478

Flexural excitation in a standard
torsional-resonant column device

Giovanni Cascante, Carlos Santamarina, and Najwa Yassir

Abstract: The excitation of specimens in multiple modes enhances the characterization of granular materials. The
purpose of this paper is to present the equipment modification and test procedure and data reduction for flexural
excitation in a standard torsional-resonant column device. Typical results for dry and wet sand specimens are also
presented. A salient advantage of the modified device is that it permits testing shear stiffness (torsional excitation) and
longitudinal stiffness (flexural excitation) at frequencies which are relevant to high-resolution seismics and near-surface
studies (approx. 50-200 Hz). High attenuation in flexural mode is measured in saturated and partially saturated
specimens; local flow is suspected as a prevailing loss mechanism. Velocity and damping ratios are complementary
indicators of saturation conditions prevailing in the specimen.

Key words: mechanical waves, resonant column, velocity, attenuation, sands, modal testing.

Résumé : L'excitation de spécimens en modes multiples améliore la caractérisation des matériaux pulvérulents. Le but
de cet article est de présenter la modification de 1’appareil, la procédure de I’essai et la réduction des données pour
I’excitation en flexion dans un appareil standard de torsion a colonne résonnante. L’on présente aussi des résultats
typiques pour des spécimens de sable sec et humide. Un avantage certain de cet appareil modifié est qu’il permet de
mesurer la rigidité en cisaillement (excitation en torsion) et la rigidité longitudinale (excitation en flexion) a des
fréquences qui sont applicables a des études de séismicité a haute-résolution ¢t prés de la surface (approximativement
de 50 & 200 Hz). Une forte atténuation dans le mode en flexion est mesurée dans les spécimens saturés et
partiellement saturés; 1’on soupgonne qu’un écoulement local est le mécanisme dominant de rupture. Les rapports de
vitesse et d’amortissement sont des indicateurs des conditions de saturation qui prédominent dans le spécimen.

Mots clés : ondes mécaniques, colonne résonnante, vitesse, atténuation, sables, mode d’essai.

[Traduit par la Rédaction]

Introduction

The study of particulate materials with longitudinal and
transverse wave propagation provides complementary infor-
mation about fabric, state of stress, and fluid-skeleton inter-
action without altering the fabric or causing permanent
effects. Furthermore, wave parameters determined in the lab-
oratory under different excitation modes can be used to com-
pute parameters applicable to other propagation modes in
the field (Fratta and Santamarina 1996).

Changes in lithology can be estimated from the ratio of
P-wave to S-wave velocities Vp/Vs. This ratio reflects
changes in porosity, clay content, and the aspect ratio of
pores (Toksoz et al. 1976; Domenico and Danbom 1987,
Eastwood and Castagna 1987). Inelastic attenuation may
cause Vp/Vs to be frequency dependent. Damping adds addi-
tional information: if the ratio of the compressional damping
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to the shear damping coefficient Dp/Dy is greater than unity,
Vp/Vg decreases with increasing frequency (Futterman 1962;
Eastwood and Castagna 1987). Hence, the determination and
analysis of attenuation in multimode wave propagation stud-
ies can enhance the state of the art in stratigraphic and litho-
logic evaluations (Dutta 1987).

Attenuation and dispersion for strains less than 107 is
controlled by the degree of fluid saturation and the fre-
quency content of the wave (Winkler and Nur 1982). Mathe-
matical models are available to predict wave velocity and
attenuation in porous media with isolated or interconnected
pore spaces, with the general assumption that macrofluid
flow does not develop as the wave propagates through the
medium. Most studies have been conducted in rocks using
high-frequency waves (frequency of excitation f > 1 kHz).
Experimental results in sandstones and porous glass showed
that Dg/Dyp is greater than unity for full water saturation, but
it is less than unity for partial saturation. Apparently, the
large compressibility of the gas—water mixture enhances
fluid-flow mechanisms in the compressional mode (Murphy
1982; White 1975).

This paper presents the modification of a standard reso-
nant column to determine velocity and attenuation in speci-
mens subjected to flexural and torsional excitations. The
modified device is used to conduct an exploratory study of
the effect of saturation on low-strain wave velocity and at-
tenuation. The operating frequency (between 50 and 200 Hz)
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Table 1. Experimental conditions: chronology.

Specimen and Void ratio Mass density Degree of Effective stress
sequence e p (kN s¥m*) saturation S, (%) o, (kPa)

1 (na) 0.50 1.77 0.01 27-400

2D 0.50 2.10 100 35-408

2 (1D 0.50 2.10 100 (back pressure) 41-203

2 (1) 0.50 1.90 41 55-413

Fig. 1. Resonant column device. LVDT, linear voltage displacement transducer. (A) Instrumentation. (B) Torsional and flexural
excitation.
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Table 2. Summary of test results.

