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Abstract
Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness 
and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements 
show the inherent relation between roughness wavelength and amplitude. In fact, data cluster along a power trend consistent 
with fractal topography. Synthetic fractal surfaces created using this power law, kinematic constraints and contact mechan-
ics are used to explore the evolution of aperture size distribution during normal loading and shear displacement. Results 
show that increments in normal stress shift the Gaussian aperture size distribution toward smaller apertures. On the other 
hand, shear displacements do not affect the aperture size distribution of unmated fractures; however, the aperture mean and 
standard deviation increase with shear displacement in initially mated fractures. We demonstrate that the cubic law is locally 
valid when fracture roughness follows the observed power law and allows for efficient numerical analyses of transmissivity. 
Simulations show that flow trajectories redistribute and flow channeling becomes more pronounced with increasing normal 
stress. Shear displacement induces early aperture anisotropy in initially mated fractures as contact points detach transversely 
to the shear direction; however, anisotropy decreases as fractures become unmated after large shear displacements. Radial 
transmissivity measurements obtained using a torsional ring shear device and data gathered from the literature support the 
development of robust phenomenological models that satisfy asymptotic trends. A power function accurately captures the 
evolution of transmissivity with normal stress, while a logistic function represents changes with shear displacement. A com-
plementary hydro-chemo-mechanical study shows that positive feedback during reactive fluid flow heightens channeling.
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List of symbols
Ac(σ) (m2)	� True fracture contact area
Af (m2)	� Apparent fracture area
AH	� Fitting parameter in Lomize’s hydraulic 

aperture model
As	� Fitting parameter in Tezuka’s fracture 

transmissivity—shear displacement model

BH	� Fitting parameter in Partir and Cheng’s 
hydraulic aperture model

Bs (MPa)	� Fitting parameter in Tezuka’s fracture 
transmissivity—shear displacement model

CH	� Fitting parameter in Partir and Cheng’s 
hydraulic aperture model

c	� Ratio true contact area to fracture apparent 
area

cf (m/N)	� Gouge production coefficient
Cp (m−1)	� Roughness peak curvature
f0	� Fitting parameter in Plesha’s dilation 

model
G (m3)	� Power spectral density
hG (m)	� Geometric aperture
hH (m)	� Hydraulic aperture
hH0 (m)	� Hydraulic aperture at zero normal stress
JRCmob	� Equivalent joint roughness coefficient for 

shear
K	� Roughness kurtosis
k (s−1)	� Kinetic rate
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m	� Roughness mean slope
N	� Number of digital values in a signal
P (MPa)	� Fluid pressure
Ra (m)	� Average roughness
RMS (m)	� Roughness root mean square
s(τ)	� Semivariogram
sG (m)	� Standard deviation of the geometric 

aperture
Sk	� Roughness skewness
T (cm2/s)	� Fracture transmissivity
Tc (cm2/s)	� Characteristic fracture transmissivity
Tσ0 (cm2/s)	� Transmissivity asymptote as σ’ → 0
Tσ∞ (cm2/s)	� Transmissivity asymptote as σ’ → ∞
Tδ0 (cm2/s)	� Transmissivity asymptote as δs → 0
Tδ∞ (cm2/s)	� Transmissivity asymptote as δs → ∞
Wp (N.m/m2)	� Plastic shear work
X(λ) (m)	� Asperity amplitude for a given wavelength
zi (m)	� Asperity height
α (m3)	� Spectral density at λ = 1 m
β	� Power spectral density sensitivity to 

wavelength
δn (mm)	� Fracture normal displacement
δs (mm)	� Fracture shear displacement
δsc (mm)	� Characteristic shear displacement
Δx (m)	� Sampling interval
ϕ(λ)	� Asperity phase
γ	� Fracture sensitivity to effective normal 

stress
η	� Fracture sensitivity to shear displacement
λ (m)	� Asperity wavelength
μ (Pa s)	� Fluid viscosity
μG (m)	� Mean of the geometric aperture
θ	� Fourier transform of the aperture correla-

tion function
ρ (kg/m3)	� Fluid density
σ (MPa)	� Normal stress
σ’ (MPa)	� Effective normal stress
σyield (MPa)	� Yield stress of the material
σc (MPa)	� Characteristic normal stress
τ	� Discrete correlation distance
ζ	� Fitting parameter in Swan’s fracture trans-

missivity—normal stress model

1  Introduction

Fractures provide preferential flow paths that define the rock 
mass internal “plumbing”, especially in low matrix-perme-
ability rocks. Therefore, the rock mass hydraulic response 
results from the fracture density, orientation, and the stress-
sensitive fracture transmissivity (Barton et al. 1995; Zim-
merman and Bodvarsson 1996). In turn, fluid conduction in 
fractured rock masses affects the pore pressure distribution 

and effective stress field, flow rates, and immiscible fluid 
invasion (Aydin 2000; Shin and Santamarina 2019). Conse-
quently, fracture transmissivity is critical to the engineering 
design of geotechnical structures, resource recovery, con-
taminant transport, and the geological storage of nuclear 
waste or CO2.

The void space between two rough fracture surfaces gov-
erns fracture transmissivity (Hakami and Larsson 1996; Ols-
son and Barton 2001), controls the fracture deformation dur-
ing normal loading (Tsang and Witherspoon 1981; Brown 
and Scholz 1986), and determines fracture dilation during 
shear displacement (Patton 1966; Saeb and Amadei 1992; 
Lee and Cho 2002).

