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AssTrRACT: This paper describes methods for determining and utilizing Markov
chains in the evaluation of highway bridge deterioration. Using a data base of 850
bridges in New York State, Markovian transition matrices (MTM) are first found
for the overall bridge condition. Then, transition matrices are developed for the
condition rating of individual bridge components (e.g., superstructures, decks, and
piers). In each case, chains are determined for various types of construction. Also
discussed is the modeling of correlated elements such as the primary structure and
joint condition and the ability to determine the correlation for a set of data. The
consequence of small data bases is discussed, and an explanation is offered for
unexpected values of the transition probabilities. Finally examined is the use of
Markovian analysis for predicting the evolution of the average condition rating of
a set of bridges, and expected value of condition rating for a single bridge. Markov
transition matrices are introduced to model the effects of repairs and to determine
repair policies that will lead to constant average condition rating.

INTRODUCTION

All highway bridges are inspected at least every two years in accordance
with federal standards. The inspector rates major structural and nonstruc-
tural elements, and provides ‘‘condition ratings” for each element, and a
“general recommendation” for the bridge as a whole. The rating consists
of mapping the assessed condition of a given component onto an (n, m)
range, where n and m are integers. For example, the scale adopted by New
York State Department of Transportation (DOT) uses the 1-7 range; the
corresponding verbal definitions are shown in Table 1 (Bridge Inspection
1982; Bridge Inventory 1982).

The aging of bridges, as determined by means of evaluations at discrete
times using an integer scale, can be readily modeled with a probabilistic
approach as a discrete state Markov process. A Markov chain is a stochastic
process in which the probability distribution in the next year depends only
on the present distribution. For this study, each condition rating corresponds
directly to a state in the Markov chain. When the transition probabilities
are constant with time, the Markovian transition matrices (MTM) remain
the same and the process is said to be stationary.

Previous work in Markovian analysis of highway bridges includes a study
of transition probabilities between “levels of service” (Gopal and Majidzadeh
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TABLE 1. Definitions of Condition Ratings

Rating Meaning
(1) (2

7 New condition

Used to shade between 7 and 5
Minor deterioration

Used to shade between 5 and 3
Serious deterioration

Used to shade between 3 and 1
Potentially hazardous

N WA 0

1991), and a study of service life prediction (Jiang and Sinha 1989). A study
at Princeton University (McCalmont 1990) has determined the overall bridge
deterioration for a data base of approximately 2,000 bridges, differentiating
between steel and concrete construction. In that study and others (Jiang and -
Sinha 1989), bridge condition ratings were considered Markovian states.

The present study continues the use of one-to-one correspondence be-
tween rating and state. In this case, the data base contains 850 bridges with
a total of 2,000 individual spans. All bridges are located in lower suburban
New York State. Forty percent of the bridges are made of concrete, and
the rest are steel. The oldest structure was built in 1840 and the most recent
one in 1990. The majority of the bridges were constructed between 1930
and 1970. Only the bridges built after 1900 were used in the analyses. When
available, the ‘“date of the last major construction” was used to calculate
the age of the bridge.

This paper is divided into three sections. The first section describes meth-
ods for determining the Markovian transition matrices for types of bridges
and types of elements and summarizes the results of applying these methods
to the population. The analysis in this section assumes that the deterioration
of each element is independent of all other bridge components. Section two
of the paper considers the interaction between the rate of aging of correlated
components; that is, the dependence of one element’s Markovian transition
matrix on another element’s condition rating. The third section gives ex-
amples of how the Markovian approach can be used in the assessment of a
single bridge and on an entire population of bridges, by assigning a cost or
risk to a bridge for each possible condition. Throughout the paper, the analysis
of “general recommendation” is based on the overall bridge population, while
studies of elemental “condition ratings” are based on data for spans.

SECTION 1: UNCORRELATED ELEMENTS

A typical Markov Chain for stationary bridge deterioration is shown in
(1) (seven discrete states are used so that the analysis is consistent with the
existing rating scale).

