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ABSTRACT: Low-strain wave propagation velocity and attenuation 
are effective measures of state in particulate media. The standard 
resonant column test procedure is modified to facilitate the study of 
wave propagation at low strains. The system uses band-limited random 
noise excitation in combination with signal averaging to control the 
signal-to-noise ratio. This procedure is efficiently implemented by 
replacing typical peripheral devices with a signal analyzer and computer 
control. The methodology permits testing at very low strains (~ ~- 
10-s). The effect of non-linear system response on computed transfer 
functions is addressed. Other results include the analytical treatment 
of coupling between torsional and transverse modes, the evaluation of 
local low-strain shear parameters from solid specimens tested in torsion, 
and the use of multi-mode testing for the evaluation of field parameters. 

KEYWORDS: mechanical waves, resonant column, velocity, attenua- 
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Notation 

f'z Axial strain 
Shear strain (~/* reference shear strain at G = Gmax/ 
2, "y,~ shear strain at r = R) 

~/n Normalized shear strain = (-/fl~/*) 
~(to) Coherence function 

xi, L Exponents in the stress-damping relationship 
(isotropic stress) 

K Wave angular number 
h Wave length 
0 General angle 

tr 0 Isotropic confinement 
r Shear stress 
v Poisson's ratio 
to Wave angular frequency (ton undamped natural 

circular frequency) 
dmax Maximum displacement 

e Void ratio 
h Constant given by (h) 2 = (lp/mrL 2) 

m T Mass of the system (m added mass at the free end 
of the system) 
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n Number of averages 
r Distance from the center of the specimen 
c Ratio of  the mass of  the sample to the mass of  the 

driven plate 
cv Coefficient of variation = (standard deviation)/ 

(mean) 
Constant 
Maximum acceleration 
Constant 
Coefficient of  curvature and uniformity in grain- 
size distribution 
Damping coefficient 
Relative density 
Damping capacity 
Diameter for 50% passing 
Young's modulus 
Transfer function 
Mass polar moment of inertia of the specimen (z 
axis) 

Ib Area moment of inertia of the specimen (x axis) 
I0 Mass polar moment of inertia of  the driven plate 

(z axis) 
Mass polar moment of inertia of the driven plate 
(x axis) 
Area polar moment of inertia of the driven plate 
(z axis) 
Area polar moment of inertia of the specimen and 
the rod 
Cross power spectral density of signals i and j 
Shear modulus (Gma x maximum shear modulus) 
Unit weight 
Length of the specimen 
Radius of the specimen 
Torque (To torque for a constant shear modulus) 
Wave velocity (Vs shear wave velocity) 

Introduction 

Low-strain wave propagation permits the study of geomaterial 
behavior and the monitoring of processes. The small perturbation 
involved in the measurement has little effect on the measurand. 
Wave propagation is characterized by frequency-dependent veloc- 
ity and attenuation. The complementary evaluation of low-strain 
wave velocity and attenuation provides unique insight into the 
nature of various geo-processes, e.g., isotropic and anisotropic 
state of stresses, plastic deformations, cementation, contact failure, 
pore fluid changes, etc. 

 

Copyright by ASTM Int'l (all rights reserved); Thu May 12 18:53:31 EDT 2011
Downloaded/printed by
Georgia Institute of Technology pursuant to License Agreement. No further reproductions authorized.



30 GEOTECHNICAL TESTING JOURNAL 

Semi-empirical relationships between wave parameters and the 
state of stress are known. However, the effect of other variables 
is less well understood. Information is especially scarce on attenua- 
tion. In part, this is due to measurement difficulties, especially in 
the field: seismic velocities can be assessed with less than 10% 
error; however, one must expect large errors in attenuation mea- 
surements in part due to the uncertainty in geometric spreading 
and the presence of heterogeneities. 

This paper documents the measurement procedure developed 
to study low-strain velocity and attenuation in particulate materials. 
The scope of the research includes varied contact behavior, surface 
properties, isotropic and anisotropic loading, and interpretation 
within the framework of micromechanical analyses (Cascante and 
Santamarina 1996; Santamarina and Cascante 1996). A brief 
review of experimental methods used to assess propagation param- 
eters is presented first, followed by a discussion of the device and 
procedures developed for this research. 

Laboratory Measurement of Velocity and Attenuation 

There are three main laboratory methods used to determine the 
dynamic properties of soils at low strains: forced vibration, free 
vibration, and pulse propagation. Measurements can be conducted 
within different loading devices, including torsional shear, cubical 
shear, and axi-symmetric cells. Each method has its own limitations 
in attainable strain, load levels, and boundary conditions. 

