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Abstract: Characterization studies conducted on Class-F fly-ash specimens gathered from different producers in the southeastern United
States confirm general trends reported for fly ash worldwide. Additional tests and detailed analyses explain the spread in specific gravity
(interparticle porosity cenospheres), highlight the tendency to segregation and layering, and show marked ferromagnetism. Furthermore, data
show that early diagenetic cementation—within days after wetting—hinders densification and produces a fabric that is prone to collapse. New
procedures are specifically developed to diagnose and characterize early diagenesis, including (1) pH measurements as an indicator of
diagenetic potential, (2) test protocols to assess early diagenesis using oedometer tests and shear-wave velocity, and (3) procedures to de-
termine realizable unit weights as reference values for the analyses of contractive or dilative tendencies and instability. In the absence of early
diagenetic cementation, dilative fly-ash behavior is expected in the upper≈20 m under monotonic shear loading. Flow instability may follow
the failure of the containment structure if the ponded ash is saturated and has experienced hindered densification. DOI: 10.1061/(ASCE)
GT.1943-5606.0001986. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.

Introduction

Fly ash is a fine-grained by-product of coal combustion. The
United States alone produces over 50 million t per year. Around
45% is reused, and the rest is disposed of in ponds and landfills
(ACAA 2014). The failure of the Tennessee Valley Authority’s
Kingston Fossil Plant containment embankment in 2008 led to
the release of 500 million gal. (1.9 millionm3) of ponded fly ash
and triggered a national debate regarding the safety of fly-ash

storage systems and conditions that result in the static liquefaction
and flow of ponded fly ash.

This paper documents a comprehensive study of Class-F fly ash.
First, data trends compiled from published reports on fly ash pro-
duced around the world are presented. Then, results obtained from
several studies conducted on fly ash produced in the southeastern
United States are summarized. The paper features new procedures
specifically developed to investigate and characterize some unique
characteristics of fly ash.
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Previous Studies

Fly ash recovered from boilers and ponds exhibits a wide range of
characteristics and properties. Table 1 summarizes an extensive
database compiled from published studies (fly ash produced in
North America, Asia, and Europe). This table supports the follow-
ing observations regarding the chemical, hydraulic, and mechanical
properties of fly ash (data sources are listed in the table):
• Silica SiO2 is the dominant component, followed by alumina

Al2O3. Calcium oxide CaO is often present. The pH ranges from
7.2 to 12.6.

• The specific gravity of fly ash varies from Gs < 2.0 toGs > 2.6.
Typically, fly ash is a well-graded silt (mean Cu ≈ 8), with a
median grain diameter D50 ¼ 30� 20 μm. Sintered millimeter-
size aggregations are common.

• The specific surface varies from 0.09 to 1.3 m2=g. The liquid
limit is in the range of LL ¼ 44� 10. Most fly-ash specimens
classify as low-plasticity silts ML on the United Soil Classifica-
tion System Casagrande chart.

• Measured hydraulic conductivity values span three orders of
magnitude, from 4 × 10−4 to 4 × 10−7 cm=s, and are consistent
with specific surface and liquid limit values.

• The porosity of ponded fly ash and porosity attained in labora-
tory specimens typically varies between n ¼ 0.36 and n ¼ 0.64.
However, a few studies reported extreme porosities, either very
dense n ≈ 0.2 or very loose n ≈ 0.7.

• Published values of effective friction angle vary between ϕ ¼
26° and 43° (for compacted and in situ samples); in most cases,
there is not enough information to discern whether reported
values are for peak and constant-volume shear, yet there is
evidence that dense specimens—relative densities Dr ≥ 80%—
exhibit high friction angles, i.e., dilatancy is included.

• Compression tests under zero lateral strain show low com-
pressibility even at high void ratios. The compression index
Cc ¼ 0.04–0.37 is within the range of low-plasticity fines.
The coefficient of consolidation is estimated from published
deformation-time data in most cases; values span four orders
of magnitude, from cv ≈ 10−8 to 10−4 m2=s.