Ty Toe Tos Trs Tos T, Thy
0 Tes Tes Tos Tes Ter T
0 0 Tss Ty T3 Ts; Ty
T= 10 0 0 Ty Ty3 Ty Tay |-oonneeeeniii .. (1)
0 0 0 0 Ty Ty Ty
0 0 0 0 0 TnT,
00 0 0 0 0 Ty,




where T; = the probability of an element decaying from state i to state j
in one year. Note that all 7;; terms where j is greater than i are zero because
the condition cannot improve without intervention. There are two additional
observations that help simplify (1). First, the analysis of deterioration data
for New Jersey bridges showed that the probability of a bridge element
decaying by more than one state in two years is negligible (McCalmont
1990). This stems, in part, from the fact that the condition scale is discretized
into a sufficiently small number of states. The present study attempts to
determine one-year transition probabilities; therefore, the probabilities for
two (or more) state jumps are also negligible. Second, the rows of the
Markovian transition matrix must sum to one. It follows that only the seven
T, terms are needed to fully define a particular MTM. Eq. (2) shows the
form of the MTM used in this study:

- -

T,1 — Ty O 0 0 0 0
0 T66 1_T660 0 0 0
0 O Tss 1 — T 0 0 0
T= |0 0 0 T 1 - Tyu0 0 ()
0 0 0 0 T, 1 — Ty0
0 0 0 0 0 T, 1~ Ty
0 0 0 0 0 0 1 i}

The last term T, = 1, because the condition rating cannot get any worse
(or better) and remains trapped in this state. Assuming a stationary process,
and given an initial distribution, q, the distribution of the condition rating
in year n can be found as:

Q. = QoL e 3)

Determining Transition Probabilities

Two methods were used to determine the values of the terms 75,—T,,.
The first approach minimizes the summation of the squared difference be-
tween the relative frequency and the discrete distribution found from (3).
Each term in the total error is weighted by the number of bridges of age
n. This method is written as a nonlinear program:

7 N

min >, >, (£, — qT)2C(R) oo (4a)
i=1n=1

subject to

0<Tkk<1 k=2,...,7 ............................... (4b)

where q, = initial distribution (1, 0, 0, 0, 0, 0, 0); f;,, = relative frequency
of bridges in state i at age n; T = the matrix from (2); N = number of
years of data available; and C(n) = number of bridges of age n. The program
was solved by successive line minimizations in the T,,-T,, directions, using
the bisection method.

The second approach (McCalmont 1990) evolves from the previous one,
by taking advantage of the fact that (q,T”); is independent of T}, if j is less
than i. In other words, the probability of being in state 6 after some time
n, depends only on T, and Tg, and not on Tss—T,,. Therefore, T,,—T>,
can be found successively by minimizing the mean-square error for each
row.
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where each minimization is only in one variable.

Jiang and Sinha (1989) also used nonlinear programming to estimate
transition probabilities for their service-life-prediction model, but they min-
imized the absolute difference between the expected value of the condition
rating from the Markov chain and the actual average condition rating from
the data base.

Results

The values of the Markovian probabilities extracted from the New York
data base are summarized in Tables 2—4. Each table has two values of T}
for each element: The upper value was obtained with the overall minimum
method, and the lower value with the line-by-line minimization method.

TABLE 2. Markovian Transition Matrices for General Recommendation

Per- {Percent-

centage| age

Description Count] T); | Tee | Tss | Tay | Tz | Ton | (<B) (<5)
(1) 2 | 3) | (4 65) | 6) | (7) | (8) (9) (10)

Concrete

Simple 214 10.95010.97710.98710.99810.999|0.999 | 0.50 26.14
Continuous 54 10.89310.957(0.9760.97310.999 | 0.945 3.01 57.52
PS 36 [0.82710.99710.971{0.895]0.915|0.945 1.04 7.01
Deck arch 48 10.95810.9690.9870.999 [{0.909]|0.947| 0.02 29.34
Culvert 36 |0.893]0.967|0.968 [ 0.997 [ 0.8290.904| 0.39 48.65
Frame 86 [0.000|0.000|0.000]0.970{0.949]0.938| 56.06 | 100.00
Steel 456 [0.886(0.961]0.97410.98210.989|0.977| 2.36 57.78
All _ 830 |0.8620.966|0.981|0.982(0.989|0.974| 1.63 53.37

TABLE 3. Elemental-Condition-Rating Markov Chains

Percent-|Percent-
age age
Description Count| T5; | Tee | Tss | Tay | Ts5 | Tnn (<3) (<5)

(1) @ | @ |4 |G |6 | @O 6 O (10)