Resonant Column Testing by Forced Vibration 

Resonant columns permit testing an axi-symmetric specimen 
under torsional and longitudinal excitation. There are different 
types of resonant columns depending on the boundary conditions 
and the mode of vibration. Wilson and Dietrich (1960) developed 
a fixed-free resonant column to measure both longitudinal and 
torsional vibrations. Hardin and Richart (1963) described two 
devices with free-free end conditions to measure torsional and 
longitudinal vibrations. Hardin and Music (1965) developed a 
resonant column device that allowed the application of deviatoric 
axial loads. All these devices were designed to operate at small 
strains (in the range of  10-5). In 1967, Drnevich developed a free- 
fixed resonant column that allowed for strains greater than 10 -4 . 
Later, devices that combine resonant column and torsional shear 
were designed to measure dynamic properties of soils for shear 
strains between 10 -6 and 10 - t  (Drnevich 1978; Drnevich et al. 
1978; Isenhower 1980). 

Two parameters are obtained from resonant column measure- 
ments: the resonant frequency and the material damping coeffi- 
cient. Wave velocity and attenuation are computed from these 
measurements. The computation of the damping coefficient 
assumes an equivalent, uniform, linear viscoelastic specimen, i.e., 
Kelvin-Voigt model. This model predicts a response similar to the 
response observed in sand specimens even though damping in 
sands is not necessarily of a viscous nature (Hardin 1965; Hardin 
and Scott 1966; Roesset 1991). The frequency dependency of wave 
velocity and attenuation is difficult to obtain with this device 
because of problems involved in measuring high resonant modes 
(see Stoll 1979 for alternative approaches). 

Several testing effects on resonant column results have been 
studied including: the effect of the number of cycles (Drnevich 
and Richart 1970), coupling between the specimen and the end 
platens (Drnevich 1978), restraint of the specimen due to end 
platens, and the stiffness of the membrane (Yu and Richart 1984; 

Drnevich (1985) suggested that the thickness of the latex membrane 
should be less than 1% of the specimen diameter). In general, 
these effects are negligible when the shear strain amplitude is small 
(-y < 10-4). In addition, small deformations permit the assumption 
of in-plane strain conditions in data interpretation. 

Decay of Free Vibration Testing 

This method consists of measuring the free vibration response 
in a soil specimen once the system is released from an initial 
condition (displacement, velocity, or both). The single degree of 
freedom model is used to compute damping and resonant fre- 
quency; a model with multiple degrees of freedom could be used 
as well. Within a resonant column device, the initial velocity and 
displacement condition can be achieved by turning off the dynamic 
excitation produced by the driving mechanism. Data processing 
in this method is usually conducted in the time domain since 
the excitation occurs mainly in the first mode. However, higher 
vibration modes can be assessed in the frequency domain. 

Pulse Propagation Testing 

The two techniques discussed above provide information at a 
single frequency, which corresponds to the first mode of vibration. 
The study of wave propagation for different frequencies can be 
conducted by pulse propagation techniques, detecting the signal 
with two different receivers, or by detecting the signal and its 
reflection with the same receiver. The second alternative has the 
additional advantage that the transfer function of the soil-transducer 
coupling and peripheral systems can be analytically canceled. In 
either case, Fourier analysis of the first and second signals permits 
evaluating the frequency-dependent velocity and attenuation 
(Fratta and Santamarina 1996). Similar techniques are used to 
evaluate damping in situ; however, adequate corrections for geo- 
metric spreading are required in this case; this step makes field 
measurements quite uncertain (Ward and Toksrz 1971; Bourbie 
et al. 1987; EPRI 1993). 

Resonant Column Testing: Assumptions and Modal 
Analysis 

The closed-form solution for a cantilever beam with a rigid 
mass at its free-end presumes: continuum, linear elastic, isotropic, 
and homogeneous medium; one-dimensional wave propagation; 
no shear stresses acting on the wall of the specimen; radii remain 
straight during vibration; the driving system is rigid; and the speci- 
men is fixed at the bottom. The validity of some of these assump- 
tions in resonant column testing is assessed in the following 
paragraphs before close-form solutions for torsional and transverse 
modes are derived. 

Strain Gradient 

The shear strain varies radially throughout the specimen. Hol- 
low-center specimens have been used to minimize strain gradient 
effects. However, due to the complexity in sample preparation, 
solid specimens are preferred. In this case, the selected representa- 
tive value of strain is the shear strain at r = 0.8 • R, where R is 
the radius of the specimen [ASTM Test Methods for Modulus and 
Damping of Soils by the Resonant-Column Method (D 4015)]. 
This is an average strain for the volume of the specimen. 
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The linear variation of strain in solid cylindrical specimens 
relates to a non-linear variation of  the shear modulus, which is 
not compatible with the assumptions made in the dynamic solution 
of a solid specimen subjected to a torsional excitation. Consider 
a hyperbolic variation of the shear modulus G with shear strain % 