This study explores the effects of surface roughness on 
geometric aperture and hydraulic transmissivity as a func-
tion of normal stress and shear displacement. The manu-
script is organized into three complementary sections: geo-
metric aperture, contact mechanics, and flow. Each section 
includes an overview of previous research, provides new 
laboratory data, and advances analyses toward the enhanced 
understanding and modeling of fracture transmissivity. Alto-
gether, the different sections provide new physical insight 
into fracture transmissivity and the effects of normal stress 
and shear displacement. The concise presentation is comple-
mented by seminal references for further details.

2 � Geometric Aperture: Fracture Roughness 
and Matedness

Rock characteristics and fracture genesis define surface 
roughness and the matedness or geometric correlation 
between fracture surfaces. For example, fresh tensile frac-
tures exhibit higher degrees of matedness than shear frac-
tures (Odling 1994; Al-Fahmi et al. 2018). Either cross-grain 
or inter-granular fracture propagation and frictional wear 
dominate roughness at the sub-meter scale, while kinemat-
ics, fracture convergence and the coalescence of secondary 
fractures control roughness at larger scales (Lee and Bruhn 
1996; Candela et al. 2012; Brodsky et al. 2016). Further-
more, post-genesis stress changes and associated displace-
ments, asperity crushing, cataclasis, creep and ploughing, 
fines generation, chemical dissolution and precipitation 
alter the void space and lead to complex hydro-thermo-
chemo-mechanically coupled phenomena (Berkowitz 2002; 
Rutqvist et al. 2002; Taron et al. 2009).

The “geometric aperture” hG (m) reflects both the rough-
ness of the two rock surfaces in contact and the matedness 
between them (Barton et al. 1985). The direct measurement 
of aperture in the laboratory relies on resin injection and 
casting, or tomographic imaging based on X-rays or nuclear 
magnetic resonance NMR. However, limitations in these 
techniques such as specimen size, partial fluid invasion, 
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volume changes during curing, and low resolution limited 
by specimen size hinder the accuracy of casting and imaging 
methods (Pyrak-Nolte et al. 1987; Sharifzadeh et al. 2008; 
Keller 1998; Dijk et al. 1999; Bertels et al. 2001). On the 
other hand, indirect methods measure the roughness of the 
two fracture surfaces and infer geometric aperture numeri-
cally for a given relative positioning of the two surfaces 
(Brown and Kranz 1986; Lanaro 2000; Vogler et al. 2018).

The following sub-sections introduce the tested materi-
als and roughness measurements, present analyses based on 
power spectra either compiled from the literature or com-
puted from the measurements and digitized JRC profiles, and 
advance a protocol to create synthetic fracture surfaces using 
power spectra information. These synthetic surfaces, com-
bined with fracture matedness define the fracture aperture.

2.1 � Fracture Surface Roughness—Measurement

Empirical approaches simplify the characterization of sur-
face roughness for engineering analyses, however, they are 
not adequate for quantitative aperture studies. The quali-
tative joint roughness coefficient JRC is a salient example 
(Barton 1973; Beer et al. 2002).

Detailed fracture roughness measurement techniques use 
either contact probes or optical techniques (Leach 2011; 
Tarolli 2014). In particular, optical methods from field 
devices such as LIDAR to laboratory electron microscopy 
span 8–10 orders of magnitude in scale, and often involve 
laser scanning or light interferometry.

We measured the surface roughness of natural and arti-
ficially fractured limestones using a table-top chromatic 
confocal interferometer (Nanovea ST400). Smooth surfaces 
were produced using a polishing device (Kent KGS618), 
whereas sandblasted surfaces used a water–sand jet (MBA 
Wet Blaster). We also measured the roughness of a natural 
fracture present in a limestone core. Insets in Fig. 1 present 
the scans obtained for 15 × 15 mm polished and sandblasted 
limestone surfaces and a 10 × 10 mm natural fracture sur-
face. The height resolution is 0.2 μm. The peak-to-valley dis-
tance ranges from 60 µm for the polished surface to 600 µm 
for the sandblasted and natural surfaces.

2.2 � Fracture Surface Roughness—Analysis

The analysis of roughness data involves amplitude and tex-
ture descriptors. Amplitude refers to elevation normal to the 
mean fracture plane, while texture considers patterns on the 

Fig. 1   Roughness power spectral density G(λ) derived from 1D frac-
tures and faults profiles. The wavelength λ scale spans eight orders of 
magnitude. As the legend on the right indicates, empty markers cor-
respond to published data (references below) filled markers are data 
from digitized JRC-profiles, and solid lines correspond to the average 
power spectrum of the three carbonate specimens profiles tested in 
this study. Insets correspond to interferometer surface scans of three 
tested specimens: a 15 × 15 mm sandblasted specimen (color-bar indi-
cates surface roughness and varies from 0 to 600 μm); b 15 × 15 mm 
polished specimen (roughness color-bar varies from 0 to 60  μm); c 

10 × 10  mm natural fracture (color-bar varies from 0 to 600  μm). 
Empty red markers indicate profiles of exhumed faults surfaces par-
allel to slip and blue markers show profiles perpendicular to the slip 
direction. Squares: Magnola, Diamonds: Corona Heights; Triangles: 
Vuache-Sillingly; Circles: Dixie Valley; Star: Bolu (after Candela 
et  al. 2012). Green empty squares are a natural surface in Harcourt 
Granite (after Power and Durham 1997). Orange empty squares cor-
respond to a granodiorite from Fenton Hill, New Mexico (after 
Brown and Kranz 1986)
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plane. Table 1 summarizes statistical parameters that are 
used to evaluate amplitude and texture. These parameters 
readily reveal the challenges in roughness characterization; 
for example, slope and curvature values are not unique but 
depend on the sampling interval and computation method, 
and amplitude distributions depend on specimen length and 
suggest nonstationary randomness (Majumdar and Bhushan 
1990; Sayles and Thomas 1978). In fact, roughness studies 
highlight the inherent link between roughness values, the 
measurement scale, and resolution.