Footing 911{0.962|0.94310.981|0.972]10.9560.963 | 1.52 | 40.55
0.95810.93310.981]0.962|0.8810.681| 2.38 | 47.00
Column 802{0.94210.94310.979]0.964|0.954]10.921| 2.84 | 52.10
0.9360.9310.97810.95510.892 0.000 | 4.31 60.12
Stem 29510.95410.956|0.986{0.978 10.98210.942| 0.89 | 39.34
0.951]0.957|0.985]0.9710.950|0.000 | 1.24 | 40.28
Top of cap 80710.949{0.946|0.9820.957(0.948 1 0.913 | 2.49 | 47.17
0.94710.94310.981|0.944 | 0.981 | 0.000| 3.41 49.63
Pedestal 88010.954 {0.95010.983]0.972|0.938[0.943| 1.45 | 42.49
0.950{0.94810.983]0.961 {0.807 | 0.000| 2.10 | 45.66
Erosion 131{0.000 | 0.000{0.979|0.950 | 0.944 | 0.952 | 22.00 | 100.00

0.000 | 0.007 | 0.957 | 0.634 | 0.000 | 0.000 | 66.89 | 100.00
Secondary Member| 1,240 | 0.970 | 0.965 | 0.981 | 0.983 | 0.95410.974 | 0.55 25.34
0.968 | 0.968 | 0.9820.985]0.965|1.000| 0.46 | 24.93
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Rare elements in the data base, or components with vague description such
as “other” were omitted. Ill-formed results obtained with sufficient data
are included with explanations. The values of T,, and T;; should be used
with caution because there are few elements that are in such conditions.

Results for the overall assessment of the bridge “general recommenda-
tion” are shown in Table 2. Transition probabilities were determined for
all bridges, all concrete bridges and all steel bridges. Further grouping in-
cludes concrete nonprestressed, concrete prestressed, steel painted, and
steel unpainted. Table 3 shows transition probabilities for generic bridge
elements or characteristics that could not be subgrouped because of insuf-
ficient data; e.g., footings, columns, and erosion status. Table 4 shows the
results for elements that were well supported in the data base. Four elements
were examined: primary structure, wearing surface, structural deck, and
deck joints.

A meaningful approach to compare two Markov chains is to define a
single probability that represents the overall decay rate. Two such values
were selected: One is the probability that the condition rating is less than
3 after 30 years, and the other is the probability that the condition rating
is less than 5 after 30 years. The probabilities for these threshold ratings
can be interpreted as the percent of elements or bridges needing major
rehabilitation or minor repair, respectively. These two values are also ob-
tained in Tables 2, 3, and 4.

The Markov chains can also be compared graphically by plotting the
expected value of the condition rating versus age. The expected value can
be found as:

CR; = ,-; (o™i v e (6)

Fig. 1 shows the decay rate of steel structures as observed from the data
base, and as predicted by the Markovian model. This is a plot of expected
value of condition rating versus time. Because the variance increases with
time, 10% and 90% are also shown. However, the lines for the percentiles
rarely fall at a discrete state, the value of condition rating for a given
percentile is interpolated from the bracketing probabilities.

Ill-formed Markovian transition matrices have 0 in the higher condition

Condition Rating

FIG. 1. Deterioration of Steel Structure: Age versus Condition Rating
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ratings and 1.0 in the lower. A value of zero for T, indicates that there
were very few or no elements with a 7 rating. Therefore, the least mean-
square error occurs when the element deteriorates to state 6 as rapidly as
possible, i.e., the probability of staying in state 7 is 0.0, thus one year lowers
the rating to 6. Similarly, a value of one for Ts; occurs when there are no
elements in state 2, and state 3 becomes an artificially trapping state. In
this case, the value T, is meaningless because the mean-square error does
not respond to the T, variable. The line-by-line minimization may lead to
ill-formed values of 1 or 0 in the lower states. Further work is needed to
assess the advantages and limitations of the line-by-line minimization as
compared to the overall optimization.

SECTION 2: CORRELATED ELEMENTS

If elements A and B interact in a structure such that the condition of B
effects the decay rate of A, then A must have a nonstationary Markovian
transition matrix, in which the terms T, decrease with time. (It is assumed
the lower rating of B implies a faster decay of A). For example, due to
water infiltration the decay rate of the primary structure will depend on the
condition of the deck joints. The resulting decay of the primary structure
will be a nonstationary Markov chain, because the transition probabilities
of the primary structure are decreasing as the joint decays.