Gmax 
G(-:) - - -  ( l )  

l + !  ~/* 

where Gma x is the maximum shear modulus (low shear strain) and 
~/* is a reference shear strain. A convenient choice of the reference 
strain in conjunction with the hyperbolic model is the strain at 
which the shear modulus is reduced Gmax/2 (Ishihara 1986). 
Assuming static equilibrium, the torque T applied to a specimen 
of radius R is equal to the area integral of the shear stress -r: 

fo T = "rr 2 dr  dO (2) 
J0 

where r is the distance from the center of the specimen. The shear 
strain at distance r can be computed from the shear strain at the 
wall of  the specimen ~/R, assuming a linear strain distribution, by 
"y = "yR[rlR], and "r = ~G(~/). Substituting into Eq 2, and normaliz- 
ing with the torque To, for a section with constant shear modulus 
G(',/) = Gmax, given by T O = 'rrGmaxR3"yR/2, 

T I 2 ] ~o = 2("/n)-4 2(%,) -- (%,)2 + "3 (~,,)3 _ 2 ln(l  + "/n) (3) 

where the normalized shear strain "Yn is 

"YR 
"Yn = - -  (4) ,y* 

Equation 3 is plotted in Fig. 1. It is shown that the error on the 
computed value of Gma x is less than 1% if the maximum strain 
at the wall of the specimen "YR is less than 1% of the reference 
strain ~/*. Therefore, low strain measurements of stiffness can be 
performed accurately on solid specimens subjected to torsional 
excitation. 

Straight  Radii  

Radii remain straight only for the first mode of a rod vibrating 
in torsional mode (Achenbach 1975). The specimen with the driv- 

ing plate will vibrate in the first mode when the ratio between the 
mass polar moment of inertia of  the specimen (/) to the mass 
polar moment of inertia of the driving system (I0) tends to zero. 
Therefore, the influence of  higher resonant modes will disappear. 

Lower  Boundary  

The impedance mismatch between the specimen and the resonant 
column pedestal can play an important role in the energy dissipation 
mechanism. If  boundary conditions are ignored, the damping calcu- 
lated could include both specimen and apparatus damping. On the 
other hand, if the relative stiffness of the apparatus with respect 
to the specimen is not enough to ensure the fixed condition, the 
shear modulus will be underestimated. Drnevich (1978) recom- 
mended that the stiffness of the fixed end of  the resonant column 
should be at least ten times the stiffness of the specimen. Avramidis 
and Saxena (1990) stiffened a Drnevich-type resonant column in 
order to test specimens with resonance frequencies greater than 
300 Hz, which was the upper bound of the original apparatus. They 
found important differences between the results of the original 
apparatus and the modified one for a Monterey sand No. 0 subjected 
to 588 kPa of confinement. The effect was more pronounced on 
the measured damping coefficient. Ashmawy and Dmevich (1994) 
recommended the use of a three-degree-of-freedom model to 
account for not perfectly fixed boundary conditions, particularly 
when the natural frequency of the soil-apparatus system is close 
to that of the passive end or reaction system in a Drnevich-type 
resonant column. 

The effect of bolting the resonant column device to a high-mass 
base was found to be negligible for low strain tests conducted in 
this study, ~ / <  10 -5 where the resonant column was modeled as 
a fixed-free system. The fixed-free condition was confirmed by 
placing an accelerometer at the base of the resonant column device. 
Bolting it is important for large strains, especially for damping 
measurements. 

For stiff specimens, the spring model (one spring at the base) 
is more appropriate. Both configurations have a node at the base 
for the first resonant mode (Hardin 1965); thus, either model gives 
an accurate representation of the real system. The response of the 
spring model depends on the properties of the base; however, 
the ratio of  responses measured at the top and at the bottom is 
independent of those properties (Hardin 1965). 

o 
0.9 

0 . 8  ¸ 

0.7 
-4 3 -~ -~ 0 

Log(Normalized Shear Strain) 
FIG. 1--Effect of  the strain-dependent shear modulus on cross-sectional 

torque. The reference strain ~l* corresponds to G = Gmax/2. 

Dynamic  Ana l y s i s - -Mode  Coupling 

Most resonant column devices include a rigid mass at the top 
of the soil specimen. The effect of this mass is important for the 
calculation of shear wave velocity and the shear strain at resonance. 
As the rigid mass tends to zero, the first torsional mode approaches 
a quarter sine wave; hence, the shear strain is not constant through- 
out the height of the specimen. As the rigid mass tends to infinity 
compared with the mass of the specimen, the first mode approxi- 
mates a straight line and the shear strain is constant at a given 
radius (Woods 1978). 

The governing equation of motion for the fixed-free torsional 
resonant column is (e.g., Richart, Hall, and Woods 1970): 

1_~ = / 0  tan(KL) (5) 
KL I 

where the wave number is K = con/V s, co n is the undamped natural 
circular frequency, L is the length of the specimen, and Vs is 
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the shear wave velocity. The damped resonant frequency (¢o r) is 
measured instead of to,. However, tot ~ tOn for small values of 
the material damping coefficient (D < 20%). 