Experimental Study: Procedures and Results

Scope of the Study: Specimens and Tests

This paper summarizes the results of several studies conducted on
Class-F fly ash. Samples were collected from ash ponds and hoppers
at 38 different coal combustion plants in the southeastern United
States. Half of the specimens had never been in contact with water.
Altogether, the wide range of tests (Table 2) included (1) general
characterization tests (grain-size distribution, plasticity, pH, imbi-
bition, specific gravity, electrical and magnetic properties, and
scanning electron microscopy), (2) depositional characteristics
(tendency to segregation and layering and realizable densities),
(3) hydraulic conductivity, (4) mechanical response (oedometer
tests, small-strain stiffness, and both drained and undrained triaxial
tests), and (5) tendency to early diagenetic cementation. The
following sections review the test procedures and results.

General Characteristics: Index Properties

Particle Shape
Fly ash forms frommolten droplets. The chemical composition—iron
content—and long exposure to high boiler temperatures determine
the general characteristics of fly-ash particles (Fisher et al. 1976).

Table 1. Fly-ash properties using data trends compiled from published reports on fly ash produced around the world

Property Symbol Reported cases Unit

Rangea Statisticsb

Minimum Maximum μ σ

Chemical composition SiO2 47 % by weight 27 64 47.7 11.0
Al2O3 % by weight 7.0 38 23.6 7.5
Fe2O3 % by weight 1.7 33 10.4 7.5
CaO % by weight 0.5 27 7.0 7.5

Basicity pHc 9 — 7.2 12.6 9.4 2.1
Grain-size distribution D100 68 μm 60 1,960 442 464

D60 μm 8.0 120 32 22.6
D30 μm 2.5 50 13.6 9.8
D10 μm 0.4 15 5.0 3.8
Cu — 2.1 25 7.8 5.5
Cc — 0.6 3.9 1.4 0.8

Specific surface Ss 18 m2=g 0.09 1.3 0.45 0.39
Liquid limit LL 11 % 30 62 44.1 10.4
Specific gravity Gs 76 — 1.50 3.02 2.27 0.3
Porosity n 26 — 0.36 0.64 0.50 0.08
Hydraulic conductivity Kd 172 cm=s 4 × 10−7 4 × 10−4 3.8 × 10−5 3.3 × 10−4
Friction angle ϕ 95 Degrees 26 43 36.7 4.9
Compressibility Cd

c 92 — 0.04 0.37 0.11 0.08
Cv Range m2=s 2.20 × 10−8 9.50 × 10−5 N/A N/A

Sources: Data from Acosta et al. (2003), Aineto et al. (2005, 2006), Amonette et al. (2003), Bin-Shafique et al. (2002), Cheerarot and Jaturapitakkul (2004),
Cousens and Stewart (2003), Das and Yudhbir (2006), DiGioia Jr. et al. (1995), Du et al. (2013), Gray and Lin (1972), Kaniraj and Gayathri (2004), Kim
and Prezzi (2008), Kim et al. (2005), Mishra and Das (2008), Mishra and Karanam (2006), Palmer et al. (2000), Pandian (2004), Prashanth et al. (2001),
Premchitt and Evans (1995), Reyes and Pando (2007), Senol et al. (2003), Siddique et al. (2007), Torrey (1978), Trivedi and Sud (2004), Trivedi and Sud
(2007), Tu et al. (2007), and Young (1993).
aBetween 5th and 95th percentile.
bAfter removing 5% of extreme data points to avoid outliers.
cLimited data set has bimodal distribution.
dStatistics assume lognormal distribution.
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Most particles in fly-ash specimens are hollow spherical particles
known as cenospheres and plerospheres, i.e., nested cenospheres
[Figs. 1(a and b)]. These hollow particles imply gas generation
in the presence of a molten mineral; indeed, a molten phase and
the concurrent release of CO2 gas occur between 1,200°C–
1,400°C during coal burning (Lin et al. 1994; Song et al. 2011).
The formation of plerospheres suggests that gas release continues
within an existing molten bubble (Fenelonov et al. 2010; Fisher and
Natusch 1979).