Let’s define Ta/; as the probability of A staying in state i if B is in state
j. Then, given a distribution of B, gb", the transition probability, Taj in
year n is found as:

,
Tar = S Taigbr  fori=1,.. .7 oo (7)
j=1

The distribution for A at time 7 is now found from the deterioration matrices
for each year, T .

qa, = qaoT T . T e (8)

The parameters for this model can be found by minimizing the mean-square
error, as in (4), however a new T* must be found each year from the
previously known Tp. Because each state of B has Taj; for each state in A,
there are 49 (7 x 7) probabilities that are free in the optimization. The
problem can be simplified by reducing the condition rating of B to two
states; good, i.e., functioning as designed, and bad, i.e., not functioning as
designed. Then, two probabilities can be found at any time n:

Pyos = qb; + gbs + GDs e 9)
Pbad = qb4 + qb3 + qb2 + qb1 = 1 - Pgood ................... (10)
Now T} can be expressed as

nT?; = Tli,B-——gOOdPgood + Tii,BZbadPgad -------------------------- (11)

and only 14 terms need to be found in the minimization. The nonstationarity
of T# arises from the fact that Pyooq is decreasing and Py,q is increasing with
time, and T}; - gooa 1S greater than T; g—vaa-

Fictitious data for a pair of bridge elements were simulated from known
transition matrices, to test the method for finding nonstationarity. Both
elements were initialized to be in state 7 and were deteriorated with the

827



Markovian transition matrices shown herein. It is assumed that the condition
of element B influences the decay rate of element A as follows:

09 01 0 0 O O O
0 09 000 O 0 O
o 0 09 01 0 0 O
Tg=|0 0 0 09 01 0 0
0 0 0O 0 09 01 0
o 0 o0 0 0 09 01
o o0 o0 0 0 0 1.0
The transition matrix for A given that the condition rating of B > 5 (good)
09 01 0 O O 0 O
0O 09 01 0 0 0 O
0o 0 09 01 0 0 O
T,.=|0 0 0 09 01 0 O
o 0 0 0 09 010
o 0 0 0 0 09 01
o o o 0 O 0 10

The transition matrix for A given that the condition rating of B < 5 (bad)

08 02 0 0 0 0 O
0O 08 020 O 0 O
0 08 02 0 0 O
0 0 08 02 0 O
0 0 0 08 020
0 0 O 0 08 02
o o0 o0 o0 o0 0 10

The results of applying the minimization method on the simulated data
are summarized in Table 5, together with the results for the noncorrelated
method, so that minima can be compared. The analysis assuming correlation
shows a lower minimum, indicating a better fit than the uncorrelated method.

The New York data base was evaluated to identify correlations between
the decay rates of different components. Table 6 shows the results of the
correlated analysis of the primary structure when it is assumed to be de-
pendent on the condition of the deck joints. Predicted deterioration rates

0
T, =10
0
0

TABLE 5. Results of Nonstationary Analysis of Simulated Data

Uncorrelated Analysis Correlated Analysis of A
AgivenB = Agiven B =
T A B good bad
(1) ) ©) 4) (5)
7 0.881 0.886 0.882 0.869
6 0.879 0.895 0.885 0.798
5 0.865 0.894 0.879 0.778
4 0.863 0.892 0.880 0.797
3 0.862 0.899 0.875 0.808
2 0.869 0.889 0.884 0.811
Minimum 42.72 46.62 36.28 36.28
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TABLE 6. Results of Nonstationary Analysis of Real Data

Transition ]
values T, Tes Tss Ty, T, T,, min
(1) () (3) (4) (6 (6) (7) (8)

Primary steel if joint

CR >4 0.991 | 0.983 | 0.999 | 0.999 | 0.999 — 77.83
Primary steel if joint

CR =14 0.717 | 0.889 | 0.896 | 0.780 — .
Primary concrete if

joint CR > 4 0.968 | 0.967 | 0.999 | 0.999 | 0.999 — 59.87
Primary concrete if

joint CR = 4 0.728 | 0.903 | 0.873 | 0.889 | 0.617 —

Note: CR = condition rating.