Equation 5 applies only when torsional modes are excited; there- 
fore, the longitudinal axis of the specimen must be perpendicular 
to the pedestal, and the top platen must be perfectly horizontal. 
In practice, deviations take place and transverse motion develops. 
Comparing transverse and torsional resonant frequencies permits 
establishing the influence of transverse modes on the response. 
The free vibration equation of motion for a cantilever beam with 
a rigid mass at the free end was solved to compute resonant 
frequencies of transverse modes. The transcendental equation for 
transverse modes in terms of the ratio of the mass of the specimen 
to the mass of the driving plate (c = mr~m) and the wave number 
K is (Cascante 1996): 

- (hKL) 2 

+ + tanh(KL)/K-- ~ + h2cKL (6) 

where h is a coefficient that relates the mass polar moment of 
inertia of the driving plate Ip (axis perpendicular to the axis of the 
specimen), with the mass of the specimen m r by Ip = (Lh)2mr. 
Once KL is known, the natural frequency of the transverse mode 
is computed as (tOf)2 = EJb(KL)41(mrL3), where E is the Young's 
modulus, and Jb is the area moment of inertia of  the specimen. 

Equations 5 and 6 permit the analysis of mode coupling. The 
solution for KL is obtained numerically. Alternatively, the left and 
right sides of these equations can be plotted to identify the points 
of intersection, as shown in Fig. 2: the first intersection of the 
solid lines with the dashed lines represents the solution for the 
first torsional and flexural modes (Figs. 2a and 2b, respectively). 

Approximate solutions for flexural and torsional resonant fre- 
quencies using Rayleigh's method are: 

= 6Elb (7) 

tO'~ L3~33 / 0 9  (~)2]  
L-~-- ~ mr  + 2m + 6m -~ + ~ m 

tO~ _ GJ~ ,  (8) 

where Jp is the area polar moment of the specimen and l0 is the 
distance between the top of the specimen and the centroid of the 
top mass. Mode coupling becomes more important when the mass 
of the driving system increases with respect to the mass of the 
specimen. 

Resonant Column Testing with Random Noise Excitation 

The standard test method for the resonant column device is 
based on harmonic excitation sweeping the frequency around reso- 
nance. The response curve is determined with small frequency 
increments in order to get precise values of damping and resonant 
frequency. This procedure is time consuming, especially for low 
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FIG. 2--Plot of left and right sides of transcendental equations, where 
the angle 0 = KL: (a) torsional modes for different ratios lllo; (b) flexural 
modes for different values of h = (lp/mTL2") "0"50. 

damping because many points are needed to define the sharp 
resonant peak. Moreover, for very low strain measurements the 
system response in the time domain is strongly affected by back- 
ground noise. Improvements can be obtained by processing in the 
frequency domain, either by obtaining long-time records or by 
averaging short ones. 

The standard test procedure was modified to excite the specimen 
with random noise (Prange 1981; Aggour et al. 1988; Amini et 
al. 1988). Random noise imposes all frequencies simultaneously, 
spreading the energy in the selected frequency band, facilitating 
low-strain measurements, ~ /<  10 -6. 

Device 

A Stokoe torsional-resonant column device was used in this 
research (SBEL D1128). The cell and specimen pressures are 
independently controlled by a Brainard-Kilman pneumatic pressure 
control panel, which allows confining pressures up to 700 kPa to 
be applied. The axial deformation of the specimen is measured 
with a LVDT (Schaevitz 500HR) mounted inside the confining 
chamber. The input signal for the driving coils is generated by a 
function/arbitrary waveform generator (HP-33120A or the built- 
in signal generator in a dynamic signal analyzer HP-35665A) 
through a power amplifier (Krohn-Hite 7500). During resonant 

 

Copyright by ASTM Int'l (all rights reserved); Thu May 12 18:53:31 EDT 2011
Downloaded/printed by
Georgia Institute of Technology pursuant to License Agreement. No further reproductions authorized.



CASCANTE AND SANTAMARINA ON RANDOM NOISE EXCITATION 33 

testing, the response of the specimen to torsional vibrations is 
monitored with one accelerometer mounted at the top and one on 
the base (Columbia Research 8402 and charge amplifier 1035). The 
output signal from these transducers is monitored and processed in 
a digital storage oscilloscope (HP-54600A with a HP-54657A 
Module), a universal counter (HP-53131A), a dynamic signal ana- 
lyzer (HP-35665A), and by software developed as part of this 
research, running in a PC 486. Figure 3 presents a schematic view 
oftbe device. The instruments shown in the figure are the minimum 
components recommended to run the test with random noise 
excitation. 