Can. Geotech. J. Vol. 35, 1998

Resonant frequency

Specimen Exponent Exponent Damping ratio Torsion Flexion
No. Test condition S, (%) by brg Dy/Dg (Hz) (Hz) (Hz)

1 Dry 0.25 0.25 1.0 90-175 50-101
2 100 (no back pressure) 0.26 0.24 3.0 100-187 55-99
2 100 (with back pressure) 0.25 0.23 2.5 105-160 61-86
2 41 (no back pressure) 0.24 0.21 2.5 115-189 65-101

approaches the frequency range used in near-surface geo-
physical studies. Device modification and calibration, test
procedure, and relevant equations for data analysis are pre-
sented first, followed by experimental results and discussion.

Device modification and calibration

The resonant column torsional shear device is a laboratory
apparatus specifically designed to measure dynamic proper-
ties of soils for shear strains between 1076 and 107, The res-
onant test is essentially nondestructive, therefore the
dynamic properties can be evaluated at different confining
pressures for each soil specimen. The small shear strain pro-
duced with the resonant column apparatus is in the same or-
der of magnitude as that of geophysical in situ tests.

Device

A resonant column for torsional excitation (Stokoe cell
SBEL D1128) was modified to excite both the torsional and
the flexural vibration modes. The test is run with a signal
analyzer. The input signal is a narrow band random noise.
The resonant frequency and damping ratio were computed
by curve-fitting the frequency response obtained with aver-
age cross and auto spectra between the excitation coils and
the response of accelerometer (Fig. 1A). This procedure is
more robust than the one-point estimation based on reso-
nance, or the three-point “half power” estimator (Cascante
and Santamarina 1997).

Transverse excitation was imposed with the same set of
magnets and coils used in torsional excitation. In the original
configuration, the coils are connected in series to produce a
net torque at the top of the specimen (Fig. 1B). In the modi-
fied configuration, the coils are reconnected to produce a net
horizontal force at the top of the specimen (Fig. 1B). The
type of excitation can be selected with a switch outside the
chamber, without introducing any perturbation to the speci-
men and its stress history.

The low-strain Young’s modulus computed from flexural
and longitudinal excitation is the same in single-phase mate-
rials. However, this is not the case in water-bearing particu-
late materials because of differences in fluid—matrix
interaction in flexural and longitudinal excitations. A special
top cap was built to facilitate saturation. It includes a con-
centric valve to avoid the effect of eccentric masses on tor-
sional excitation. Before testing, the valve is closed and the
tube used for saturation is disconnected and removed.

Analysis

The free vibration analysis for a cantilever beam of length
L with a rigid mass at the free end indicates that the first res-
onant frequency of the flexural mode ¢ depends on the posi-

tion of the rigid mass. The following equation is obtained
using Rayleigh’s method and considering N distributed
masses m; (Cascante 1996):

[1] Wf =
BB, +imih(h0,-,h1,-)
o T A

where

[21  h(hO,,hl) =mi[1+3ﬂ;;'ﬂ

3( h12 + h1;h0; + hO?
+

4 L

hO; and A1, are the heights at the bottom and the top, respec-
tively, of mass i, measured from the top of the soil speci-
men; and E, I, and my are Young’s modulus, area moment
of inertia, and mass of the specimen, respectively. Equation
[1] can be expressed in terms of the center of gravity y,; and
the area moment of inertia with respect to the center of grav-
ity I,; of each mass m;:

(3]
0)% - 3EI,
y v. Y, +my
B30 e o 4 B X )
140 par L 412

The derivations of eqgs. [1]-[3] are presented in Appendix
2. Equation [3] assumes that the confinement is higher than
the maximum axial stress induced by the flexural excitation.
Therefore, no tension is applied to the soil specimen.

Calibration

The mass, center of gravity, and area moment of inertia of
the driving plate and top cap are needed. In general, due to
the complex geometry of the driving system and top cap, the
experimental determination of the area moment of inertia I,
is preferred. A metal calibration specimen and a calibration
mass are used to measure I, using eq. [3]. The step-by-step
calibration procedure follows (it parallels the calibration
procedure conducted for the torsional mode):

(1) Measure the resonant frequency of the calibration
specimen alone, .

(2) Measure the resonant frequency of the calibration
specimen with the added calibration mass at the top, .
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(3) Compute with eq. [2] the equivalent height of the cali-
bration mass A, and the height of the top bar of the calibra-
tion specimen Ay,

(4) Set a system of two equations and two unknowns us-
ing eq. [3] and parameters @, ), h,, and A, Solve for the
area moment of inertia of the driving plate I, and the flex-
ural stiffness of the calibration specimen 3EL/L?, assuming
that the center of gravity of the driving plate is at its geo-
metrical center.

(5) Confirm the computed values by changing the vertical
position of the driving plate.

(6) The new flexural stiffness, computed with the mea-
sured frequency o and the new equivalent height of the
driving plate, must agree with values computed in step 4.

(7) If the geometry of the top cap is too complex to use
eq. [2], measure its mass moment of inertia following the
previous steps once that /., is known.