rSteel Correlated Model

“.-\-::“-\- __________________________ 4_//‘{ Joint Repairs, 10 yrsJ

o T e — [

| ['steel Uncorretated Model |

Mean Condition Rating
»H

1

0. 5 10 15 20 25 30 35 40 45 50

Age
FIG. 2. Deterioration of Joints and Steel Structure: Correlated and Noncorrelated
Analyses

of the joints and the steel structures are shown in Fig. 2, based on results
of the correlated and uncorrelated analyses. The decay rates of the steel
structure when joints are repaired every 10 and 20 years are also shown.
The decay rate predicted from the uncorrelated analysis involves standard
maintenance of the joints and structure. The corrected prediction of the
correlated analysis, taking into consideration joint repair, leads to results
similar to the predictions of the uncorrelated analysis.

SECTION 3: APPLICATIONS OF MARKOVIAN APPROACH

Population of Bridges

Markov chains can be used to predict the future distribution of condition
ratings of a group of bridges. Table 7, column 1 shows the current number
of steel bridges in each condition, in the New York data base. The remaining
columns show the predicted distributions for the next five years, found by
successively applying the Markov chain obtained from the data base. Be-
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TABLE 7. Predicted Distributions of Steel Bridges (Values Shown are Actual Number

of Bridges)
Condition Year

rating 0 (now) 1 2 3 4 5
(1) (2) 3) (4) (5) (6) )
7 38 32 27 23 19 16
6 176 174 172 170 167 163
5 155 157 160 163 165 167
4 94 95 97 99 102 104
3 40 41 43 44 46 47
2 7 7 7 8 8 9
1 3 3 3 3 3 5

Average CR 5.087 5.069 5.056 5.032 5.014 4.998

Note: CR = condition rating.

cause the number of bridges is constant, the Markov chains can be applied
to the relative frequency.

Markov chains can also be used to model the effect of bridge repairs. For
example, the repair policy “replace 10% of the bridges in condition 3 or
less each year” can be modeled with the following Markovian transition
matrix

1 0000 0 O

0 1000 0 0

0o 0100 0 0
R=10 00 1 0 0 0 | teuriiiiiiiaaaaaaaann (12)

01 0 0 0 09 0 0

01 0 000 09 0

000000 0 09

This is an identify matrix except for the last three rows, which have the
percentage of bridges to repair in the first column of the rows corresponding
to conditions 3, 2, and 1; the complement appears on the main diagonal.
The underlying assumption is that the condition rating of the repaired bridges
jumps to state 7, given it is presently in condition 3, 2, or 1.

The combined effect of natural deterioration and repair policy can be
expressed as TR. Then, the distribution in any year expressed as

q4n = qo(TR)"
The upper part of Table 8 shows the predicted future distributions of bridges
when the 10% repair policy is implemented. The lower part shows the results
of implementing a 20% repair policy of bridges in condition 3 or lower. The
average condition rating for the whole population is shown and can be
compared with the evolution of the average condition rating for deterio-
ration without repairs (Table 7). It can be concluded that slightly less than
10% of the bridges in condition 3 or lower should be fixed each year to
maintain the same average condition rating in the future, for this network.

..............................................

Uses of Markovian Approach on a Single Bridge

Markovian analysis can also be used to predict future cost or risks for a
single bridge. If each condition rating i has some maintenance cost C; as-
sociated with it, then the expected value of this cost can be found.
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7
COSE = D0 GiCi oot e (14)
i=1 .

When separate costs or risks are known for each of the N, elements in the
bridge, the total expected value of the cost can be found as

7 Ne
total cost = >, D, GiiCij oo (15)

i=1j=1

Risk can be substituted directly into (14), where risk can be the probability
of events such as failure or unserviceability. However, when using risk in
(15), the summation over all elements is no longer valid because the ele-
mental total probabilities must be combined by systems reliability methods,
taking into consideration the structural arrangement, i.e., series, parallel,
or any combination.