Not all fly-ash particles are individual closed shells. There are
some perforated or burst frozen bubbles that contribute intraparticle
porosity [Fig. 1(c)] and millimeter-size conglomerates that form
when ash grains sinter together. Finally, some specimens consist
of gypsum crystals [Fig. 1(d)].

Grain-Size Distribution
A combination of sieve analysis and hydrometer tests were used to
determine the complete grain-size distribution of the tested speci-
mens according to ASTM D421 (ASTM 2007a) and ASTM D422
(ASTM 2007b). Fig. 2 illustrates grain-size distribution data gath-
ered in this study in comparison with the envelope of published
data (Table 1). Most particle diameters ranged from D10 ¼ 10 μm
to D90 ¼ 40 μm, and the coefficient of uniformity is Cu ¼ 4–20.
All tested fly ash fall under fines-controlled mechanical and
hydraulic properties, and are classified as F(F) in the revised soil
classification system (RSCS) (Park and Santamarina 2017).

Fines Classification: Atterberg Limits and Electrical
Sensitivity
The falling cone procedure was used to determine the liquid
limit (LL) according to BS 1377-2 (BS 1990) and the standard
rolled-thread method for the plastic limit (PL) using ASTM D4318
(ASTM 2017a). The specimens exhibited low plasticity, typically
LL < 62 and plastic index ðPIÞ ¼ LL − PL < 10, and are classified
as low-plasticity silts ML on the Casagrande chart [Fig. 3(b)].

Furthermore, liquid limitswere determinedwith kerosene, deion-
ized water, and NaCl brine for four fly-ash specimens to assess the

electrical sensitivity to changes in pore fluid chemistry (Jang and
Santamarina 2016; Jang and Santamarina 2017). Results plotted
in Fig. 3(b) indicate that fly ash can be considered low-plasticity
sediments with low electrical sensitivity to pore fluid chemistry;
therefore all tested fly-ash specimens are classified as L=L.

Specific Gravity
Specific gravity was measured with water, kerosene, and benzyl
alcohol to test the potential effect of wetting fluids on the values
of specific surface when the particles have an accessible internal
porosity following ASTM C311/C311M (ASTM 2017b) and
ASTMC188 (ASTM 2009). Fig. 4 shows no systematic differences
between the values measured with different fluids. The inset shows
that a water droplet does not experience spontaneous imbibition
into the fly-ash specimen.

Most importantly, the measurements Gs ¼ 1.96–2.66 confirm
the wide range of specific gravities observed in fly ash produced
worldwide (histogram superimposed on Fig. 4, and the range is
given in Table 1). Although there is a tendency toward lower spe-
cific gravity for coarser specimens (Fig. 2), the wide variation in the
specific gravity reflects the presence of intraporous cenospheres in
all cases (Fig. 1). Therefore, the computation and meaning of stan-
dard parameters require careful consideration in fly-ash engineer-
ing analyses, including grain size from the hydrometer test, degree
of saturation, and void ratio (e.g., for liquefaction).

pH and Spontaneous Imbibition
Simple pH and imbibition tests reflect the interaction between flu-
ids and grains. pH values were obtained using pH strips and fly-ash
pastes prepared with deionized water at the liquid limit. Measure-
ments showed pH values that ranged between pH = 6 and 12. Spon-
taneous imbibition is a measure of particle-level wettability. Water
droplets did not readily imbibe dry fly-ash specimens in most cases
(inset in Fig. 4). Nonwetting conditions added further difficulty
and uncertainty to the determination of the specific gravity, particu-
larly when specimens included intraporous grains with accessible
porosity [Fig. 1(d)].