The area moment of inertia of the driving system I, must
be recalibrated whenever new transducers are added or mod-
ifications are implemented. Likewise, eq. [3] has to be re-
computed when masses are added to the top cap or when the
position of masses is changed. Errors in the position of
masses and on the measurement of the specimen’s height
have a significant effect on the computation of Young’s
modulus E and the longitudinal wave velocity V;y; for ex-
ample, a 5% error in the position of the driving plate or in
the specimen’s height can produce a 20% error in the com-
puted wave velocity.

Longitudinal versus flexural excitation

The resonant frequency of a cantilever beam gives an ac-
curate method of measuring Young’s modulus from flexural
excitation Eg., (eq. [3]) (Kolsky 1963). The longitudinal
wave velocity V;p in a rod can be calculated from Ej., and
the density of the specimen p:

[4] Vir =

This relation presumes that the wavelength is significantly
longer than the diameter of the bar and any internal scale in
the material (e.g., particle size).

There are significant differences between the strain field
induced in a specimen excited in flexural and longitudinal
modes. The former has a triangular-Navier variation of
strain in the cross section, from tension to compression,
whereas the latter has a constant strain distribution in a
given cross section. In addition, the axial strain in a cantile-
ver beam with a transverse load at the free end varies lin-
early along the longitudinal axis.

Wave-propagation parameters depend on the maximum
strain imposed. For the torsional mode, the maximum vol-
ume — average shear strain is considered representative. Fol-
lowing the same criterion, the maximum volume — average
axial strain &, for the flexural vibration mode is

2
(5] €avg zgsmax

where
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_ volt , Rg

[6]  &ma nSI2 2
volt, is the maximum output voltage of the accelerometer
(in mV); R and L are the radius and length of the specimen,
respectively (in cm); g is the acceleration due to gravity
(in cm/s?); § = 99.2 mV/g is the sensitivity of the accelerom-
eter; and f is the flexural resonant frequency (in Hz). Equa-
tion [5] is derived in Appendix 2. Equation [6] assumes a
pure flexural motion; this can be verified with two acceler-
ometers mounted on the driving plate. The volume change
|Avoll in either the tension side or the compression side of
the specimen is

(71 |Avol = %Rstmax

The instantaneous pore-pressure distribution in saturated
specimens reflects the variations in strain field. The pressure
gradient in longitudinal vibration is parallel to the vertical
axis of the specimen. Hence, fluid flow in Biot’s wave of the
second type is out of phase with the solid matrix but in the
same direction. However, the pressure gradient is almost
horizontal in flexural vibration and the liquid tends to move
perpendicular to the motion of the solid matrix.

The form of interaction between the fluid and the matrix
affects wave velocity and attenuation. If the rate of
pore-pressure dissipation from diametrically opposed re-
gions in the specimen is greater than the period of vibration
of the flexural mode, the longitudinal velocity from the flex-
ural mode Vi is governed by the compressional stiffness of
the matrix, even in saturated media.

The estimated volume of mobilized water due to the elas-
tic deformation of the soil skeleton in this study is about
0.04 cm?® (corresponds to €,,, = 10, eq. [7]). This volume
is small enough to be accommodated at the membrane
soil-pore interface. Then, the excess pore pressure caused
by either longitudinal or flexural excitation would decay to-
wards the membrane (transverse flow in both excitations).
The effect of membrane compliance is maximized at low
frequencies, and the compressional stiffness of the fluid
would not contribute to the P-wave velocity.

Experimental study and resuits

Tests with the modified resonant column were designed to
study shear wave parameters and longitudinal wave parame-
ters in sand specimens under isotropic loading and different
moisture conditions. Two dense specimens were prepared,
one for the air-dry test and one for the wet tests (saturated
and partially saturated conditions) and tested at low strain
levels (axial and shear strains <1075).

Specimen preparation

A uniform silica sand was used in this study (Barco sand
32, diameter for 50% passing D5, = 0.44 mm, maximum
void ratio ep,, = 0.73, minimum void ratio e,;, = 0.49, spe-
cific gravity of soil G, = 2.65). Specimens were prepared by
the dry-pluviation technique and tamping every 2 cm to ob-
tain a dense specimen and to minimize the effects of
changes in void ratio during testing (relative density D, =
100%, specimen length L = 13.6 cm, diameter d = 7.1 ¢m).
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Fig. 2. Dry specimen: torsional excitation. (A) Stress—strain
curve and SC packing model. (B) Shear wave velocity Vg vs.
confinement. (C) Damping Dg vs. confinement.
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Once the upper platen was set in place, vacuum was applied
to hold the specimen in place, and the split mold was re-
moved. The wet specimen was prepared by allowing water
flow from bottom to top, first under capillary and gravita-
tional forces and second by applying vacuum (15 cm of mer-
cury), before the split mold was removed. The dry specimen
was confined with air. The wet specimen was surrounded by
a water-filled cylinder to maintain saturation conditions.

