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ABSTRACT. One of the inversion schemes most employed in seismic tomography processing is least squares and derived algorithms, using as input data the vector

of first arrivals. A division of the whole space between sources and receivers is performed, constructing a pixel model with its elements of the same size. Spatial coverage

is defined, then, as the sum of traveled length by all rays through every pixel that conform the medium considered. It is related, therefore, with the source-receiver’s

distribution and the form of the domain among them. In cross-hole array, rays do not evenly sample the properties of the medium, leading to non-uniform spatial

coverage. It is known that this affects the inversion process. The purpose of this paper, then, was to study the problem of spatial coverage uniformity to obtain travel

path matrices leading to inversion algorithms with better convergence. The medium was divided in elements of different size but with an even spatial coverage (named

as ‘ipixels’), and then it was explored how this improved the inversion process. A theoretical model was implemented with added noise to emulate real data; and then the

vector of measured times was generated with known velocity distribution. Afterwards an inversion method using minimum length solution was performed to test the two

domain divisions. The results showed that the fact of using ipixels not only improved the inversion scheme used in all cases; but in addition allowed to get convergence

where it was impossible to do using pixels; particularly through the method considered. This is a direct result of the improvement of condition number of the associated

matrices.

Keywords: seismic tomography, cross-hole, spatial coverage, pixel, ipixel.

RESUMEN. Uno de los esquemas de inversión más empleados en el procesamiento de datos de tomograf́ıa śısmica es el de mı́nimos cuadrados y algoritmos

relacionados, utilizando el vector de primeros arribos como datos de entrada. Se lleva a cabo una división del dominio completo entre emisores y receptores, con el

objeto de diseñar un modelo de pı́xeles del mismo tamaño. Se define la cobertura espacial como la suma de los tiempos de viaje de todos los rayos en cada uno de

los pı́xeles que conforman el medio. Por lo tanto este parámetro está relacionado con la distribución emisor-receptor y con la forma del dominio entre los mismos. En

el dispositivo cross-hole los rayos no muestrean de igual forma al medio, conduciendo a una cobertura espacial no uniforme. Se sabe que este inconveniente afecta

el proceso de inversión. El propósito de este art́ıculo fué el de estudiar el problema de la uniformidad de la cobertura espacial a fin de lograr matrices de tiempo de

viaje que conduzcan a algoritmos de inversión con mejor convergencia. El medio se dividió en elementos de diferente tamaño pero con cobertura espacial uniforme

(denominados ‘ipixels’). Se implementó un modelo teórico con ruido a fin de simular datos reales; y el vector de tiempos se calculó con una distribución conocida de

velocidades. Luego se probó la convergencia de las dos formas de división del dominio utilizando el método de solución por mı́nima longitud del vector de tiempos.

Los resultados demostraron que el hecho de emplear ipixels no solo mejoró la inversión en todos los casos, sino además permitió lograr convergencia en casos donde

resultó imposible utilizando pixeles; particularmente con el método utilizado. Este es un resultado directo del aumento de la condición de las matrices asociadas.

Palabras-clave: tomograf́ıa śısmica, cross-hole, cobertura espacial, pixeles, ipixeles.
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INTRODUCTION

Cross-hole travel-time tomography surveys consist of registe-
ring the first arrival pulses of waves that travel through subsur-
face between seismic sources and receivers (e.g. geophones, hy-
drophones) located at opposite sides between boreholes (Sheriff
& Geldard, 1995) (Fig. 1).

Transducers:  
7 sources (left) 
7 receivers (right) 
49 rays.

Figure 1 – Ray tracing. Discretization of space in 49 pixels. Cross-hole array.

When attempting to model anomalies between boreholes in
geophysical exploration, it is necessary to manage some kind
of inversion scheme after the pre-processing tasks of the survey
data, to be able to assess some kind of geophysical model about
the medium involved. The tomographic result consists, generally,
in a slowness or velocity distribution through the domain that
permits to discover variations in it, which will lead to detect the
anomalies sought, if any.