Table 2. Summary of tests conducted as part of this study on specimens obtained from 38 different coal-burning plants in the southeastern United States

Test category Test Number of tests Typical results

Imaging SEM 45 Cenospheres (some show gypsum crystals)
X-ray (Shelby tube) 14 Layered stratigraphy

Index Specific gravity Gs 32 1.96–2.66
Liquid limit 9 26%–62%
Plastic limit 9 22%–55%

Electrical sensitivity 4 Low electrical sensitivity to pore fluid chemistry
Grain-size distribution 24 D50 ¼ 0.01–0.04 mm

Cu ¼ 2.3–4.2a

pH 31 6–12
New index tests Realizable unit weight 68 Minimum ¼ 5.5 kN=m3; maximum ¼ 15.1 kN=m3

Formation effects 9 Segregation and layering developed in all sedimentations tests
Ferromagnetism 29 Some present in all specimens. Up to 20% by weight
Contact angle 6 Nonwetting (water)

Advanced tests Oedometer and diagenesis 9 High-pH specimens are prone to early diagenetic cementation
Oedometer and shear-wave velocity 17 Undisturbed: α ¼ 21.8–244 m=s; β ¼ 0.06–0.36

Remolded: α ¼ 12–79 m=s; β ¼ 0.22–0.37b

Hydraulic conductivity 15 6.7 × 10−5 to 1.8 × 10−4 cm=s
Constant-volume shear in AC triaxialc 44 CD: ϕ 0

peak ¼ 31°–38°
ϕ 0
cv ¼ 29°–36°

CU: ϕ 0
max ¼ 28°–36°

Cyclic triaxial 7 Response depends on relative realizable density

Note: CD = consolidated drained; CU = consolidated undrained; and SEM = scanning electron microscope.
aRange for a 95% confidence interval in a lognormal distribution.
bParameters defined in Eq. (3).
cSpecimens from eight different power plants; AC = axial compression test.
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Ferromagnetism
The amount of ferromagnetic particles was determined by a pro-
cess of magnetic separation. The mass fraction of ferromagnetic
particles was as high as 20% in some specimens. Therefore the
interpretation of electromagnetic measurements and field charac-
terization methods must take into consideration not only the elec-
trical conductivity and dielectric permittivity but the magnetic
permeability as well.

Depositional Characteristics

Realizable Unit Weights
The void ratio is not an adequate state parameter for fly ash because
of grain intraporosity and the uncertainty in the specific gravity,

as mentioned previously. Thus, it is here recommend using dry
unit weights in the analysis of lab and field data, rather than the
void ratio.

There are no standards to obtain the maximum and minimum
unit weights of fine-grained media such as fly ash. Multiple methods
were explored across six orders of magnitude in embodied energy
density, including standard Proctor compaction (6 × 105 J=m3),
Harvard minicompaction (4 × 105 J=m3), tapping compaction
(4 × 104 J=m3), free fall through a funnel in air and in water
(3–6 × 102 J=m3), and formation under shear (dry specimens,
1.5 × 10−1 J=m3).

The test procedure for formation under shear consists of the fol-
lowing steps: (1) weigh and place 150 g of oven-dried fly ash in a
transparent cylinder [internal diameter (ID) = 63 mm and L =
290 mm]; (2) incline and rotate the cylinder gently on a flat surface

Fig. 1. Scanning electron micrographs: (a and b) spherical fly-ash particles; (c) cenospheres with accessible internal porosity; and (d) gypsum
crystals.
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at a rate of one rotation every 10 s; (3) continue the rotation mo-
tion, gradually tilting the cylinder back to the upright position;
and (4) measure the final sediment height and compute the unit
weight.