The driving system is 15 cm in diameter, which is close to the 
height of the specimen. The solution neglecting the inertia of the 
driving system in the transverse direction is a good approximation 
just for the first mode of vibration, even in the extreme case when 
the radius of gyration is computed assuming the mass of the driving 
system concentrated at the position of the four magnets (h = 0.4; 
Fig. 2b). For this device with c = m74m smaller than 4, approximate 
Eqs 7 and 8 have less than 0.3% error with respect to the theoretical 
values obtained with Eqs 5 and 6. For typical soils, levels of 
confinement (10 to 700 kPa), and standard specimen size (H = 
13 cm, R = 3.5 cm), the torsional frequency is about 60% higher 
than the flexural frequency (toT ~ 1.6tof). Thus, mode coupling 
can be neglected. 

Calibration--Driving System 

The computation of the shear wave velocity in the resonant 
column test requires the mass polar moment of inertia of the driving 
system I o. In general, due to the complex geometry of driving 
systems, the experimental determination of I 0 is preferred. A metal 
calibration specimen and a mass are used to measure I o assuming 
a single degree of freedom system with total mass equal to the 
mass of the driving system plus any additional mass attached to 
the system. Several aluminum and steel probes were manufactured 
to verify calibration in different frequency ranges. Characteristics 
of the calibration probes are summarized in Table 1. Calibration 

Accelerometer 

Spectrum J Y(w) I 
Analyzer IiX(w) 

I-" 

Signal 
Generator I 

probes were fastened to top and bottom platens with steel screws. 
Equipment modes in the range of frequency of interest were 
assessed with a solid steel specimen. No spurious modes were 
detected. 

The mass polar moment of inertia of the driving system must 
be re-calibrated whenever changes are made, e.g., transducers 
added to the top cap. Errors in the measurement of frequency have 
a significant effect in the computation of Io; for example, a 5% 
error in frequency can produce a 50% error in the computed inertia 
of the driving system. 

Test AutomationPRandom Noise Excitation 

The resonant colunm is computer controlled. The inter-commu- 
nication between the computer and external devices is performed 
through an HP-IB interface card, which can drive a maximum of  
14 devices simultaneously. Each device has a specific address, 
which is used in the software to send and to receive data from 
peripheral devices. The external devices that were selected permit 
control and programming with the Standard Commands for Pro- 
grammable Instruments (SCPI). This language, together with the 
HP-IB interface card, allows remote control of instruments includ- 
ing: set up, measurement, and data transfer. Accelerometer signals 
are monitored mainly with the spectrum analyzer because of the 
flexibility and precision of this instrument. 

The program initializes all devices. Then, it runs a broad-band 
random noise (400 Hz bandwidth) to identify the maximum peak 
in the frequency response curve, which corresponds to the first 
torsional resonant mode to,. Once the peak is selected, a 50-Hz 
bandwidth random noise centered around (o r is used to compute 
the transfer function, input and output power spectral densities, and 
the coherence function. These curves are computed by averaging 
multiple measurements. The resonant frequency and the damping 
coefficient are computed in real time by the spectrum analyzer, 
curve fitting the frequency response within a 25-Hz bandwidth. 
When the frequency response curve near resonance is not single- 

Resonant Column 

\ 

! 
LVDT 

Pressure Cell 

FIG. 3--Resonant column and recommended devices for random noise excitation. 

TABLE l--Characteristic of calibration specimens. 

Unit Weight, Weight, Diameter Diameter Length, Resonant Damping, 
Material g/cm 3 g Out, cm In, cm cm Frequency, Hz × 103 

Steel 7.83 52.4 0.634 0.446 20.45 20.28 35.3 
Aluminum 2.77 42.23 0.796 0.528 20.45 19.41 35.6 
Aluminum 2.77 258.42 2.540 2.354 13.94 122.4 6.1 
Aluminum 2.77 345.84 2.540 1.900 13.98 192.8 4.1 
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peaked, properties are checked during post-processing by curve 
fitting a multi-degree-of-freedom solution. Details of the test 
implementation and the computer code can be found in Cas- 
can te (1996). 

Random Noise Excitation: Signal Processing 

Test implementation with random noise excitation requires fre- 
quency domain signal processing techniques. In addition, two ques- 
tions emerge in the implementation of  this methodology: first, 
what is the accuracy of measurements in the presence of low 
signal-to-noise ratios? And, second, how can the characteristic 
strain level for the test be determined? These issues are 
addressed below. 

Signal Processing 

The input is the voltage Vin(t ) at the coils, and the output is the 
voltage delivered by the accelerometers Vout(t), as shown in Fig. 3. 
The choice of monitoring location is relevant to avoid unmeasured 
signal components; for example, the back electromotive force gen- 
erated at coils (EPRI 1993, Appendices for Laboratory Investiga- 
tion) which would be an unmeasured input, yet correlated with 
the measured input. 