Can. Geotech. J. Vol. 35, 1998

Test sequences

The confining pressure was increased in stages. Each load
increment was maintained until all microseismic events
ended (10-30 min). Torsional and flexural resonant frequen-
cies and damping coefficients were measured at each load
stage. The air-dry specimen was isotropically loaded from
27 to 400 kPa. Three tests were performed on the wet speci-
men: (1) increase in effective isotropic confinement from 35
to 408 kPa with zero back pressure; (2) increase in effective
isotropic confinement from 41 to 203 kPa, followed by the
increase in back pressure from 0 to 450 kPa keeping the ef-
fective stress constant at 200 kPa; and (3) effective loading
from 55 to 413 kPa with a degree of saturation S, = 40.6%.
The chronology of the experimental study is summarized in
Table 1. The void ratio was practically constant in all tests
(Table 1). The maximum volume-average shear strain 7y im-
posed during torsional resonant testing was in the range of
10° <y< 1075, This is in the same order of magnitude as
the maximum volume-average normal strain imposed durmg
flexural testing.

Air-dry test (specimen 1)

Results for the air-dry specimen are presented in Fig. 2.
The curve of isotropic confinement o, versus axial strain g
indicates limited fabric changes, maximum axial strain

=011%, and residual axial strain & = 0.02%
(F1g 2A). The predicted behaviour for a simple-cubic (SC)
packing is also shown (Santamarina and Cascante 1996; the
fitting shear modulus G = 33 GPa; this value is low for
quartz, and suggests the higher deformability of
nonspherical contacts and differences in fabric). Standard
velocity—stress power relations can be verified (e.g., Hardin
and Drnevich 1972; Fam and Santamarina 1995) as follows:

8] V=a(o,)?

where @ and b are constants, and c;, is effective confine-
ment. The curve-fitted exponent for shear waves is bg = 0.25
during loading and unloading (Fig. 2B). This value suggests
one or more of the following situations: conical contacts,
contact yield, and fabric densification (Goddard 1990;
Cascante and Santamarina 1996). The shear damping coeffi-
cient Dy manifested low sensitivity to confinement, espe-
cially for 6, > 150 kPa, and values are similar for loading
and unloading (Fig. 2C).

Figure 3A shows that the computed longitudinal wave ve-
locity V,p follows the standard V- power relationship with
exponent by p = 0.25. Changes in flexural damping Dg with
confinement were minimal (Fig. 3B). The ratio V g/Vy in-
creased with increasing confinement from 1.42 to 1.46. Pois-
son’s ratio v for a single-phase isotropic medium can be
calculated from V| p/Vs:

1V

—LE
2v?

(9]

The computed Poisson’s ratio increases with confinement
from 0.01 to 0.07. The longitudinal wave velocity in the rod
Vir and the body P-wave velocity are related by
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Fig. 3. Dry specimen: flexural excitation. (A) Computed
longitudinal velocity Vg vs. confinement. (B) Damping D vs.
confinement.
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Finally, the ratio Dg/Dg varied around 1.

Saturated test: no back-pressure (specimen 2)

Results for the saturated specimen with zero back pres-
sure are presented in Fig. 4. The 6,—¢, curve suggests limited
fabric changes (g, = 0.00%, maximum axial strain & ., =
0.09%:; Fig. 4A). The o,—¢, curve for the SC packing is also
shown in Fig. 4A. The Vg—g, exponent is b, = 0.26 during
loading and unloading; Vy is on average 3.4% smaller than
that for specimen 1 (Fig. 4B, compare with Fig. 2B). How-
ever, the increase in mass due to saturation should have
caused a 9.0% decrease in velocity (Table 1). Thus, the
shear stiffness G, of specimen 2 (G, = V?p) was 11%
higher than that for specimen 1. The shear damping coeffi-
cient Dg shows low sensitivity to confinement, similar trends
for loading and unloading, and values 25% smaller than Dg
in the air-dry specimen (Fig. 4C).

Figure 5A shows results for the computed longitudinal
wave velocity (b r = 0.24). V| is smaller than that in the
air-dry specimen,; this reduction increases with confinement,
from 5.4% at 35 kPa to 8.7% at 400 kPa. Note the lack of
participation of the bulk stiffness of the fluid. The flexural
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Fig. 4. Saturated specimen: torsional excitation (zero back
pressure). (A) Stress—strain curve and SC packing model.

(B) Shear wave velocity Vg vs. confinement. (C) Damping Dy
vs. confinement.
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damping Dy decreases with confinement, yet the salient ob-
servation is that values of Dg in the saturated specimen are
3.5 times higher than that in the dry specimen (Fig. 5B).
The ratio V| p/Vy decreased with increasing confinement,
showing an opposite trend and higher sensitivity to confine-
ment than in the air-dry case (from 1.44 to 1.37). It is inap-
propriate to compute Poisson’s ratio in this case due to the
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Fig. 5. Saturated specimen (zero back pressure): flexural
excitation. (A) Computed longitudinal velocity Vig vs.
confinement. (B) Damping Dy vs. confinement.
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fluid—matrix interaction (Thomsen 1996). The ratio Dg/Dg
varied around 3.0.