Proctor compaction and formation under shear consistently
produced the maximum and minimum dry unit weights for
the 17 fly-ash specimens tested (fly-ash specimens reached
the peak dry unit weight in the standard Proctor test at a

compaction water content near the zero-air-voids line). The mini-
mum and maximum realizable dry unit weights measured in this
study varied from the lowest γdry;min ¼ 5.5 kN=m3 to the highest
γdry;max ¼ 15.1 kN=m3.

Fig. 5 illustrates the unit weights obtained with different energy
densities. To facilitate the comparison across all samples, the
relative density Dr, defined in terms of the unit weight γdry;min
obtained from formation under shear and the unit weight γdry;max
obtained from standard Proctor compaction, was plotted

Clay Silt Fine sand Med. sand Coarse sand

Fig. 2. (Color) Grain-size distribution (24 fly samples). Curves are colored according to specific gravity. Solid black lines bound grain-size
distributions compiled from published reports on fly ash produced around the world.

Fig. 4. (Color) Specific gravity: (a) histogram of worldwide data
(76 values); and (b) comparison of specific gravity values Gs obtained
using water and benzyl alcohol (16 specimens measured using both
fluids).

ML MH

0

0.5

1

1.5

2

0 50 100

E
le

ct
ri

ca
l s

en
si

ti
vi

ty
, S

E

LLbrine [%]

high electrical
sensitivity

intermediate 
elect. sensitivity

low elect.
sensitivity

no plasticity low plasticity intermediate 
plasticity

high plasticity

30 75

0.4

(b)

(a)

0

10

20

30

40

50

60

0 20 40 60 80 100

P
la

st
ic

it
y 

in
d

ex

Liquid limit [%]

worldwide data

Fig. 3. (Color) Atterberg limits and electrical sensitivity to pore
fluids: (a) samples tested in this study plotted on the Casagrande
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Dr ¼
γdry − γdry;min

γdry;max − γdry;min
ð1Þ

Although trends in unit weights varied widely for all specimens,
the relative unit weight Dr data collapse onto a single trend versus
energy density for all specimens. Overall, results from this study
demonstrate that the selected minimum and maximum dry unit
weights are reliable and clearly reflect ash-specific characteristics.
Hence, the relative density defined in terms of realizable unit
weights is a robust parameter that can be used to compare the
experimental results gathered from different fly-ash samples.

Segregation, Layering, and Hydraulic Conductivity
More than 90% of the fly-ash mass reached the bottom of 500-mL
graduated cylinders in less than 120 min in all hydrometer tests
conducted as part of this study. Additional tests performed in larger
transparent tubes highlighted the pronounced tendency to layering
during wet deposition (tube dimensions = 700 mm high and
100 mm in diameter; fly-ash slurries prepared at a water content
equal to twice the liquid limit, w = 2·LL; deposition in three stages
30 min apart). Segregation-induced millimeter-scale layering is
readily seen in all X-ray images of Shelby tubes recovered from
ash ponds throughout this project (see examples in Fig. 6). There-
fore, it was concluded that segregation and layering are ubiquitous
in water-deposited ash.

These millimeter-scale features have pronounced implications
on pond performance, such as marked anisotropy in hydraulic con-
ductivity (preferential horizontal drainage), stiffness, and strength
(planar failure surfaces), as well as potential water entrapment in
the form of perched layers.

Hydraulic Conductivity

Falling-head permeability tests were run on 15 water pluviated
specimens (transparent tube with ID = 100 mm; hydraulic
gradients i ≤ 4). Measured values ranged from 6.7 × 10−5 to

1.8 × 10−4 cm=s. These values agree with those reported in the
literature (Table 1). Similar to natural soils, the hydraulic conduc-
tivity of fly ash decreases with densification and follows a power
function of void ratio e (Kaniraj and Gayathri 2004; Pandian 2004).
Void ratio is used here to facilitate the comparison with trends ob-
served for a wide range of soils compiled by Ren and Santamarina
(2018)

k
ko

¼
�
e
eo

�
δ

ð2Þ

where permeability ko at nominal void ratio eo ¼ 1.0 is inversely
proportional to the square of the specific surface of the fly ash
ðSsÞ−2. The exponent δ captures the sensitivity of the permeability
to changes in void ratio—primarily interparticle pores—and is
δ ≈ 3–4.