The surface roughness power spectral density provides 
unbiased amplitude and texture information (Power and Tul-
lis 1991; Jacobs et al. 2017). We followed a five-step pro-
cedure to compute the surface roughness power spectrum: 
(1) measure 500 parallel roughness profiles on the speci-
men surface (lateral spacing between linear scans = 20 μm), 
(2) remove the linear trend for each profile, (3) window the 
detrended signal with a 3% cosine taper to reduce leakage, 
(4) compute the normalized power spectral density G (m3) 
using the Fast Fourier Transform and (5) average the spectra 
for the 500 parallel profiles to obtain an equivalent 1D rep-
resentation. Inherently, this procedure imposes a high-pass 
filter whereby wavelengths longer than the specimen size 
are filtered out. Figure 1 shows the roughness power spectral 
densities for three limestone surfaces: polished, sandblasted 
and a natural fracture.

2.3 � Fracture Surface Roughness—Database

We compiled an extensive database of power spectra for 
rock surfaces in various lithologies including carbonates 
and granites. Surfaces involved exhumed faults parallel 
and perpendicular to slip (i.e., meter scale), laboratory 
specimens (i.e., centimeter scale), and digitized JRC frac-
ture profiles. Laboratory specimens included fractures 
recovered from cores, created during strength testing, or 
sawed-polished, and sandblasted surfaces (measured in 
this study—Sect. 2.1). Figure 1 presents spectral densi-
ties as a function of wavelength λ (m) for the complete 

dataset. The various datasets involved different devices 
(i.e., LiDAR, profilometers, and interferometers) and spec-
tral data analyses, yet, most of the data collapses onto a 
narrow trend. In fact, the roughness power spectrum of 
laboratory and natural fractures and faults follows a power 
law with respect to wavelength:

The power law implies a fractal surface topography 
(Mandelbrot et al. 1984; Katz and Thompson 1985; Power 
and Durham 1997). The parameters for the overall trend 
are α = 6 × 10–7 m3 and β = 2.8, where the α-factor is the 
spectral density for λ = 1 m, and the β-exponent is related 
to the fractal dimension (Brown 1995).

The fractal nature of surface roughness extends from 
geological features (e.g., strata in sedimentary rocks and 
faults) to the grain/crystal scale. Indeed, data in Fig. 1 sug-
gest that this power law relationship remains valid over six 
orders of magnitude, and provides a convenient framework 
to relate laboratory measurements to the field scale.

We analyzed the individual roughness trends for all 
specimens in the database. In all cases, spectral den-
sities fall along the main power trend in Fig.  1, but 
exhibit a range of α-factors [2 × 10–10 to 7 × 10–4 m3] 
and β-exponents [1.9–3.0]. The α-factor and β-exponent 
increase with JRC roughness (for example: α = 2 × 10–8 m3 
and β = 2.1 for JRC 0–2, while α = 4 × 10–7 m3 and β = 2.4 
for JRC 18–20). Deviations from the global trend occur at 
large wavelengths for “smooth” profiles, e.g., λ > 10–3 m 
for our polished limestone surface and λ > 10–2 m for the 
JRC 0–2. These results indicate non-natural smoothness 
and suggest inherent limitations in the use of artificially 
roughened specimens to study fracture processes. Similar 
studies refer to this transition as corner frequency (Chen 
and Spetzler 1993).

The following sub-section uses this power–law rela-
tionship and proposes a methodology to create synthetic 
fracture surfaces.

(1)G(�) = �

(
�

[m]

)
�

.

Table 1   Amplitude and 
texture descriptors for fracture 
roughness (Thomas 1998; 
Magsipoc et al. 2020)
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2.4 � Numerical Generation of Rough Surfaces

The power spectral density G(λ) for a given wavelength 
λ is a function of the corresponding sinusoid amplitude 
X(λ) (m):

where N is the number of digital values in a given profile 
and Δx (m) the sampling interval. Note that the scaling factor 
(NΔx/4) in Eq. 2 depends on the selected Fourier pair and 
transform definition (i.e., one-sided vs. two-sided). Never-
theless, Eqs. 1 and 2 relate amplitudes Xu and Xv to their 
corresponding wavelengths λu and λv regardless of the scal-
ing factor

Alternatively, given a signal length N·Δx, the sinusoid 
amplitude X(λ) for a given wavelength can be computed in 
terms of the fitted α and β parameters

The power spectrum lacks phase information, thus 
we assumed a uniformly distributed random phase ϕ(λ). 
Together X(λ) and ϕ(λ) define the fracture roughness in the 
frequency domain. We imposed a wavelength cutoff of one-
fifth of the fracture length to avoid the lower order periodic-
ity in computed profiles (i.e., high-pass filtering): this cutoff 
value is the longest wavelength that does not generate pref-
erentially oriented ridges and valleys (Matsuki et al. 2006; 
Briggs et al. 2017). Finally, we computed the Inverse Fast 
Fourier Transform to determine roughness profiles in space. 
This methodology can be readily extended to 2D surfaces, 
and both the linear 1D and surface 2D algorithms satisfy 
Parseval’s identity.