Saturated test: with back-pressure (specimen 2)

A small amount of entrapped air can drastically reduce the
compressibility of fluids. Therefore, back pressure is used in
this test to ensure saturation. Following Head (1993), a back
pressure of 250 kPa must be applied for 1 week to achieve §;
= 100% when the initial saturation was S, = 97%; this is a
conservative estimate of initial saturation for this specimen.
Thus, the test lasted for 9 days to ensure 100% saturation.

The effect of back pressure on the stress—strain response
0,—¢, is shown in Fig. 6A (g = 0.01%, €, = 0.06%). Dif-
ferences between loading and unloading are mainly due to
time effects. The o,—€, curve for the SC model is also
shown. The Vg0, exponent is bg = 0.25 for loading and un-
loading. Values of Vg and Dy during effective isotropic load-
ing are in agreement with the corresponding values
measured on the saturated specimen without back pressure
(Figs. 6B and 6C compared to Figs. 4B and 4C). Vg and Dg
are practically constant while back pressure is increased at
constant effective stress 6, = 200 kPa. The minor fluctua-
tions are correlated with+5 kPa variations in the effective
stress resulting from the independent control of cell and pore
pressures. This indicates that neither back pressure nor en-
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Fig. 6. Saturated specimen: torsional excitation (with back
pressure). (A) Stress—strain curve and SC packing model.
(B) Shear wave velocity Vg vs. confinement. (C) Damping Dg

vs. confinement.
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hanced saturation affect the phenomena that contribute to
shear stiffness or attenuation.

Figure 7 shows results for the longitudinal wave velocity
Vir and attenuation Dy computed from flexural excitation
during loading and unloading using back pressure (b =
0.23). Values of Vi and D are also in agreement with the
corresponding values measured in the saturated specimen
without back pressure (Figs. SA and 5B).
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Fig. 7. Saturated specimen (with back pressure): flexural
excitation. (A) Computed longitudinal velocity Vg vs.
confinement. (B) Damping Dy vs. confinement.
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The ratio V| p/Vg decreased with increasing confinement
from 1.44 to 1.4, and remained constant during the
back-pressurization cycle. The ratio Dg/Dg remained at 2.7
during back pressurization.

Partial saturation test: no back pressure (specimen 2)

The specimen was drained after the completion of the last
test, and the isotropic loading—unloading sequence was re-
peated (S, = 40.6%). The loading and unloading stress—strain
response is almost the same as that observed earlier, reflect-
ing no preloading effects (Fig. 8A; & = 0.00%, €, . =
0.08%). The computed V—0, exponent is bg = 0.24 for load-
ing and unloading. Values of Vg are approximately 5%
higher than that in the saturated specimen without back pres-
sure; this increase corresponds to the reduction in mass.
Thus, the effect of capillarity on the true effective stress is
not important for these large-diameter grains. Shear damping
Dg was practically constant and close to the measured values
for S, = 100% with and without back pressure.

The computed longitudinal wave velocity is plotted
against confinement in Fig. 9A (b g = 0.21). Values of flex-
ural damping Dy (Fig. 9B) agree with measured values in
the previous two tests with saturated specimens (Figs. 5B,
7B). Overall, the ratios Vi p/V5 and Dg/Dg showed similar
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Fig. 8. Partially saturated specimen (S, = 40.6%): torsional
excitation. (A) Stress—strain curve and SC packing model.
(B) Shear wave velocity Vg vs. confinement. (C) Damping Dy
vs. confinement.

(A)
400- e
‘w
& s00; 2
‘S’ J
(mn]
g 200+ =}
:.g i LoAadlng
o 1001 Unloading
4 Model
0 v T Y T .
0 0.02 0.04 0.06 0.08 0.1 0.12
Vertical Strain (%)
(B)
350

Velocity Vg [m/s]

2001
150 T r : r r r r .
50 100 150 200 250 300 350 400 450
Confinement [kPa]
(C) 45
!:',—- 354
o
=
X
w
0O 25
o
£
5 A
E
@
O 157
oS = o A O AO =
5 T - T T r ; T r
0 100 200 300 400

Confinement [kPa]

trends to values observed in the previous tests with saturated
specimens.

Observations and discussion
Stress—strain plots

The stress—strain curves for the two specimens were well
described by the same regular packing model. The minor
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Fig. 9. Partially saturated specimen (S, = 40.6%): flexural
excitation. (A) Computed longitudinal velocity Vig vs.
confinement. (B) Damping Dg vs. confinement.
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differences in stiffness and residual strain among the two
specimens reflects specimen preparation effects.