Static Compressibility and Stiffness

Ko Compressibility
A standard oedometer cell was used to investigate the static den-
sification of fly ash under zero-lateral-strain conditions. Measured
values for the compression index Cc shown in Fig. 7 are within
the range of values in the published literature Cc ¼ 0.11� 0.08
(Table 1). There is no clear trend between compressibility and
dry unit weights.

Small-Strain Stiffness: Shear-Wave Velocity
Bender elements installed in the top and bottom caps allowed con-
current shear-wave measurements to be collected during consolida-
tion tests. The tests were conducted on freshly pluviated saturated
and dry specimens (fly ash was gently allowed to fall in air or in a
water-filled mold), remolded specimens recovered from ponds, and
undisturbed specimens kept inside Shelby tubes (tube slices were
carefully cut; the tube was used as the oedometer cell, and instru-
mented loading caps were placed on both ends). The wave velocity
Vs follows a power trend with the effective vertical stress in all
cases

Fig. 6. Segregation and layering in ponds formed by wet deposition.
X-ray images of specimens recovered using thin-wall Shelby tubes.
These three specimens were recovered from the same borehole at three
different depths.

(a) (b) (c) (d)

Fig. 5. Relative density in terms of realizable unit weights as a function
of energy density (68 test results obtained using 17 samples). Specimen
formation methods: (a) formation under shear; (b) free fall through
a funnel; (c) tapping compaction; and (d) Harvard minicompaction
tests.
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Vs ¼ α

�
σ 0
z

1 kPa

�
β

ð3Þ

where factor α = shear-wave velocity (m=s) at σ 0 ¼ 1 kPa; and
exponent β captures the sensitivity of shear-wave velocity to
changes in effective stress (Chattaraj and Sengupta 2017). Mea-
sured values for remolded and freshly prepared specimens ranged
from α ¼ 23 to 28 m=s and β ¼ 0.29 to 0.35; these values are in
agreement with α–β trends for natural soils (Fig. 8). Fly-ash spec-
imens that experience early diagenetic cementation exhibit
higher shear-wave velocities and lower stress-sensitivity, i.e., higher
α-factor and lower β-exponent (Table 2). Details will be given
subsequently.

Early Diagenetic Cementation

Early diagenetic cementation may alter the evolution of densifica-
tion and stiffness in fly-ash specimens. Oedometer-wetting tests
and shear-wave measurements were conducted on samples recov-
ered from different plants in southeastern United States to explore
this effect.

Oedometer Tests
The effect of hydration-cementation on densification was studied
using dry specimens that had not been previously exposed to water.
The oedometer test procedure included an intermediate hydration
stage: (1) place the dry fly ash in the oedometer cell using a com-
bination of air pluviation and tapping to attain the targeted initial
dry unit weight; (2) gradually apply vertical stress to reach σ 0

z ¼
100 kPa; (3) while under constant σ 0

z, flood the specimen from
the bottom up; (4) allow the specimen to age for 120 h under

σ 0
z ¼ 100 kPa; and (5) gradually increase the vertical stress level.

Fig. 9 illustrates results obtained with the same fly-ash specimen
packed at two different dry unit weights. There was a minor contrac-
tion during saturation and ageing. More importantly, both specimens
showed a marked change in slope, and the specimen became less
compressible after wetting and ageing (observed in all specimens
that experienced early diagenetic cementation) (Table 2). Fig. 9 shows
that specimen compressibility decreases after wetting and aging.

clays

sands

Fig. 7. (Color) Compressibility and particle diameter D50. The central plot shows values measured in this study (stress range of 100 kPa–1 MPa).
Histograms summarize previously published fly-ash data (80 pairs). Ranges for clays and sands are shown for reference from Kulhawy and Maine
(1990) and Chong and Santamarina (2016).