2.5 � Matedness

We created fractures by bringing two rough surfaces 
together. Perfectly mated fractures have zero geometric 
aperture, thus null hydraulic transmissivity. Power spec-
tral analyses help assess the characteristic length for sur-
faces matching, i.e., a mismatched length scale (Glover 
et al. 1997; Ogilvie et al. 2006). However, the lack of phase 
information in power spectra means that two surfaces with 
identical spectra can result in mismatched topography and 
non-zero apertures. Other matedness descriptors rely on con-
tact area or joint matching coefficient JMC but disregard 

(2)G(�) =
NΔx

4
[X(�)]2,

(3)
Xu

Xv

=

(
�u

�v

)
�∕2

.

(4)X(�) = 2

√
1

NΔx
�

(
�

[m]

)
�

.

the wavelength-dependent correlation between the surfaces 
(Zhao 1997; Grasselli 2001).

3 � Contact Mechanics

This section combines numerical realizations of fracture sur-
faces (Sect. 2.4), contact mechanics, and kinematic defor-
mation to anticipate fracture deformation and the resulting 
aperture during normal loading and shear displacement. The 
simple yet robust approach proposed herein is physics-based 
and further validated against experimental data.

3.1 � Normal Stress

The fracture contact area and stiffness increase and the mean 
aperture decreases with increasing normal stress (Iwano and 
Einstein 1995; Nemoto et al. 2009). Some analyses adopt a 
non-linear elastic contact model whereby the fracture rough-
ness is an assembly of spheres or cylinders (Greenwood et al. 
1966; Hopkins et al. 1987). Other analyses assume that frac-
ture surfaces interpenetrate and overlap each other to reach 
a prescribed displacement, contact area, or fluid transmis-
sivity (Watanabe et al. 2008; Li et al. 2015; Souley et al. 
2015). These are inherently non-elastic fracture models and 
often involve numerical algorithms that incorporate elasto-
plastic behavior of the contacts (Walsh et al. 2008; Kling 
et al. 2018).

We adopted the interpenetration model and assumed a 
perfectly rigid-plastic rock response. Since the true contact 
area Ac(σ) (m2) is minimal compared to the fracture apparent 
area Af (m2), we assumed that all contact points reached the 
yield stress of the material σyield (MPa); then, equilibrium 
with the far field normal stress σ (MPa) implies:

The algorithm brings fracture surfaces together by impos-
ing a displacement δv until the interpenetration contact area 
Ac(σ) is sufficient to resist the applied stress σ. Figure 2 com-
pares experimental and numerical results for the sandblasted 
limestone specimen. The fitted yield stress σyield = 200 MPa 
exceeds the measured unconfined compressive strength 
UCS = 70–90 MPa by a factor of three; this reflects differ-
ences in mono-crystal asperities vs. poly-crystal specimens, 
boundary conditions, and the low aspect ratio of the asperi-
ties compared to the 2:1 ratio used for cylindrical specimens 
during UCS testing (ASTM 2014; Tuncay and Hasancebi 
2009). The insets in Fig. 2 illustrate the apertures computed 
at 0 MPa (δv = 0 mm) and 12 MPa (δv ≈ 0.2 mm). The pref-
erential deformation around edges reflects the global convex 
geometry observed in sandblasted specimens.

(5)
�

�yield

=
Ac(�)

Af

.
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We explore the effect of normal stress on aperture size 
distribution using numerically generated surfaces. Figure 3a 
shows the distribution of local aperture for a normally com-
pressed fracture; Fig. 3b shows mean trends computed from 
1000 unmated synthetic fracture realizations (following the 
approach described in Sect. 2.4). Increments in normal stress 
shift the aperture size distribution toward smaller values; the 
cutoff at zero aperture corresponds to the true contact area 
Ac(σ). Truncated Gaussian distributions properly represent 
the computed histograms in all cases tested as part of this 
study (see also Barr and Sherrill 1999; Xiong et al. 2018).

3.2 � Shear Displacement

Shear-induced dilation and contraction are a consequence of 
surface roughness and initial matedness, asperity overriding, 
roughness wear, and degradation, and the consequent pro-
gressive generation of gouge material. The normal stress on 
the fracture surface determines the tradeoff between dilation 
during asperity overriding and asperity breakage (Barton 
1973; Gutierrez et al. 2000). Typical normal versus shear 
displacement behavior exhibits some initial contraction 
followed by dilation toward an asymptotic aperture. The 
dilatancy rate is maximum at peak shear strength. Existing 
models attempt to capture these effects through geometrical 
descriptors, spectral information, or JRC-based qualifiers 
(Grasselli et al. 2002; Asadollahi and Tonon 2010).

Initial matedness is particularly relevant to the evolution 
of aperture size distributions during the early stages of shear 
displacement. In the following analysis, we used syntheti-
cally generated 1D roughness profiles to explore two mated-
ness cases: (1) an initially “perfectly mated” fracture com-
posed of two mirror surfaces, and (2) an initially “unmated” 
fracture composed of two distinct surfaces each created with 
the amplitude power law X(λ) and random phase ϕ(λ) for 
each wavelength. Figure 4 illustrates the mean aperture size 
distribution obtained using 1000 realizations for unmated 
fractures. These results suggest that shear displacement does 
not affect the aperture size distribution of initially unmated 
fractures. By contrast, the mean and standard deviation 
increase with shear displacement in initially mated fractures, 
and reach a maximum mean aperture value when the shear 
displacement δs is half of the longest roughness wavelength, 
δs ~ λmax/2 (Fig. 5a).