Torsional excitation: velocity

Shear wave velocity presented consistent paths during
loading and unloading under all saturation conditions
(Figs. 2B, 4B, 6B, and 8B). The velocity-stress exponent bg
was about the same for the air-dry and wet specimens (bg =
0.25). Shear wave velocity was not sensitive to back pres-
sure, as both effective stress and mass density remained con-
stant (Fig. 6B). Capillary forces in the partially saturated test
were too small to affect low strain stiffness: based on the
formulation by Biarez et al. (1993), the average interparticle
force due to capillarity is in the order of 107> N, whereas the
average interparticle force due to confinement is in the order
of 102 N.

Torsional excitation: damping

Shear damping Dy in these dense sands showed low sensi-
tivity to confinement, especially for o, > 100 kPa (Figs. 2C,
4C, 6C, and 8C). Similar behaviour was observed in
steel-sphere specimens by Santamarina and Cascante (1996).
It can be argued that in a very dense sand, where the coordi-
nation number is high, particle sliding and rotation are lim-
ited, restricting the mobilization of friction. Damping
decreased 25% from the air-dry case to the wet cases. This
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may be because of specimen variability (Table 2) or the
antilubricant effect of water on nonclean surfaces of sand
particles (Feda 1982).

Flexural excitation: velocity

The computed longitudinal wave velocity Vip showed
consistent trends for loading and unloading under the four
test conditions (Figs. 3A, 5A, 7A, and 9A). The exponent
b r showed rheological effects, decreasing with time from
0.24 to 0.21, suggesting the formation of a more stable fab-
ric as the 2 week long test proceeded (Table 2). The veloc-
ity—stress exponent b was equal to bg in the dry specimen,
but it was slightly smaller than bg in the wet tests (10%).
Differences between exponents for shear waves and
compressional waves of Biot’s second type were reported
for saturated sands by Richart et al. (1970), but the exponent
of the second type of wave was higher than that as a conse-
quence of the fluid—matrix interaction.

The longitudinal wave velocity computed from the flex-
ural mode V; reflected the stiffness of the soil matrix, like
Biot’s P-wave of the second type. This is because water can
flow from the compression side to the tension side of the
specimen faster than half the period of the flexural excita-
tion. Following a simplified pressure diffusion analysis,
most of the pressure dissipates when the period of flexural
resonance Ty, is as follows:

4gR?

11 Thex > ———=
O T =55 Ve

where g is the acceleration due to gravity, R is the radius of
the specimen, k is the permeability of the soil, and Gg is the
specific gravity of soil particles. For the tested sand, eq. [11]
suggests that Ty, must be greater than 1/500. Given that
resonant frequencies for the flexural mode vary between 50
and 100 Hz (Table 2), it can be concluded that flexural exci-
tation tested primarily the stiffness of the skeleton.

The velocity V;p decreased from the air-dry to the satu-
rated conditions (5.4-8.7%). The expected decrease due to
the increase in mass density should have been 3.7%, esti-
mated after correction for higher stiffness of specimen 2.
Thus, it appears that the drag of the water in the pores re-
duced the value of Vi in the saturated specimen, and this
effect increased with increasing confinement, which implies
higher frequencies. On the other hand, the increase in Vg
from the fully saturated to the partially saturated case (S; =
40.6%) was independent of confinement and in agreement
with the expected increase due to the change in mass density
(~5%). This suggests that the drag effect of the water was
also present at S, = 40.6%, with the same magnitude as that
for S, = 100%. Furthermore, given that the longitudinal
wave velocity Vi was governed by the stiffness of the ma-
trix, it should not be sensitive to back pressure, in agreement
with experimental results (Fig. 7A).

Flexural excitation: damping

Damping Dy presented a significant increase from the
air-dry to the wet cases (Figs. 3B, 5B, 7B, and 9B). This
shows the importance of local flow and the relative move-
ment of the water with respect to the soil skeleton. Hence,
flexural excitation of saturated specimens provides evidence
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of high-energy dissipation mechanisms which are character-
istic in Biot’s second type of compressional wave. Because
small volumes of water can be mobilized at contacts, local
flow loss can also justify high losses in partially saturated
specimens. Dg displayed clearer rheological stabilization ef-
fects than Dg (Figs. 6C, 7B). Therefore, the rheological sta-
bilization of the soil skeleton affects the local flow
mechanism.

Compressional wave velocity Vp, Poisson’s ratio v, and
ratios VLF/ VS and DF/DS

Equations [9] and [10] are valid when the porous medium
behaves like an equivalent isotropic and elastic media. If the
velocity of the second type of wave is used in eq. [9] the
computed Poisson’s ratio would be negative.