The processing of results from random noise excitation assumes 
linear, time-invariance. The power spectral density of the input 
Gxx is linearly related to the cross power spectral density of the 
output and the input Gyx by the transfer function of the system H(to): 

t-I(to) = G~x(~)  (9) 
Gxx(tO) 

If the input is a pseudo-random noise, its auto-power spectral 
density is constant IGxxl = Ao. Then, the cross-power spectral 
density Gyx is equal to the transfer function H(to) scaled by A 0 
(for the devices used in this study, the average amplitude of the 
PSD of the input random noise signal was linearly related to the 
voltage at the source). Alternatively, if the quasi-random input and 
the output signals are known, the transfer function can be computed 
from Eq 9. The transfer function is computed for the n input- 
output signals of  period T using the average values Gy x and Gxx 
(averaging cancels the effect of output noise). 

The coherence function ~2 characterizes the level to which the 
output is linearly caused by the input, and it is mathematically 
defined as: 

.t(to)2 = GyxG*x (1 O) 
G xxG yy 

where subscripts x and y refer to input and output signals; * denotes 
complex conjugate, and the bar over functions means average for 
multiple signals. When the coherence is ~/2(to) = 1.0, there is no 
noise, therefore all the output follows from the input, and the 
system behaves linearly. Coherence .,/2(to) < 1.0 may indicate 
input noise, an unmeasured input that is correlated with the mea- 
sured input, or non-linearity. A sudden drop in coherence at the 
peak of H(to) may also be due to deficient frequency resolution 
(Bendat and Piersol 1993). Coherence is related to the signal-to- 
noise ratio SNR: 

./(to)z 
SNR(o~) = 1 - ~/(to)2 (11) 

Typical plots of coherence, power spectral density, and computed 
transfer functions from measurements in the resonant column are 
presented in Fig. 4. The plot of the coherence function confirms 
the linearity of the system required for the computation of H(to). 
The dip at resonance ~/2(to) = 0.96 indicates resolution bias, while 
the dip at 120 Hz is due to electrical noise (Fig. 4c). 

The smooth transfer function presented in Fig. 4b shows the 
beneficial effects of averaging. The evaluation of system parameters 
from H(to) can be made with various transfer function estimators 
such as amplification at resonance, amplitude at two frequencies, or 
from the phase curve. Results may vary depending on the frequency 
resolution. In this study, the frequency resolution was 0.125 Hz (400 
data points), and resonant frequency and damping were computed 
by least-square fitting a single degree of freedom model to the 
measured data set. 

Noise and Error 

The determination of smooth transfer functions and the computa- 
tion of accurate dynamic parameters requires a significant amount 
of information in the presence of noise. Either long records (mem- 
ory restrictions) or averaging is required. If the noise is Gaussian 
with zero mean, the standard deviation of the mean is reduced 
proportionally to (n) 1/2, where n is the number of averages. Then, 
the number of signals to be averaged (n) depends on the coefficient 
of variation (cv) of the amplitude of  the transfer function at fre- 
quencyf(cv = standard deviation/mean), and the coherence ~,2(to) 
between input and output at that frequency (see related concepts 
in Bendat and Piersol 1993). For a single-point estimator (e.g., 
peak response), the number of averages required is: 

n ~ 2c-~v - 1 (12) 

For example, the number of signals n required to determine the 
value of the gain IH(t)I with a cv = 2%, when the coherence 
between input and output is ~/2(~0) = 0.8, is n = 312. The error 
in IH(t)l directly affects the computation of D in single-value 
computations; however, compensation takes place in least-square 
curve fitting the data with a single-degree-of-freedom model. 

Characteristic Strain Level 

Measurements are associated with a representative strain level 
corresponding to the measured response. When harmonic excita- 
tion is used in the frequency sweep method, the maximum strain 
at resonance is selected to characterize the effect of strain level 
on the measured dynamic properties. The maximum induced shear 
strain is computed from the magimum displacement dma x obtained 
from the accelerometer response: 

dma x = amax/002 (13) 

where Ama x is the maximum acceleration at the resonant frequency 
to n. Equation 13 is exact for sinusoidal excitation (Sin-E), but it 
is an approximation for random excitation (Rnd-E). Amini et al. 
(1988) used the peak-shear strain of the response, estimated by 
analytically scaling the root-mean-square (RMS) shear strain. A1- 
Sandad et al. (1983) found that the RMS of the measured displace- 
ment yielded good agreement with results obtained using the RMS 
of sinusoidal excitation for damping and velocity. 