0

0.1

0.2
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β
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Sand
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Fig. 8. (Color) Shear-wave velocity versus effective stress during
loading. The α-factor and β-exponent are related as β ¼ 0.7−
0.25 log½α=ðm=sÞ� for a wide range of coarse and fine-grained soils
(Cha et al. 2014). Data for undisturbed and remolded fly-ash specimens
fit well with the typical soil data. Low β-exponents and high α-factors
indicate diagenetic cementation.
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New specimens were prepared at the end of these tests reusing
the same fly ash after drying and disaggregating it to break any
particle-to-particle cementation. The oedometer data do not exhibit
diagenetic effects after rewetting in this case. Similarly, oedometer-
wetting tests conducted on remolded specimens recovered from wet
ponds (dried, disaggregated, and reconstituted) did not exhibit any
significant stiffening after rewetting.

Finally, parallel oedometer tests were run on identical specimens
prepared with the same fly ash used in Fig. 9, but either short or
long time intervals were imposed between successive loading
stages (initially dry specimens prepared by water pluviation). Slow
loading tests exhibited a much stiffer response and a distinct dis-
continuity or sudden collapse in the load-deformation curve near
the 250-kPa vertical effective stress when the newly cemented
contacts break.

Small-Strain Shear-Wave Velocity
Small-strain shear-wave measurements assess the skeleton shear
stiffness without altering ongoing diagenetic processes. Pastes were

prepared with fly ash that had never been wet before, specimens
were formed inside Plexiglas polymethylmethacrylate cells, and
caps instrumented with bender elements on both ends were added.
Fig. 10(a) shows a cascade of shear-wave signatures gathered over
a period of 23 days. Fig. 10(b) plots the computed shear-wave
velocities; the plot includes data gathered from another fly-ash
sample recovered from a wet pond after remixing. It can be seen
that Specimen A-3 experiences a very pronounced increase in
shear-wave velocity within the first 2 weeks following wetting.
These results highlight the pronounced stiffening effect some
fly-ash deposits may experience soon after wetting, particularly
within the first 10 days (Table 2).

pH as Predictor of Early Diagenetic Behavior
In addition, the pH of water–fly-ash pastes (31 specimens) was
measured; values ranged from a pH of 6 to 12. When compared
with oedometer and shear-wave velocity data, pH emerges as a
valuable diagnostic parameter: early diagenesis should be expected
when pastes exhibit pH ≥ 9.5.

Summary
The aforementioned results suggest that even nonpozzolanic
Class-F fly ash may experience early diagenetic cementation in
relatively short time scales (hours to a week). Cementation is lim-
ited, yet specimens do become stiffer and less prone to self-weight
densification. Consequently, these fly-ash deposits lock in high
porosity during burial and may experience fabric collapse. The pH
of fresh fly-ash pastes appears to be a valuable diagnostic tool to
assess the potential for early diagenesis.

Deviatoric Load-Deformation Response

Deviatoric load tests involved 44 axial-compression triaxial tests,
samples from eight different fly-ash sources, specimens prepared
by either air or water pluviation (same procedure outlined previ-
ously), and both drained and undrained shear (high B-values re-
quire careful saturation procedures and backpressure, probably
due to nonwetting cenospheres. Tests reported here were conducted
with B-values in excess of B ≥ 0.95). The highest effective confin-
ing stress was ≈200 kPa, which corresponds to a nominal pond
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Fig. 10. Short-time diagenesis: Changes in shear-wave velocity: (a) cascade of shear-wave signatures gathered during the first 23 days after wetting;
and (b) evolution of shear-wave velocity after wetting for two specimens subjected to a constant 30-kPa vertical effective stress under zero-lateral-
strain boundary conditions.
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Test protocol: (a) dry fly ash is gradually loaded to 100 kPa in an
oedometer cell; (b) water saturation and aging for 120 h takes place
under constant vertical stress; and (c) loading continues.
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depth of <25 m. Fig. 11 shows typical data for a set of three drained
axial-compression (AC) triaxial tests plotted on three intercon-
nected projections defined by shear, confinement, axial strain, and
dry unit weight.