We extended the previous analysis to include the com-
bined effects of shear displacement (imposed first) and nor-
mal stress (Eq. 5). Figure 5a displays the mean aperture size 

Fig. 2   Fracture normal displacement data due to applied normal 
stress. Sandblasted limestone specimen (yellow markers). Predicted 
response (continuous line): the rigid-plastic contact model assumes 
a yield stress of 200 MPa. Insets reflect aperture maps computed at 
0 MPa (δv = 0 mm) and 12 MPa (δv ≈ 0.2 mm), respectively

Fig. 3   Evolution of aperture size distribution during normal load-
ing for numerically generated surfaces. A Aperture field estimated 
using the contact yield model at 1  MPa for a fracture composed 
of two unmated synthetic surfaces. B Evolution of the aperture 

size distribution with normal stress (mean of 1000 realizations—
σyield = 200  MPa). 1D profiles are 100  mm long, and wavelengths 
range between λmin = 0.02 mm and λmax = 20 mm
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distribution obtained from 1000 realizations at normal stress 
σ = 0 MPa for initially mated fracture surfaces after four dif-
ferent shear displacements. Figure 5b shows aperture histo-
grams after normal loading to σ = 10 MPa. The effects of 
normal loading and asperity yield after shear displacement 
on aperture size distribution are more pronounced as mated-
ness decreases with increased shear displacement. Note that 
the adopted contact model does not consider asperity shear.

4 � Flow: Hydraulic Aperture

Flow follows the path of least drag in a variable aperture 
field. Thus, flow trajectories deviate from linear stream-
lines. A fracture’s “hydraulic aperture” hH is the equivalent 
aperture between two parallel flat plates that allow the same 
flow for the same pressure gradient assuming the cubic law 
(Witherspoon et al. 1980). Estimates of the hydraulic aper-
ture are based on statistics (Table 2). Interestingly, most 
models anticipate that the hydraulic aperture decreases as 
the aperture coefficient of variation sG/μG increases where 
sG is the aperture standard deviation and μG its mean. Analo-
gous conclusions using network models for a wide range of 
pore size distributions can be found in Jang et al. (2011). 
Numerical studies, new experimental data, and data com-
piled from published studies are used herein to extend previ-
ous fracture flow analyses.

4.1 � Numerical Study: Evolution of Transmissivity 
with Normal Stress and Shear Displacement

We assumed the cubic law to be locally valid. Then, Stokes 
flow and continuity requirements result in the following 
expression, similar to the seepage flow equation for a het-
erogeneous medium (Oron and Berkowitz 1998):

where hG is geometric aperture.
This equation assumes that (1) roughness amplitudes X 

are much smaller than the roughness wavelength λ (λ/X ≫ 1), 

(6)
�

�x

(
h3
G

�P

�x

)
+

�

�y

(

h3
G

�P

�y

)

= 0,

Fig. 4   Aperture size distributions during shear displacement for ini-
tially unmated fractured surfaces. Mean aperture histograms for 1000 
roughness realizations. Numerically generated surfaces are 100  mm 
long and have a maximum wavelength λmax = 20 mm. The shear dis-
placement δs is normalized by λmax shows the lateral offset. Note: the 
roughness profile shown has an exaggerated vertical scale for clarity

Fig. 5   Evolution of aperture size distribution during shear displace-
ment for initially mated fractures. Mean aperture histograms for 1000 
realizations. A σ = 0 MPa, B Normal stress σ = 10 MPa imposed after 
shear displacement. Dashed lines relate histograms before and after 
normal load. Note: the roughness profile shown has an exaggerated 
vertical scale for clarity
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and (2) the wavelength is much greater than the aperture 
(λ/hG ≫ 1). The power function between roughness and 
wavelength automatically satisfies the first assumption 
(Fig. 1 and Eqs. 1 and 3). The second assumption is valid 
taking into consideration the wavelength that controls the 
aperture. Note that two sinusoidal surfaces in contact create 

a hG = 4X aperture when the shear displacement is λ/2, i.e., 
a π-shift.

We solved Eq. 6 using finite differences and explored the 
implications of changes in geometrical aperture on flow due 
to changes in effective normal stress. Numerical results in 
Fig. 6 show the decrease in fracture transmissivity as the 
effective normal stress increases for different yield stress 
values σyield. Besides the reduction in aperture, the increase 
in contact area leaves a smaller available fracture cross sec-
tion for flow. Figure 6a shows flow rate magnitudes at dif-
ferent stress levels for a synthetic unmated fracture: flow 
trajectories redistribute and flow channeling becomes more 
pronounced at later stages of loading because larger aperture 
channels remain open and control flow. In fact, the fracture 
area responsible for 90% of the flow reduces during loading 
(Fig. 6b).

Transmissivity data gathered in the field suggest that 
shear dilation in critically stressed natural fractures enhances 
fluid flow, predominantly in crystalline rocks (Barton et al. 
1995). Shear displacement induces aperture anisotropy. Con-
tact points increase in the direction of shear, detach trans-
versely to the shear direction, and therefore, aperture ridges 
emerge on the fracture aperture field (Gentier et al. 1997; 
Yeo et al. 1998; Auradou et al. 2005; Matsuki et al. 2010). 
Consider a synthetic initially mated rough fracture (i.e., zero 
aperture) subjected to shear displacement in the y-direction 
(Fig. 7a). The geometric aperture field at different levels of 
shear displacement in Fig. 7a displays a clear alignment of 

Table 2   Hydraulic aperture models

Model References
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(1 − 2c) Zimmerman and Bodvarsson (1996); 
Chen et al. (2017)
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Inoue and Sugita (2003); Auradou 
(2009)

Fig. 6   Transmissivity changes due to normal load. A Estimated flow 
rates through an unmated fracture using the contact yield and local 
cubic law approximations for different normal stresses (σ’ = 0, 1, 5, 
and 15 MPa—Eq. 5 for an assumed yield stress of 200 MPa). B The 

fraction of the fracture area that carries 90% of the total flow for 1000 
realizations. Vertical bars indicate the 25th and 75th percentiles. The 
inset shows the assumed pressure gradient (top to bottom) and the no-
flow side boundaries
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apertures transverse to the shear direction at early stages 
of shear as discussed above. The ensuing transmissivity 
anisotropy is most pronounced soon after shear displace-
ments starts δs/λmax < 0.1, and gradually decreases toward 
isotropic conditions at large shear displacements when all 
surface correlations are lost (Fig. 7b). Datapoints in Fig. 7b 
are averages of 1000 realizations, and error bars show that 
the anisotropy variability increases with shear displacement 
due to the higher probability of dominant flow paths.