The time response to band-limited random noise excitation 
resembles a sinusoidal response. Hence, the RMS of the accelerom- 
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FIG. 4---Typical resonant column data--random noise excitation: (a) broad-band transfer function, (b) narrow-band transfer function, (c) coherence 
function, (d) input power spectral density, and (e) output power spectral density. 

eter response was selected to estimate the maximum strain in this 
study. The RMS acceleration is calculated from the area under the 
output power spectral density within the frequency range used for 
random noise generation, from co I to ~2- Equation 13 becomes: 

dma × = -- ~2 n (14) 

Sinusoidal and Random Excitation 

A uniform, silica sand was tested in this study (Barco sand 32, 
Dso = 0.44 ram, ema x = 0.73, emi n = 0.49, C, = 1.5, Cc = 0.96, 
SiO2 content 99.6%, and Gs = 2.65). The specimen was prepared 
by the dry pluviation technique from a constant falling height 
(e ~ 0.60, Dr ~ 54%; specimen length L = 0.13 m, diameter d 
= 7.1 cm). Once the upper platen was set in place, vacuum was 
applied to hold the specimen and the split mold was removed. 

Then, connections for the driving plate, LVDT, and accelerometer 
were made, and the chamber was assembled. Specimen vacuum 
was gradually released while increasing the cell pressure until an 
effective confinement (r 0 = 35 kPa was reached. Isotropic confin- 
ing was increased from 35 to 200 kPa. This and other specimens 
were tested within 24 h after preparation. Measurements were 
performed 30 min after each load stage was applied, when emis- 
sions ceased. 

The low-strain frequency response with random Rnd-E excita- 
tion and with the standard sinusoidal Sin-E excitation (constant 
input voltage) are presented in Fig. 5. This test was conducted at 
an effective confinement of (r o = 200 kPa. Low strain levels were 
achieved both in Rnd-E and Sin-E using the frequency domain 
capabilities of the signal analyzer (the signal-to-noise ratio was 
too low to use the standard oscilloscope-based procedure). A small 
frequency interval was used: Af = 0.1 Hz for a bandwidth of 4 
Hz around resonance, and Af = 0.2 Hz away from resonance, for 
a total of 70 measurements. Results in Fig. 5 show that when the 
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FIG. 5--Comparison of transfer functions obtained at low strain (~1 = 
10-56), with sinusoidal excitation at constant input voltage Sin-E(CV) 
and with random excitation Rnd-E. 

system behaves linearly, results from Rnd-E and the standard Sin- 
E are the same. 

Non-Lineal Behavior and Random Noise Excitation 

The test procedure with random noise excitation requires Fourier 
analysis, which presumes linear, time-invariant behavior. There- 
fore, it is appropriate for low strain testing. As the strain level 
increases, several difficulties develop. Results from an experimen- 
tal study are presented next. 

Once again, the specimen was confined to a constant effective 
stress tr 0 = 200 kPa, and the frequency response was determined 
using sinusoidal Sin-E and random Rnd-E excitations. The test 
was conducted sequentially, testing with Rnd-E and Sin-E at 
increasingly higher levels of strain in order to minimize the effects 
of specimen perturbation. After the maximum shear strain was 
reached (~/ -- 10-4), the transfer function for low strain (~/ = 
10 -6) was measured again and compared with the initial value, 
showing minimum stress-history effects. 

Figure 6a presents the evolution of the transfer function with 
increasing peak shear strain. Data points are shown only for two 
tests to highlight the data density; other data are plotted as lines. 
These curves are typical for non-linear systems (see a similar plot 
numerically obtained by Bolton and Wilson, 1990, with linear 
springs and frictional sliders). The system manifests a non-symmet- 
ric transfer function for strains ~/ > ~2.5 * 10 -5. The frequency 
response of the non-linear system varies rapidly just below reso- 
nance, and the test must be conducted with high-frequency resolu- 
tion to clearly identify the non-linear response. The determination 
of D in this case can be in serious error. One alternative is to 
evaluate the decay of free vibration (EPRI 1993). 

Selected frequency response curves using Rnd-E at different 
strain levels are shown in Fig. 6b. Curves shift to the lower frequen- 
cies with the increase in shear strain as for Sin-E. However, transfer 
functions remain symmetric, and each curve is accurately matched 
by a linear single-degree-of-freedom system, i.e., the system 
response appears "linearized." 

Let us assess this result further. If the cause of non-linearity is 
amplitude dependent, then a sine-sweep test keeping the strain 
level constant would render the response of a "linearized" system 

for that strain level (Ewins 1984). This was verified by running 
sinusoidal excitation tests at constant strain Sin-E(CS); the shear 
strain was kept constant by adjusting the voltage of the input signal 
at each frequency to compensate the change in strain. Results for 
the three types of excitation are presented in Fig. 7a. There is a 
clear correlation between transfer functions for Rnd-E and Sin- 
E(CS, i.e., constant strain); the few points that disagree reflect 
difficulties in implementing the constant-strain test. The variation 
of the input voltage for sinusoidal excitation at constant and vari- 
able strain is presented in Fig. 7b; the input voltage for the Sin- 
E(CS) test shows a decrease towards resonance, where the transfer 
function is maximum. 