The following observations reflect these and all other test results:
• Specimens prepared with freshly remolded fly ash readily

compact during isotropic loading in the absence of diagenetic
cementation.

• The majority of drained test results exhibit early contraction fol-
lowed by the onset of dilation at a vertical strain of εz ¼ 1–2%
and a mobilized friction angle of ≈25°. Only strongly contrac-
tive sediments produce a pronounced postpeak strain softening
in undrained loading.

• Most drained specimens experience visible shear localization,
starting just before they reach the peak strength; dilation stops
after shear localization. Undrained specimens also display shear
localization.

• Peak friction angles occur after εz ¼ 5–8% in both the drained
and undrained tests.

• Constant volume friction angles vary between ϕcv ¼ 29° and
36° (observed toward the end of loading as the vertical strain
approaches 15%).

Fig. 12 summarizes the volume change tendencies inferred from
all drained (dilation/contraction) and undrained tests (negative/
positive excess pressure), versus the relative unit weights at the
beginning of deviatoric loading. Tests were conducted using both
freshly remolded reconstituted specimens (open markers) and
undisturbed specimens trimmed from Shelby tubes (solid green
circles). Four of the six contractive specimens are undisturbed spec-
imens trimmed from Shelby tubes recovered from storage ponds.
This plot suggests a transition from contractive to dilative behavior

Contractive

Dilative

Undrained test
Drained test

Fig. 12. (Color) Volume change tendency in drained and undrained
axial compression triaxial tests versus relative density in terms of
realizable unit weights.
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when the relative unit weight computed in terms of realizable unit
weights γdry;min and γdry;max exceeds Dr ≈ 45–60%.

Conclusions

This paper documented a comprehensive study of Class-F fly ash.
It included data compiled from published reports on fly ash pro-
duced around the world and results obtained from several studies
conducted on fly ash produced in southeastern United States.
Salient observations are as follows:
• Early diagenetic cementation hinders densification and pre-

serves high porosity. Stability will depend on the strength of
the diagenetic bonds relative to stress changes. Flow instability
could take place after the failure of the containment structure if
the ponded ash is saturated and in a loose contractive state.

• Chemical composition and exposure to a high boiler tempera-
ture lead to the formation of hollow cenospheres, often with ac-
cessible intraparticle porosity. This results in a wide-ranging
specific gravity and affects engineering analyses related to void
ratio and saturation. Therefore, correlations that are based on
void ratio or porosity should be avoided.

• Instead, evaluations based on measured minimum and maxi-
mum realizable unit weights are recommended. The maximum
unit weight corresponds to the conventional Proctor compaction
test, whereas the minimum unit weight is obtained under gentle
shear in dry conditions.

• Water pluviation tests showed significant segregation and for-
mation of a layered structure in all fly-ash samples tested in this
study. The layered deposit has anisotropic hydraulic conductiv-
ity (higher in the horizontal direction), and segregated fines
accumulate to form weaker layers.

• Early diagenesis during wetting and deposition was observed in
most of the dry fly-ash samples (particularly those with high
pH). Diagenetic cementation prior to self-weight consolidation
preserves porosity. Therefore, ponded fly ash can exhibit a
collapsible structure with pronounced contractive tendencies.

• In the absence of early diagenetic cementation, experimental re-
sults show that wet disposal gives rise to dilative ponded ash in
the upper 20–25 m when subjected to monotonic shear loading.
On the other hand, flow instability could take place—after the
failure of the containment structure—if the ponded ash is satu-
rated and early diagenetic cementation hindered densification.
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