The Poisson’s ratio computed with eq. [9] for the air-dry
sand is small (v < 0.07). This is the case of isotropic regular
packings subjected to small-strain perturbation at constant
fabric (no change in coordination number, void ratio, and
distribution of contact forces) (Petrakis and Dobry 1987;
Santamarina and Cascante 1996). Analytical solutions based
on conical or Hertzian contact predict Poisson’s ratio inde-
pendent of the state of stress. Yet, experimental results with
the air-dry specimen show that small-strain Poisson’s ratio
increases with confinement. Theoretical results presented by
Wang and Nur (1992) agree with these observations. Their
model applies to a homogeneous and isotropic random pack-
ing of elastic spheres, whereby neighboring spheres are
firmly bonded across small, flat, and circular regions of the
same average radius.

The ratio V;/Vy in the air-dry specimen increased with
confinement and reached a value of 1.46 at 400 kPa. This is
close to the value of Vp/Vg = 1.49 measured for quartz (East-
wood and Castagna 1987). The ratio Vp/V tends to the ratio
ViLe/Vs when n = 0. In the case of the wet specimens, the ra-
tio Vyp/Vy decreases with confinement because by g < bg due
to the fluid—matrix viscous interaction at higher frequencies
(Table 2). Murphy (1982) observed similar behaviour for the
Vp/V ratio for fully saturated sandstones.

The ratio Dp/Dg was about 1.0 for the dry specimen and
varied within Dp/Dg = 3.5 + 1.0 for the wet specimens. This
significant increase in attenuation reflects the effect of the
local flow mechanism in the compressional excitation of sat-
urated particulate materials. Thus, attenuation measurement
could be used to infer wet—dry conditions in granular materi-
als as suggested by Murphy (1982) in the context of rocks.

Conclusions

Multimode excitation testing augments the characteriza-
tion of particulate materials. Flexural and torsional reso-
nance are suitable to study wave propagation characteristics
in particulate materials in a frequency range which is appli-
cable to near-surface, high-resolution applications (between
50 and 200 Hz). The standard torsional resonant column de-
vice and test procedures were modified to permit the flex-
ural excitation of the specimen.

The flexural excitation of saturated particulate media may
not be affected by the stiffness of the fluid. This depends on
the size of the specimen, its permeability, and the stiffness of
the skeleton. Membrane compliance in flexible-wall cells
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permits the pore pressure to decay towards the membrane in
longitudinal and flexural waves (transverse flow in both ex-
citations). The effect of membrane compliance is maximized
at low frequencies. In this case, the stiffness of the fluid
does not contribute to the longitudinal wave velocity. Flex-
ural excitation highlights losses due to fluid—skeleton inter-
action.

Longitudinal and shear wave velocities are affected by the
state of stress, but show little sensitivity to the stress history
(fresh laboratory specimen made of dense quartzitic sand).
Neither back pressure nor enhanced saturation affects the
phenomena that contribute to stiffness in either flexural or
transverse excitation mode. The exponent in velocity—stress
relations is sensitive to rheological fabric stabilization.

The damping coefficient Dg showed little sensitivity to
confinement in these dense specimens (D, = 100%). The
high coordination number and rotational frustration re-
stricted the mobilization of interparticle friction and reduced
the stress dependency of hysteretic attenuation.

The computed longitudinal wave velocity Vi changed
under saturation more than implied by the change in density.
Fluid—matrix interaction increases energy losses. Local flow
remains active at partial saturation; this loss mechanism de-
cays at low saturation levels as the water menisci at contacts
vanish.

The ratio Di/Dg showed a significant increase from the
air-dry condition (Dg/Dg = 1) to the saturated and partially
saturated conditions (Dg/Dg = 3.5 + 1.0). Thus, attenuation
provides information independent of velocity with respect to
the saturation condition of the medium.
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Appendix 1: List of symbols

a, b: constants

bs, by 5, bp: velocity—stress exponents for shear, longitudinal,
and compressional waves, respectively

d: specimen diameter

e: void ratio

€max» €min: Maximum and minimum void ratios, respectively

f: frequency of excitation (Hz)

g: acceleration due to gravity (cm/s?)

h,: equivalent height of the calibration mass

hy,: height of the top bar of the calibration specimen
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h0;, hl;: heights at bottom and top, respectively, of added
masses m; (cm)

k: permeability of the soil (cm/s)

mr: mass of the system (m; added masses at the top of the
specimen) (kN s%m)

volt,,: maximum output voltage of the accelerometer (mV)

x: elevation from the base of the specimen

Xaccel €levation of the accelerometer

y: horizontal displacement of the specimen

yoi: center of gravity of mass m;, measured from the top of
the specimen (cm)

Ymeas: Maximum flexural displacement of the specimen

A: cross-sectional area

Dg, Dg: damping coefficients for torsional and flexural vi-
bration modes, respectively

Dy: compressional damping

D,: relative density

Dy, diameter for 50% passing

E, Eq.,: Young’s modulus and Young’s modulus from flex-
ural excitation, respectively (kPa)

I: area moment of inertia of the specimen (cm*)

I,: area moment of inertia

1,;: area moment of inertia of mass m; (cm*)

I,,,; area moment of inertia of the driving plate

G, G, shear modulus (kPa), maximum shear modulus
(kPa)