From these results, one may hypothesize that the time superposi- 
tion of different frequency components in Rnd-E leads to the equal 
shearing of  energy losses across the imposed frequency bandwidth. 
Thus, testing with random excitation and a signal analyzer provides 
a linearized system response. While it is believed that computed 
parameters correspond to the optimized linear model of the system 
(Ewins 1984), they apply only to the imposed strain level. 

Figure 8 shows velocity and damping data obtained at strains 
varying between 10 - 7  < ~/< 10 -4 .  Note that random noise excita- 
tion and the signal-processing procedures previously described 
permit testing to strains less than one order of  magnitude smaller 
than the conventional sine-sweep procedure (the lowest strain 
reached in our laboratory was 2t ~ 10 -8, which corresponds to a 
low level of mechanical background noise). Damping is almost 
constant at low shear strains; this indicates the presence of  a non- 
hysteretic loss mechanism at low strain (Tokstz and Johnston 
1981; Santamarina and Cascante 1996). Overall, and at this scale, 
velocity and damping from Rnd-E are in good agreement with the 
Sin-E results. Thus, the violation of assumptions made in signal 
processing does not seem to have a major effect on parameters 
computed at this strain level. 

Multi-Mode Testing: Poisson's Ratio and Field Parameters 

Poisson's ratio at low strain levels can be computed once Young's 
modulus (flexural mode; Eq 7) and shear modulus (torsional mode; 
Eq 8) are known: 

1 E  
v . . . .  1 (15) 

2 G  

Hence, multi-mode velocity and damping data obtained with rod 
specimens can be used to compute the velocity and damping of 
plane P-waves in the field (Fratta and Santamarina 1996). 

The flexural resonant frequency of a cantilever beam is an 
accurate method of determining Young's modulus E (see Kolsky 
1963 for dispersion effects). The longitudinal wave velocity 
V L = (E /p )  I/2 corresponds to constant compression, with h > >  R. 
However, the strain field induced in a rod by flexural excitation 
has a linear Navier variation of strain in the cross section, from 
tension to compression. In addition, the maximum strain in a 
cantilever beam in flexion also varies along the longitudinal axis. 
In analogy to the torsional mode, the volume-averaged strain is 
considered representative eavg, 

2 
eavg -- 3rr Emax (16)  

where emax is the maximum axial strain at the base of the specimen. 
Poisson's ratio was computed for a specimen subjected to incre- 

mental confinement by exciting the first flexural and torsional 
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modes at the same volumetric average strain levels (Fig. 9). Com- 
puted values are small, v < 0.07, and increase with pressure. This 
is in agreement with analytical predictions for regular and random 
packings (Petrakis and Dobry 1987; Chang 1990; Santamarina and 
Cascante 1996; Wang and Nur 1992). 

Conclusions 

Several issues in resonant column testing were experimentally 
or theoretically assessed. A closed-form solution was derived for 
flexural modes in a cantilever beam with an attached mass at the 
free end. It was shown that for the levels of confinement relevant 
to shallow geotechnical applications, the torsional frequency is 
about 60% higher than the flexural frequency. Mode coupling 
becomes important when the mass polar moment of inertia of the 

driving system is small in comparison with the mass polar moment 
of inertia of the sand specimen. 

The error in low-strain stiffness obtained from torsional testing 
of solid specimens (non-annular) is less than 1% when the strain 
level at the periphery is below 1% of the reference strain. 

Resonant column testing using narrow-band random noise excita- 
tion with averaging is a fast and accurate technique to determine low- 
strain wave propagation velocity and attenuation. The representative 
strain level for random noise excitations is calculated from the area 
under the output power spectral density. Measured parameters agree 
with results obtained with standard sinusoidal excitation. 

As the strain level increases, the behavior of particulate materials 
becomes non-linear. The response obtained with sine-sweep excita- 
tion at constant input voltage shows a steep rise in the amplification 
curve on the low-frequency side. However, if the cause of non- 
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FIG. 8--Velocity and damping at different Strain levels for quartz sand 
isotropically loaded to 200 kPa and tested with random noise Rnd-E and 
sinusoidal Sin-E excitations: (a) shear wave velocity versus maximum 
shear strain; (b) damping versus maximum shear strain. 

linearity is amplitude dependent, then a sine-sweep test keeping 
the strain level constant renders a linearized system response for 
that strain level. 

Random noise excitation also leads to a linearized system 
response for the imposed strain level, properly manifesting higher 
damping and lower frequency at the peak. A disadvantage of this 
result is that the linear response obtained with random noise and 
a signal analyzer may hide non-linear behavior. 

Young's modulus and flexural damping can also be obtained 
from resonant-column testing by identifying the flexural mode. 
Multi-mode testing permits computing low-strain Poisson's ratio 
and field propagation parameters, 
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