4.2 � Experimental Study: Torsional Ring Shear 
Device

Numerical results highlight profound differences in the evo-
lution of geometric aperture and flow during normal loading 
and shear displacement, and the impact on natural fracture 
surface roughness and matedness. A focused experimental 
study complements this numerical study.

We designed and manufactured a torsional ring shear 
device to subject a pre-fractured cylindrical specimen to 
normal stresses up to 30 MPa, to independently apply a tor-
sional shear displacement, and to impose radial flow through 

the annular fracture plane (Fig. 8). This device benefits 
from accurate normal stress and shear displacement con-
trol, imposes precise flow boundaries without the need for 
jacketed specimens, maintains a constant nominal fracture 
area throughout the test, and reduces stress localization (for 
comparison, see: linear shear in Esaki et al. 1999; biaxial 
tests in Makurat et al. 1990; triaxial configuration in Teufel 
1987; and torsional shear in Olsson 1992).

The reaction load frame houses a pressure-controlled 
hydraulic jack to impose the vertical load, and two hori-
zontal screw positioners to exert the torsional moment via 
diametrically opposite lever arms. Fluid is injected into the 
fracture plane through a small central hole drilled into the 
specimen’s lower half. The instrumentation includes a LVDT 
to record the normal displacement, strain-gages mounted on 
the lever arms to measure torque, and two pressure transduc-
ers to monitor the fluid pressure at low and high pressure 
ranges.

The limestone specimen preparation method involved 
five steps: (1) core two 56 mm diameter cylindrical plugs, 
(2) modify the fracture surface by either sandblasting or 
polishing, (3) cut a cross-shaped groove on the other side 

Fig. 7   Transmissivity changes during shear displacement. A Geomet-
ric apertures for different levels of shear displacement at 0  MPa of 
normal stress and initially perfectly mated fracture. B Evolution in 

transmissivity anisotropy for shear displacement along x and y direc-
tions (1000 realizations). Vertical bars indicate the 25th and 75th per-
centiles
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of each plug to accommodate the torque transmission cap, 
(4) drill the central hole and chamber in one of the two 
plugs for fluid injection (hole diameter = 3.5 mm, cham-
ber diameter = 18 mm), and (5) attach with epoxy the two 
steel caps onto the rock cylinders. For natural fractures, we 
cored across the fracture and implemented steps 3, 4, and 5 
detailed above.

Figure 9 shows typical experimental results where trans-
missivity decreases with effective normal stress. The smooth 
and rough limestone specimens start with distinct geomet-
rical aperture fields, yet their transmissivities converge as 
the effective normal stress exceeds ~ 1 MPa (Fig. 9a). On 
the other hand, the high roughness variability in a natural 
fracture plane, with longer asperity wavelength, localizes 
contact yield at few asperities; there is a reduced effect on 
the governing large flow channels and transmissivity exhib-
its lower sensitivity to normal stress (Fig. 9b). A set of 
five tests conducted with limestone plugs confirmed these 
observations.

Results in Fig. 7 call for the analysis of hydro-mechanical 
boundary conditions in experimental and numerical studies, 

relative to field conditions. For example, radial flow in our 
ring shear device is normal to the shear direction; on the 
other hand, most numerical and experimental studies impose 
flow collinear with shear. In addition, radial flow and tor-
sional shear imply a radial gradient in fluid velocity and 
shear displacement; we minimize radial effects by limiting 
the ratio between the external specimen diameter and the 
internal chamber size (56 mm/18 mm in this study).

4.3 � Transmissivity Models: Normal Stress and Shear 
Displacement

We compiled a database of fracture transmissivity evolu-
tion with normal stress and shear displacement for various 
rock types. Data sources cover a wide range of measure-
ment techniques (e.g., linear, biaxial, and torsional shear) 
and boundary conditions (i.e., linear and radial flow). This 
database, which includes published results and our experi-
mental results, allow us to advance new physics-inspired yet 
data-driven transmissivity models.

Fig. 8   Torsional shear device to assess fracture transmissivity as a 
function of normal stress and shear displacement. A Reaction frame, 
hydraulic cylinder for vertical load, lever arm and specimen. B Instru-

mentation: LVDT to monitor the fracture normal displacement and 
strain gages SG to measure the applied torque. C Ball bearings in the 
annular space between the cap and the plunger preserve the coaxility
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4.3.1 � Normal Stress

Earlier fracture transmissivity models as a function of 
normal stress recognized non-linear contact behavior and 
asperity yield, flow channeling, and the influence of frac-
ture roughness (e.g., Pyrak-Nolte and Nolte 2016). These 
phenomenological models involve power, logarithmic, or 
exponential decay functions for transmissivity as a func-
tion of normal stress. However, these models fail to cap-
ture the asymptotic behavior of fracture transmissivity T 
(cm2/s) at very low effective normal stress (Tσ0 as σ′ → 0) 
and very high effective normal stress (Tσ∞ as σ′ → ∞) and 
may be unreliable for general applications.