In either case, cost or risk, repairs can be modeled by forcing the distri-
bution back to state 7, regardless of the current state (this assumption was
made in the previous section). This operation can be done systematically
with the following Markov transition matrix

1.0

000000
10 00 0 0 0 0
10 0000 0 0
R= (1.0 0 0 0 0 0 O] oovvrrieemiiiiiaaiin. (16)
10 0000 0 0
10 0000 0 0
1.0 00 0 0 00

Uncertainties of all forms, including subjective assessment of the quality of
the repair, can be captured in R. For example, a 90% confidence that a
repair will return an element to state 7 can be written as

09 01 000 0 0]
09 01 0 0 0 0 0
09 01 0 000 0
R= 109 0100 0 0 0 o0eeii . a7
09 01 0 0 0 0 0
09 01 0 0 0 0 0
09 01 0 00 0 0

Then, the expected cost C; for element j can now be found by

7

C = -21 Ci(Got"RT™); oo (18)

1=

where g, = initial probability distribution of the condition rating; T = the
appropriate transition matrix; R = the repair transition matrix; ¢;; = the
cost of element j in condition i; n = number of years before the repair; and
= number of years after the repair.
The elemental cost is then summed over all elements to obtain the total
repair cost. This can be repeated with elements being repaired separately
or in combinations, for any given year and for each bridge. The combination
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TABLE 8. Predicted Distributions of Steel Bridges with 10% and 20% Replace-
ment Policy (Values Shown are Actual Number of Bridges)

Condition » Year
rating 0 (now) 1 2 3 4 5
(1) (2) (3) (4) (5) (6) (7)
(a) 10% Plan
7 38 37 36 35 34 34
6 176 179 173 172 171 169
5 155 157 160 163 165 168
4 94 95 97 99 107 104
3 40 37 35 33 31 29
2 7 6 6 6 5 5
1 3 3 3 2 2 2
Average CR 5.087 5.090 5.092 5.093 5.094 5.094
(b) 20% Plan
7 38 42 44 46 45 43
6 176 174 174 174 175 175
5 155 157 160 163 165 168
4 94 95 97 109 102 104
3 40 33 27 24 20 17
2 7 6 5 4 4 3
1 3 2 2 2 1 1
Average CR 5.087 5.112 5.131 5.146 5.158 5.166

Note: CR = condition rating.

of repairs for all the networks, which has a minimum total cost (or risk),
can be found by integer programming or other optimizing methods.

CONCLUSIONS

Two methods for the determination of transition probabilities were de-
scribed and tested. Neither method prevails by the quality of results, how-
ever, the line-by-line minimization involves much less computational effort.
Both methods are equally affected by the lack of data. Because the “date
of the last major construction” was used to determine the age of the struc-
tures, repairs that have not updated “age” show the weakest result, i.e.,
deck joints.

The results for the correlated elements would be improved if two con-
secutive years of data were available. With this data, the relative frequencies
could be easily found, without the need for minimization, and the true
condition of the joints would be known. However, a distinct increase in the
decay rate can still be seen by the minimization method. v

Markov transition matrices can be used to model the aging of a bridge
network, and the aging of independent and dependent bridge components.
Repair policies and even subjective estimates can be implemented, creating
the basis for probability-based bridge management approaches.

ACKNOWLEDGMENTS

The writers are thankful to New York State DOT for providing the bridge-
inspection and inventory data bases. This research was sponsored by the

832




Transportation Research Consortium as part of a joint research project at
Princeton University and Polytechnic University. The writers are grateful
to the careful comments by reviewers.

APPENDIX. REFERENCES

“Bridge inspection manual.” (1982). New York State Dept. of Trans., Structures
Design and Construction Div., New York, N.Y.

“Bridge inventory manual.” (1982). New York State Dept. of Trans., Structures
Design and Construction Div., New York, N.Y.

Gopal, S., and Majidzadeh, K. (1991). ““Application of Markov decision process to
level-of-service based maintenance systems.” TRB Annual Meeting, Transp. Res.
Board, Nat. Res. Council, Washington, D.C.

Jiang, Y., and Sinha, K. (1989). “Bridge service life prediction model using Markov
chain.” Transportation Research Record 1223, Transp. Res. Board, Nat. Res.
Council, Washington, D.C., 24-30.

Karin, S., and Taylor, H. (1975). A first course in stochastic processes. 2nd Ed.,
Academic Press, New York, N.Y.

McCalmont, D. (1990). “A Markovian model of bridge deterioration,” Bachelor of
Science in Engineering thesis, Princeton University, Princeton, N.J.

833