In this work the ray theory will be employed, considering
both the host medium and the inclusion as homogeneous (with
different velocities), rendering straight-ray propagation (Kolsky,
1963). This approximation is well suited for depths greater
than 10m as was demonstrated by Imhof (2007). At smaller
ones, stress-dependent anisotropy and heterogeneity are present
producing ray bending, therefore eliminating the independence
between the model raypath matrix and the parameters investi-
gated, and so complicating the inversion (Santamarina & Reed,
1994; Santamarina et al., 2001).

After the acquisition and through the picking and pre-
processing tasks, the vector of travel times y<meas> is formed
with M ×1 length; being M number of measurements (i.e. equa-
tions). The problem, then, lies to apply an inversion technique to
solve the system:

y<meas> = S ∙ x<est> (1)

where S is the M × N raypath matrix that represents the mo-
del and x<est> the N × 1 vector of unknown slownesses (or
velocities) distribution.

Considering x<est>, it is important to quote that generally
two forms of representation exist in order to face the inversion
scheme:

a) Parametric based: the medium is considered with few un-
knowns: host velocity Vhost (constant), inclusion velocity
Vinc (if any, constant too), parameters that locate it: xinc,
yinc ; and finally other that permit to assess its form and
size, i.e. circular or elliptical (see Santamarina & Cesare,
1994; Imhof & Calvo, 2003; Imhof, 2007). This will lead
to an over-determined system of equations that, when pos-
sibly, is solved with variational or least squares inversion
algorithms, for example.

b) Pixel based: The medium is divided in N uniform (i.e.
same size) pixels; each of them is an unknown with a par-
ticular estimated (after the inversion) velocity or slowness
value. When the inversion process is finished, an image
reconstruction will show the position of each element and
its velocity value (or colour pattern related). This will show
the position of inclusion through colour contrast (Taran-
tola, 1987; Menke, 1989; Fernandez, 2000). It is clear that
the smaller the pixels, the better the image resolution ob-
tained, but at the cost of N increment, leading so to an
under-determined system of equations.

Though in (b) a uniform pixel representation was mentioned,
other forms to divide the medium can be studied; since the usual
form leads to uneven distribution in spatial coverage (see Theory).

The primary objective of this paper is to implement a different
form of discretization of the medium with the purpose to study first
the conditioning and rank of several raypath matrices made with
those distinct elements assembly; and second use them to study
their behavior with a typical inversion method using a theoretical
model constructed to that end.

THEORY

Forward and inverse problem

Keeping in mind straight ray theory, the forward problem per-
mits to compute the predicted (output) travel time vector y<pred>

(M ×1) as a function of the vector of known true slownesses (in-
put) x<true> (N×1), and the transformation matrix S (M×N ),
which represents the travel path that connects ‘x’ to ‘y’;

y<pred> = S ∙ x<true> (2)

In the inverse problem, the M values collected in vector y are
measured (y<meas>), and the aim is to estimate the N unknown
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parameters x<est>:

x<est> = S−1 ∙ y<meas> (3)

In general (as in this case) the inverse S−1 cannot be de-
termined, and a pseudo inverse must be used instead (Penrose,
1955):

x<est> = S<pseudoinv> ∙ y<meas> (4)

In a well posed problem the solution exists and is unique and
stable (Santamarina & Fratta, 1998). The problem here is that
cross-hole tomography is not a well posed problem because of
the relative distribution of sources and receivers (Branham, 1990;
Tarantola, 2005) that involves rays almost parallel which increase
condition number of associated S matrix.

The procedure is to calculate first the appropriate matrix S
of travel paths, then evaluate its pseudoinverse S<pseudoinv>

(depending of the method of inversion considered) and last to
apply Eq. (4) to find x<est>.

Considering straight path simplifies very much the formula-
tion at hand because the matrix S must be assembled only once
(explicit form).

Raypath matrix

The entries in S (Fig. 2) are calculated identifying the intersec-
tion of the individual ‘m ’ ray with the ‘n’ pixel boundaries and
computing the Pythagorean length ‘d ’ inside the element.