We modified a selection of published models to satisfy 
asymptotic behavior so that transmissivity reaches pre-
scribed values when the effective stress approaches zero 
or infinity (see Table 3). Then, we fitted trends in the data-
base with the various models. The following power–law 
expression provides the best fit for all cases analyzed in 
this study:

This four parameter model indicates that transmissivity 
T(σ′) at a given effective normal stress σ′ normalized by the 
asymptotic values Tσ0 and Tσ∞ is a function of the normal-
ized effective normal stress with respect to the characteristic 
stress σc, where the γ-exponent captures the transmissivity 
stress-sensitivity (Fig. 10). Note that the normalized trans-
missivity is 2−γ when the normal stress is equal to the char-
acteristic stress σ′ = σc. Complementary numerical simula-
tions not shown here indicate that (1) fracture roughness and 
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matedness control the transmissivity asymptotes Tσ0 and Tσ∞, 
and (2) σc is a function of the rock yield stress σyield.

Figure 10 illustrates data clustering according to rock 
type: fractures in sandstones are more sensitive to stress 
(γ = 3-to-20), whereas the transmissivity in igneous and met-
amorphic rocks exhibits a lower stress-sensitivity (γ = 0.4-
to-2). The exponent γ for limestone specimens tested in this 
study ranges from γ = 3-to-8.

4.3.2 � Shear Displacement

Previous empirical models for transmissivity during shear 
displacement relate shear dilation to the joint roughness 
coefficient JRC or an empirical fitting factor (Table 4). Some 
models recognize cataclasis during shear displacement, but 
are complex and require shear stress information (Plesha 
1987; Nguyen and Selvadurai 1998). Furthermore, available 
empirical and theoretical models are asymptotically incor-
rect, thus, unreliable for general applications.

We adopted the following logistic function with a distinct 
S-shaped trend in log–log scale to capture the evolution of 
the normalized transmissivity during shear displacement:

The four parameters model capture: the sensitivity of 
the fracture transmissivity to shear displacement in the 
η-exponent, the displacement at maximum dilatancy or 
contractive rate in the characteristic shear displacement 
δsc, and the transmissivity asymptotes Tδ0 as δs → 0 and Tδ∞ 
as δs → ∞. This model can accommodate data that exhibits 
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Fig. 9   Evolution of transmissivity with normal stress—Experimental 
data. A Limestone specimen with two different surface roughness. 
Insets correspond to roughness scans for the smooth (2.3 × 2.3 mm) 

and rough (6 × 6 mm) fracture surfaces. Color bar values range from 0 
to 0.06 mm and from 0 to 0.1 mm, respectively. B Natural specimen. 
The inset corresponds to the roughness of a 10 × 10 mm specimen
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either monotonic dilation or contraction during shear; in 
fact, Zhou et al. (2018) proposed a similar mathematical 
expression for dilation.

Figure 11 presents normalized transmissivity data plot-
ted against the normalized shear displacement δs/δsc for 
studies reported in the literature and new data gathered 
in this study. The limited clustering by rock type suggests 
that changes in aperture are most sensitive to initial frac-
ture roughness and matedness. In fact, complementary 
numerical simulations with synthetic fractures not shown 
in this manuscript demonstrate that roughness, matedness, 
and normal stress determine the transmissivity asymptotes 
Tδ0 and Tδ∞, and the characteristic shear displacement δsc. 
The η-exponent reflects the dilative tendency which is a 
function of surface roughness and initial matedness for a 
given normal stress.

Table 3   Fracture transmissivity 
models as a function of effective 
normal stress. Notes models are 
modified to satisfy asymptotic 
behavior

Model Function References
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Fig. 10   Transmissivity as a function of normal stress—Experimental 
data and fitted power model (Eq. 7). Transmissivity normalized with 
respect to the transmissivity at zero and infinite normal stress Tσ0 and 
Tσ∞. Empty markers: published data. Filled markers: experimental 
data for limestone specimens (this study). Rock type: square-gran-
ites, diamond-granodiorites, cross-sandstones, 4 point star-marbles, 
triangle-shales, circle-gneiss, and 6 point star-amphibolites. Data 
sources: Witherspoon et al. (1980) (gray); Gale (1982) (black); Raven 
and Gale (1985) (blue); Brown and Kranz (1986) (purple); Makurat 
(1990) (olive); Wilbur and Amadei (1990) (yellow); Boulon et  al. 
(1993) (maroon); Durham (1997) (brown); Indraratna et  al. (1999) 
(green); Gutierrez et  al. (2000) (orange); Pyrak-Nolte and Morris 
(2000) (magenta); Lee and Cho (2002) (lavender); Watanabe et  al. 
(2008) (cyan); Cuss et al. (2011) (lime); Chen et al. (2017) (red)

Table 4   Fracture transmissivity models as a function of shear dis-
placement
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4.4 � Hydro‑Chemo–Mechanical Coupling: 
Dissolution

Carbonate rocks exhibit high solubility and high reaction 
rates (Plummer et al. 1978). Consequently, mineral dissolu-
tion, and precipitation play a significant role in the evolution 
of both geometric and hydraulic apertures. The Damkhöler 
number compares reaction kinetics and advective transport, 
while the transverse Peclet number contrasts longitudinal 
advective transport to diffusive transport across the fracture 
(Fredd and Fogler 1998; Golfier et al. 2002). These two 
dimensionless ratios help anticipate the type of transport 
regime: homogeneous dissolution, near-inlet dissolution, or 
channeling (Elkhoury et al. 2013; Deng et al. 2015).

