)

Interwoven History

1910's	Fredholm: generalized inverse
1920's	Consumer electronics (radios, electronic phonographs)
1930's	Car radios and portable radios
1940's	Digital computer Transistor at Bell Labs Digital signal processing starts
1950's	Sony pocket-size transistor radio Integrated circuits at Texas Instruments Feynman: nano-technology
1960's	Computers emerge Growth of digital signal processing: FFT algorithm
1970's	Microprocessors: computers = chip Consumer electronics begin transition to digital Computerized tomography
1980's	Personal computers & CD players, commercial cellular phones Texas Instrument: single-chip digital signal processor Micromachining
1990's	Digital memory and storage IBM Deep Blue defeats G. Kasparov (1997) World wide web
2000's	Submicron electronic devices More than 30 nano-technology research centers in the US.

Microelectronics – Moore's Law

data from Birnbaum and Akinwande

Storage

data from Kurzweil

The brain - Storage

each synapses stores 1 bit brain ~100 TB 1 million\$

— — 2006 Computer Capabilities — —

each molecule stores 1 bit brain $\sim 10^7$ TB 100 billion\$

Calculations per second

data from Kurzweil; Moravec

Communications

data from Kurzweil

Lenses: Paradigm Shifts

Observations

Underlying technology: doubles every 7-to-24 months

At present rate: computers ~ brain in 10-to-20 years

How is our field changing?

What are possible paradigm shifts?

Building Blocks

Sensors

Signals

Inversion

Content

Databases

Nano and Micro Technology Sensors - MEMS

Nano-Control

Nano-manipulation (Eigler 1990)

Montmorillonite (MDL)

Surface control NaPAA

Micro-electrical mechanical systems MEMS

Cantilever displacement sensor

Micro-electrical mechanical systems MEMS

Micro-mirror array

Fiber optic based pressure transducer

Distributed Optical TDR Sensors

Strain (Dowding)

Pore fluid chemical properties

Moisture content (Brillouin - Pamukcu)

Temperature (Raman - SENSA)

30 km ... every 1 m ... 1°C resolution

Soil = innate sensing system

(N. Skipper – UCL 2002)

Signal Processing

Data Fusion

Signals \rightarrow Information

Pilots Station, Louisiana – NOAA

After Katrina

Massive data \rightarrow Display \rightarrow Information

NSF - D. Fratta

Data Fusion: Same Mode

Fuse multi-sensor data to gain new information

http://www.pc.rhul.ac.uk/zanker/teach/PS1061/L6/braille.JPG

Data Fusion: Multi Mode

Navigational

Homing in

sunsite.tus.ac.jp/multimed/pics/animals/bat.jpg

www.moorhen.demon.co.uk

Cementation - Elastic waves

Cementation - Electromagnetic waves

Observations

Signal processing = information extraction noise control similarities between signals simple algorithms may be sufficient

Data fusion = new information from: multiple same-mode sensors multi-modal sensors spatially distributed sensors concurrent or time-shifted data streams

Inversion

Sensing at boundaries ... learning about the body

From CAUSE to EFFECT

From EFFECT back to CAUSE

Tomography

Unknown internal conditions

Micro Computed Tomography

Alshibli - www.eng.lsu.edu

Inversion: Ubiquitous in Geotechnology

Measured Values Inverted Values triaxial F-δ constitutive model parameters oedometer u(t) C_v k pollutant c(z,t) location and timing of leak $V_{\text{Ravleigh}}(\omega) \quad V_{s}(z) \text{ from SASW}$ settlement $f(t) = C_v + C_s$ $\delta_{h}(z)$ along a pile $k_{h}(z)$ along the pile ground vibration evolution of G during event

Conceive all experiments within inverse problem solving framework

Distributed Content Development

many + internet = collective intelligence

Great Backyard Bird Count

Northern Cardinal

(2/17/06 - 2/20/06)

Community Internet Intensity Map

Nisqually 2/28/2001

did you feel it? www.usgs.gov

Wiki-Geo-Pedia?

"Thousands of people, all over the world, from all cultures, working together in harmony to freely share clear, factual, unbiased information... [with the] simple and pure desire to make the world a better place."

Wikipedia Founder Jimmy Wales

Observations

Distributed sensing

Many not necessarily "sophisticated sensors" Specific task / protocol Proper data gathering / transfer **Distributed content development** Unprecedented opportunities **Development of large databases** New information...

new understanding...

new questions...

Databases

From data to knew understanding

To identify the critical parameters

Risk of heart complications (Database: 10,682 patients - 7 hospitals)

Q-waves in electrocardiograms

low systolic blood pressure

abnormal respiratory sound with fine crackles

exacerbation of known reduced blood flow to the heart

Better practice/diagnosis

Lower cost

Enhanced understanding

Guide to further research

To identify the nth control variable

To explore causal relations

rotational frustration (e[↑])

vs. chain collapse $(e\downarrow)$

Spatial Systematic Organization

K=12 N=202 Hein Omb Ma 122. A. 30 Nak War 111 House & again the C-1 Ale 116? Le = 19%. Der h= 198. Taz/ 10 112 . 12. 197.4 he = her 581 44.58 M - 541 41 3-01.0 KAUNA TUNI A THE A PARTY AT MARK + AT

Spatial organization + analyses: GIS

Paradigm Shifts

The future ain't what it used to be ... Yogi Berra

"inert soils" \rightarrow "self-sensing media"

σ'_v [kPa]

"n-simple tests" \rightarrow "one information-rich test"

See also A. Rechenmacher: spatial variability

Old Paradigm New Paradigm

Philosophy	many simple tests	a few, information-rich tests
Boundaries	simplest possible	complex
Measurements	very few	many (x,y,z,t) multisensor
Interpretation	simplest inversion	comprehensive inversion
Information per test	very limited	as much as needed
Number of tests	many	one may be sufficient

"site investigation" \rightarrow "model confirmation"

Seoul - GIS

Old Paradigm New Paradigm

test a model	"go and see"	Philosophy
GIS-based model of the site	limited	Starting point
extensive, multisensor	minimal	Tools
probabilistic; spatial variability	none	Real time optimization
model testing/updating, @site	simple, @office	Interpretation
based on extensive database	printed correlations	Design parameters

"design+build" \rightarrow "predesign+build+monitor+adapt"

Old Paradigm New Paradigm

Sensor system	minimal	spatially distributed, multi-mode
During constr.	sporadic measurements	continuous monitoring
Interpretation	minimal - limited use	continuous - extensively used
Inferred infor.	just measured data	comprehensive inversion
Safety	"probably" over-designed	known, adequate safety

Observational Method *in the information age*

Closing Thoughts

During the last 30 minutes...

You have received

2 phone calls in your cell phone1 voice mail in your fixed phone5 e-mails (2 spam)

Your students or employees spent 10 min in instant messenger

Decision on your BlackBerry is still on hold...

"Digital Attention Deficit Disorder": a real concern !

IT revolution: it's here !

Embracing IT affects: teach, learn, research, solve problems

Time for best engineering skills and ingenuity to explore new problem solving strategies

IMAGINE A RENEWED GEOTECHNOLOGY inexpensive sensors, unlimited data (z,t) readily searchable comprehensive databases powerful user friendly analysis and simulation software ...

Thank you

Organizers

Comments and suggestions by:

A Bayoumi A Fernandez HK Kim G Narsilio HS Shin G Cascante D Fratta TH Kwon V Rebata-Landa JR Valdes GC Cho E Kavazanjian JY Lee A Schofield TS Yun

The Goizueta Foundation