Therefore, the size of S will grow with the increment of mea-
surements and/or discretization density.

Considering again Figure 1 and having still in mind Figure 2;
the number of sources and receivers there is 7 and so the total
number of rays is 49 (constant for this array). If the medium is
divided in 7×7=49 pixels, S will be of 49 rows (M , number of
rays) per 49 columns (N , number of pixels, whose slownesses
are unknown). It is relevant to note that the increment of the pixel
density (N ), will lead to consider more pixels in the computation
of travel paths for each receiver.

This system of equations is apparently even-determined
(equal number of equations than unknowns). The word apparen-
tly means that in some cases (especially in cross-hole, see Imhof,
2007) the system is ill conditioned and the rank of S < N , M .
This will give an underdetermined system leading to infinite so-
lutions. The same will occur, for example, dividing the medium in
more pixels to improve the resolution of the images. (the limita-
tion of dividing the medium with N = M is that the resolution
is coarse, because the size of the pixels is large).

Incrementing the number of transducers to improve resolu-
tion is not practical and always possible to do; first, due to the

amount of survey effort needed (cost) and, second, if rays are
so near, the condition of S matrix augment and not necessar-
ily add information to the system (Santamarina & Fratta, 1998;
Fernandez, 2000).

Matrix of Spatial coverage (Sc)

As quoted, the size of S is M rows (number of measurements)
per N columns (number of unknown pixel slownesses). The sum
of each individual column of S brings the total length traveled by
the rays in one pixel (Fig. 2). Applying this summation in all co-
lumns of S, gives a 1 × N row vector that re-arranged following
the geometric pattern, brings the Sc matrix of ‘s ’ vertical pixels
by ‘t ’ horizontal ones where N = s + t . It was considered here
s = t .

Two examples of cross-hole Sc matrices are represented in
Figure 3 for 10 source-receiver’ pairs; (a) for 100 elements and
(b) 400 ones. The dark zones indicate lower values of spatial co-
verage. This means that the information gathered to solve the ve-
locity or slowness of it is lower than in other lighter zones. In other
words the precision for the evaluation of the pixel values will not
be uniform. Due to more rays traversing one pixel get more infor-
mation of it (similar to CDP concept in reflection seismics), the
lightest sector at the center of Sc matrix depicts the maximum
resolution and precision for the pixel/s situated there. But what
happens when an inclusion being searched for is far from that po-
sition? The resolution to locate it will be poorer (Santamarina &
Fratta, 1998).

An alternative form to divide the medium to improve the re-
solution in the dark zones is proposed: Instead of separate it in
pixels of same size and different spatial coverage at each; it’ll be
divided in elements of equal spatial coverage and distinct indivi-
dual sizes and named as ipixels. Due to this fact, the elements of
S will be different. Figure 4 shows the domain divided in two den-
sities of ipixels. The same color tones depict same information at
each element.

Any type of element discretization for the physical domain is
perfectly possibly to accomplish, because any type of it is only
geometrical and has for purpose to make the S matrix and arm
the system of equations having the distances traveled by the rays.

Conditioning of a matrix

If there is a high contrast between numerical values of the ele-
ments inside a matrix; it is possible that the calculated rank for
it has an erroneous linearly independent number of rows. Due
to this, the condition number κ is a better choice to study the
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Figure 2 – Raypath matrix assembly and meaning of spatial coverage.

(a) (b)

Figure 3 – Spatial coverage graphs for pixels. (a) 10×10 pixels, (b) 20×20 pixels.

conditioning of a matrix (i.e. how near it is of a matrix of lower
rank) than its rank (Strang, 1980).

κ is defined as the ratio between the singular values with ma-
ximum and minimum absolute values (Golub & Van Loan, 1989):

κ =
max |λi |

min |λi |
(5)

A matrix is said to be ill-conditioned if κ is very large.