Mineral dissolution impacts the aperture evolution for a 
given normal stresses. We explored the evolution of frac-
ture transmissivity due to reactive fluid flow across a lime-
stone specimen with an initially polished fracture surface 
using our annular fracture flow device. Figure 12 presents 
the fracture transmissivity and normal displacement data 
during loading and unloading before acid treatment. The 
initial transmissivity-stress trends obtained with water fol-
low a typical compaction behavior, where transmissivity 
decreases as effective normal stress increases. We injected 
5 cm3 of a pH = 2 HCl-solution at 1 cm3/min under con-
stant normal stress σz = 0.55 MPa. For a diffusion coefficient 
D = 2 × 10–9 m2/s, mean fracture aperture hH = 25 μm, and 
kinetic rate k = 3.2 s−1, the Damkhöler and Peclet numbers 
are Da = 9.1 and Pe = 2.7 × 10–2 respectively (see Kim and 
Santamarina 2016 for detailed Da and Pe definitions). These 
high Damkhöler and Peclet numbers imply fast reaction 
and seepage which cause near-inlet dissolution. Then, we 

Fig. 11   Transmissivity as a function of shear displacement—Experi-
mental data and fitted logistic model (Eq.  8). Transmissivity nor-
malized with respect to the transmissivity at zero and infinite shear 
displacement Tδ0 and Tδ∞. Empty markers: published data. Filled 
markers: experimental data for limestone specimens (this study). 
Rock type: square-granites, diamond-plaster, cross-mortar, 4 point 
star-sandstone, triangle-marbles, welded tuff-gneiss, and 6 point star-
chalk. Data sources: Makurat 1990 (cyan); Esaki et al. 1991 (black); 
Olsson 1992 (brown); Ahola et al. 1996 (green); Gentier et al. 1996 
(gray); Cheon et al. 2002 (magenta); Li et al. 2008 (blue); Nishiyama 
et al. 2014 (red)

Fig. 12   Fracture transmissivity changes due to dissolution. Limestone 
subjected to the injection of HCl solution-pH 2 at 1 cm3/min. (A) 
Fracture transmissivity versus effective normal stress and (B) normal 
displacement versus effective normal stress before (black) and after 

(yellow) acidizing treatment. The inset sketch illustrates the hypoth-
esized aperture evolution following dissolution (dashed lines: surface 
before acidization)
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measured transmissivity and normal displacement during a 
second loading–unloading cycle. There is a marked incre-
ment in fracture transmissivity during acid injection and 
insignificant changes in normal displacement. Thereafter, 
gains in transmissivity remain during loading even at high 
stress. This observation suggests the formation of dissolution 
channels during the acid treatment while the true contact 
area between fracture planes remains unaltered (see inset 
in Fig. 12).

5 � Conclusions

Fluid flow in fractured rock masses is a common phenom-
enon in natural and engineered systems, from infrastruc-
ture applications to resource recovery and CO2 geological 
storage. Fracture transmissivity along fractures defines the 
prevalent flow paths and controls all forms of hydro-thermo-
chemo-bio-mechanically coupled processes. This study 
combined data compilation, new experimental data, and 
numerical studies to advance the understanding of fracture 
roughness, aperture, and transmissivity.

The fracture roughness reflects mineralogy and fabric 
at small scales compounded by kinematics at large scales. 
The power spectral density captures the inherent interplay 
between surface roughness amplitude and wavelength: 
(Xu/Xv) = (λu/λv)β/2 where β ranges from β = 1.9 to 3. When 
plotted against wavelength, roughness power spectral density 
data cluster along a single trend for more than eight orders 
of magnitude in roughness wavelength with a global β ≈ 2.8. 
Deviations from this trend at large wavelengths in artificially 
roughened specimens suggest non-natural smoothness and 
highlight experimental limitations to study large scale frac-
ture processes. Nevertheless, the fractal nature of surface 
roughness provides a convenient framework for analytical 
and numerical studies.

Specimen size limitations and fractal characteristics limit 
physical experiments. Statistical numerical experimentation 
appear as a valuable approach to study fracture transmis-
sivity. Our normal contact and kinematically based shear 
models provide first-order insight on fracture deformation. 
The power function between fracture roughness and wave-
length automatically guarantees the validity of the simplified 
Navier–Stokes model (i.e., local cubic law).

Surface roughness and matedness define fracture aperture 
and its evolution during normal loading and shear displace-
ment. Normal stress increments cause contact yield, frac-
ture closure, and changes in the fracture void space. The 
closure of small local apertures increases the relative con-
tribution of larger interconnected voids and promotes flow 
channeling. Rougher unmated surfaces preserve channels 
during loading, and transmissivity exhibits lower stress sen-
sitivity. An asymptotically correct power function accurately 

captures the evolution of transmissivity with normal stress. 
Model parameters reflect initial roughness, matedness, and 
mineralogy.

The shear displacement of unmated fractures results in 
statistically identical aperture fields. By contrast, shear dis-
placement increases both the aperture mean and standard 
deviation in initially mated fractures; in this case, contacts 
align along ridges transversely to the shear direction and 
lead to anisotropy in transmissivity during early stages of 
shear displacement. However, anisotropy decreases as the 
shear displacement increases (relative to the largest wave-
length present in the fracture). A logistic function represents 
transmissivity changes with shear displacement. The fracture 
roughness, initial matedness, and normal stress relative to 
yield determine the transmissivity asymptotes.

Reactive flow modifies the void space. The impact of dis-
solution on fracture transmissivity depends on the rates of 
reaction, diffusion, and advection. In high advective regimes, 
transmissivity increases due to positive advective-reactive 
feedback and channeled erosion, even at minimal normal 
fracture displacement.
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