Gy: specific gravity of soil particles

Jy: maximum internal potential energy

Jr: maximum kinetic energy

L: length of the specimen (cm)

N: total number of masses added at the top of the specimen

R: radius of the specimen (cm)

S: sensitivity of the accelerometer (mV/g)

S,: degree of saturation

Thex: period of flexural resonance

V. velocity

Vs, Vip Vp: shear, longitudinal, and compressional wave ve-
locities, respectively (m/s)

o: constant

|Avol|: volume change of the specimen due to tension or
compression

€y Volume-average axial strain for flexural excitation

€. residual axial strains caused by isotropic loading

g, axial strain

€,.max> €max: Maximum axial strains caused by flexural excita-
tion and isotropic loading, respectively

v. shear strain

p: mass density of the specimen (KN s%/m*)

O: stress

o,: isotropic confinement (kPa)

G,: effective confinement

v: Poisson’s ratio

@}, «: undamped flexural and torsional natural circular fre-
quencies, respectively (rad/s)

®, 6, @ resonant frequency of the calibration specimen
alone, with the added calibration mass at the top, and
with a changed vertical position of the driving plate, re-
spectively
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Appendix 2: Relevant equations for the
analysis of flexural excitation

Resonant Frequency: Rayleigh’s method

The mode shape for the horizontal displacement y of the
specimen at elevation x is assumed to be a third-order poly-
nomial:

[Al] ;

y(x) =ag +ax+a,x* +agx
At the lower plate (corresponding to elevation x = 0) the dis-
placement and the tangent are y(0) = 0 and y(0) = 0, respec-
tively. Hence, a, = 0 and a; = 0. Neglecting the moment at
the top end x = L, Eiy/’(L) = 0. Then, eq. [Al] becomes
[A2] y(x) = ox?[3L —x] for x<L
where o is a constant given by o = (a,/3L). Equation [A2]
also represents the elastic deformation of a cantilever beam
with a transverse load at the free end. The horizontal dis-
placement of rigid masses placed above the specimen are es-
timated from the horizontal displacement y(L) and the
tangent Y(L) at the top of the specimen:

[A3] y(x)=ol?[2L+3(x-L)] for x<L

The maximum internal potential energy Jy (extreme defor-
mation) is computed by taking into consideration only the
internal energy in the deformed specimen:

L
[Ad] Ty =%Elb‘[y"(x)2dx, Jy =6El,a*L}
0

where E is the Young’s modulus, and I, is the area moment
of inertia. The maximum Kinetic energy J; (maximum veloc-
ity) is computed by presuming harmonic oscillation with fre-
quency . The component for the specimen is

L
1 33
AS]  Jp =—p@A| y(x)? dx, Jo =2 @2 a?lom
[AS] Jp ZP t _([)’() ™ =0 O T

where A is the cross-sectional area. The kinetic energy for a
concentrated mass added at a distance & above the specimen
can be evaluated using eq. [A3] with 2 = (x — L):

(a6] I = %m[ocLz (2L + 3h)12

2
Jrp =mo?LS LA
L 2\L

Finally, the circular resonant frequency for the flexural mode
is computed by equating the maximum internal potential en-
ergy Jy and the maximum kinetic energy Jr; + Jro:
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Fig. A1l. Calibration setup for flexural excitation.
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The previous equation can be extended to N masses m;. Each
mass has a mass density p; and cross-sectional area A;, and is
uniformly distributed from height 40; to h1; (measured from
the top end of the specimen, Fig. Al). Then

33
“Zmy+ Y m; h(h0;,h1;)|L3
[140T§;t(: 1)}
where
[A9]
; ) 3(h02% + hO,hl, + h1?
h(hoi,h1,.)=1+3(h0t+hll)+( , (hl; + R12)

2L 417

Equation [A9] can be written in terms of the centre of grav-
ity y; and the mass moment of inertia I,; of each mass m;:

3y . 9 [l
h(yei Iy) =1+ L”"'m{;”*‘)’é}

i

[A10]

Average axial strain
The axial strain at elevation x and at distance r from the
neutral plane is

© 1998 NRC Canada



490

d2y

[All] e(x,r)=y-r=6-oc(L—x)-r

For the circular column with radius R and total volume V,
the average strain is defined in terms of the tension or com-
pression side as

1
[A12] €4, =—— [&(x,r)-dA dx
g V/ZVL
Hence,
LR

[A13] £, =3”6.a(L—x)-r-[2 R: — 2 -er-dx

VOO

€avg =i-R-L'oc
T
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The value of o is computed from eq. [A3] with the maxi-
mum flexural displacement y,,.,, measured at the elevation
of the accelerometer x,. .

y meas

Al4 =
A = o 30, — D

The average strain can be related to the maximum strain
experienced at the lower edge of the specimen €., =
6-0:L-R. Replacing in eq. [A13],

2
[A15] €avg = ;T—C € max
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