Geometrically, the maximum and minimum values represent the
axes of an ellipse (Branham, 1990). If the ratio tends to unity the
correlation is null (independent) and if it is very large, that is al-
most perfect (dependent) and so ill conditioned. In other words,
ill conditioning means that the number of linearly dependent rows
or columns of the matrix tends to increment. This means that
the number of equations/measurements decreases related to the
number of unknowns.
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(a) (b)

Figure 4 – Ipixel spatial coverage graphs. (a) 10×10 ipixels, (b) 20×20 ipixels (calculated from a base uniform Sc matrix of 100×100 pixels).

Lastly, the singular values give an indication related to con-
fidence and the relationship among the measurements of the
phenomena. Small values suggest limited information about
the parameter.

Inversion: Minimum Length Solution (MLS)
Pseudoinverse matrix
Data and model resolution matrices

When the system is over-determined the least squares inversion
method find a set of values x<est> that minimizes L2-norm of
the vector of residuals:

e = y<meas> − S ∙ x<est>

But, with under-determined systems, this is not possibly to do,
since the problem has infinite solutions.

One form to face this difficulty is to find the minimum length
of the vector x<est> that satisfies the M constraints y<meas> =
S ∙ x (Santamarina & Fratta, 1998; Imhof, 2007).

To solve Eq. (4) it is necessary to calculate the pseudoin-
verse S<pseudoinv>. This is a matrix that fulfills four conditi-
ons (see Penrose, 1955) and whose products S ∙ S<pseudoinv>

and/or S<pseudoinv> ∙ S are not necessarily equal to the identity
matrix I.

For underdetermined and consistent MLS method the fol-
lowing expression gives the pseudoinverse (Santamarina &
Fratta, 1998):

S<pseudoinv> = ST ∙ (S ∙ ST)−1 (6)

The data (D) resolution matrix renders the difference between
y<pred> and y<meas>:

y<pred> = D ∙ y<meas> (7)

where:
D = S ∙ S<pseudoinv> (8)

Finally, the model (M) resolution matrix depicts the difference
between x<est> and x<true>:

x<est> = M ∙ x<true> (9)

where:
M = S<pseudoinv> ∙ S (10)

The ideal case develops when D = I and/or M = I which
means that y<pred> = y<meas> (null data error) and/or
x<est> = x<true> (null model error).

METHODOLOGY

Two Matlab programs were developed to construct Sc and Sp
matrices for any size of regularly distributed rectangular pixels
and represent them in graphical form (examples in Fig. 3).

Then, with other two Matlab programs, several Sc of irregular
pixels derived from the previous high density uniform pixel ones
were constructed grouping them with the characteristic of brin-
ging the same spatial coverage at each one (Fig. 4). Finally, new
raypath matrices Si were conformed to those Sc of ipixels.

Afterwards the conditioning of Sp and Si was tested. Table 1
bring the values of κ and rank for some of them and Figure 5
shows a graphical representation of singular values.
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Table 1 – Condition number (κ) and rank of spatial coverage matrices.

Density 7 15 21 29

i=ipixel
p i p i p i p i

p=pixel

κ 4.5e17 1.6e4 ∞ 3.5e3 ∞ 7.5e3 ∞ 5.0e3

rank 4 7 7 15 10 21 13 29

Figure 5 – Singular values for spatial coverage matrices. (a) 7×7 elements. (b) 15×15; (c) 21×21; (d) 29×29. ‘∗’ pixels; ‘o’ ipixels.

Figure 5 clearly shows that there are more representatives
singular values considering ipixels as division criteria for the
domain. This permit to predict from now a better behaviour of
S from i p.

Theoretical model and Minimum Length Solution
(MLS) method

The designed model consisted in a high velocity inclusion
(Vinc = 2000 m/s) located at known coordinates and size, in-
sert in a medium of background velocity Vback = 400 m/s
(Fig. 6). At the left border of the medium ten sources were con-
sidered. At the opposite side were positioned equal number of
receivers, rendering a total number of 100 rays.

Afterwards, the medium was discretized; S was construc-
ted with a ray tracing algorithm and the vector x<true> formed,
following the geometry. Then y<pred> was calculated applying

Eq. (2): y<pred> = S ∙ x<true>. Finally random noise was ad-
ded to form y<meas>.

To solve the under-determined and consistent problem in
matrix form the minimum length solution was applied, using the
following equations.

Replacing Eq. (6) in Eq. (4) renders:

x<est> = ST ∙ (S ∙ ST)−1 ∙ y<meas> (11)

For this solution the corresponding generalized inverse
S<pseudoinv>; Data (D) and Model (M) resolution matrices
were defined in Eqs. (6); (8) and (10), considering S as Sp or
Si depending on the case.

Afterwards, x<est> (slownesses) was inverted, calculating
the velocity vector v<est> and represented graphically when pos-
sible, assigning the velocities to the pixel/ipixel values at the
corresponding x-y positions.
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x

y

Figure 6 – Theoretical model. High-velocity rectangular anomaly. Sources (left) and receivers (right).

RESULTS AND ANALYSES

Conditioning and rank of the raypath matrices Sp and Si

Dividing the medium in 10×10=100 pixels (or ipixels) imply
that the raypath matrix Sp (or Si) will be of M rays (rows re-
presenting the measurements) per 100 pixels (columns). If the
medium discretization is denser, the number of columns will be
greater. For example a 20×20=400 pixels will give a matrix Sp
of M × 400 size. As mentioned, in this work M = 100
(10 sources and 10 receivers).

Table 1 depicts the condition number κ and rank of several
matrices Sp and Si.

The κ parameter is lower with ‘i’ than with ‘p’. Besides the
rank is greater in the first case. All these suggest that the inver-
sion scheme would function better using Si than Sp, as predicted
earlier using SVD decomposition.

Inversion results. Model parameters

Table 3 summarize the inversion results for several matrix confi-
gurations. Six parameters were determined, including height and
width of the rectangular inclusion. Figure 7 shows the inversion
solution of four cases with ipixel used.

In all cases, it was impossible to get model parameters with
MLS method using Sp matrices (without additional information,
which is not the case studied here). This was not the fact using Si
ipixel ones.

The cases 2-6 show that the resolution in V host incre-
ases when more pixels are considered to form Si. V inc is

more difficult to define precisely, especially considering that here
was not added any a-priori information to the inversion scheme.
Nevertheless the variations rounded approximately 8% from the
V inc<true>.

The pair Xinc, Y inc presented little variations and was well
determined in all cases, but important is to note that increasing
cases in Table 3 turned more difficult to define precisely the vi-
sual location of the anomaly (analyze four cases in Fig. 7). These
applied to calculate the height and width of the inclusion.

Besides, the increment in number of unknows (more ipixels)
brought non-definitions in the position and size of the inclu-
sion. The minimum length solution method consider the mini-
mum length of the solution vector x<est> and caution must be
taken because it has an infinite number of solutions and the ade-
quate must be chosen.

The best results were obtained employing up to N ∼ 4 ∙ M
unknowns.

Inversion results. Data and model errors

Table 2 shows L2 norms of Data and Model errors for several ca-
ses of matrices Sp and Si. Minor the error, better the fitting. It
is clearly seen that the data error is minimum in all cases, due
to MLS method resolved the data perfectly. Therefore, the model
error column defined the fitness quality of the inversion.

Considering, for example 20×20 pixel and ipixel sc matrices
to form respectively Sp and Si and resolve the inversion, it was
appreciated (Table 2, Cases 1-6):
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Table 2 – Inversion results. Data and model errors.

Case
Pixel/irregular Data error norm Model error norm

pixel density L2 (D) L2 (M)

1 20 × 20 5.0337 × 10−14 6.3335

2 20 × 20 (100) 2.9807 × 10−13 2.5979

3 20 × 20 (119) 1.8271 × 10−13 2.3078

4 20 × 20 (150) 1.8980 × 10−13 1.8170

5 20 × 20 (238) 3.3062 × 10−13 1.4319

6 20 × 20 (357) 1.8785 × 10−13 1.0417

7 30 × 30 1.9547 × 10−14 12.2669

8 30 × 30 (119) 1.6167 × 10−14 6.4493

9 30 × 30 (150) 5.0658 × 10−14 4.8808

10 30 × 30 (238) 1.5956 × 10−14 4.1092

11 30 × 30 (357) 1.5333 × 10−14 3.2925

12 40 × 40 — —

13 40 × 40 (238) 9.1988 × 10−15 7.0987

14 40 × 40 (357) 9.6506 × 10−15 6.6159

15 50 × 50 (357) 9.7845 × 10−15 7.93

Note: 20×20 (100) means medium with 20×20 ip made from previous 100×100 p.

Table 3 – Model parameters.

Case
Pixel/irregular Vhost Vinc Xinc Yinc Width Height

pixel density (m/s) (m/s) (m) (m) (m) (m)

True 400 2000 0.595 0.784 0.238 0.224

1 20 × 20 — — — — — —

2 20 × 20 (100) 331 2182 0.58 0.76 0.22 0.17

3 20 × 20 (119) 329 2002 0.59 0.74 0.22 0.20

4 20 × 20 (150) 341 2014 0.59 0.76 0.21 0.17

5 20 × 20 (238) 348 2163 0.59 0.74 0.23 0.21

6 20 × 20 (357) 359 1911 0.59 0.75 0.22 0.20

7 30 × 30 — — — — — —

8 30 × 30 (119) 294 3102 0.631 0.801 0.292 0.242

9 30 × 30 (150) 305 2177 0.591 0.812 0.264 0.190

10 30 × 30 (238) 327 2223 0.586 0.797 0.299 0.229

11 30 × 30 (357) 335 2172 0.590 0.815 0.230 0.190

12 40 × 40 — — — — — —

13 40 × 40 (238) 308 2879 0.58 0.76 0.24 0.16

14 40 × 40 (357) 318 4453 0.60 0.76 0.18 0.14

15 50 × 50 — — — — — —

16 50 × 50 (357) 311 4680 0.60 0.815 0.223 0.151

Note: Solution in boldface rows correspond to Figure 7 graphics.
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(a) (b)

(c) (d)

Figure 7 – Inversion results from ip. (a) 20×20(119): ip from previous 119×119 uniform pixels; (b) 20×20(238) ip.; (c) 30×30(238) ip.; (d) 50×50(357) ip.

a) The fact to divide the medium in pixels of the same size
increase the model error of the inversion, as it is seen in
case 1 respect to 2-6.

b) Considering now only cases 2-6; the model error decre-
ases when more number of former pixel were considered
to construct the subsequent ipixel Si matrix. For example
consider the cases when those were 100×100 pixel with
Me=2.5979; and 357×357, that brought a Me=1.0417.
Probably this is related to an increase in precision to eva-
luate the ipixels.

c) Denser the original Sc matrix and coarser the ipixel Sc
derived from it; will signify that minor will be the spatial

coverage difference between the ipixels. Conversely, coar-
ser the former pixel matrix, more difficult will be to obtain
precision in the evaluation of the irregular pixels.

d) The analysis made above is demonstrated again, in cases
7 and below.

CONCLUSIONS

The MLS method functioned properly when the spatial coverage
was uniform (as it was in all ipixel cases), bringing to accepta-
ble results inclusive when the density of ipixels was very high.
In all the other cases with pixels conforming the different raypath
matrices, it was impossible to obtain a convergence to a solution.
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The best inversion results were obtained with a maximum
number of 20×20=400 ipixels, that is four times the data number
(i.e. number of measurements). Although it is possible to obtain a
solution with greater ipixel densities, nevertheless diminishes the
spatial resolution of the image. In these cases and if the ipixel size
is important to image a smaller inclusion, will be necessary to add
additional information (such as a vector of background velocities
V host ) to get a better image.

Finally, it was demonstrated that (at least in MLS) using ip
improves convergence in the inversion process.
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