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ABsTRACT: This paper outlines a methodology for bridge project selection based
on reliability methods and optimization procedures, which could serve as part of
a bridge management system. The Markovian model is used to decay the structural
components. Then, a reliability index is determined for each element using either
subjective assessment or first-order reliability methods. The overall reliability of
the bridge is calculated as a system reliability by combining the individual reliability
of the components in a series system. Risk is obtained from the reliability of the
bridge and the consequence of closure. Repairs can be modeled in any year. The
optimum set of repairs is defined as that which minimizes the total network risk
in the planning horizon. Methods for finding the optimum set of repairs are dis-
cussed, and a near-optimum algorithm is selected.

INTRODUCTION

The development of a risk-based bridge project selection system requires
a stochastic model of the deterioration of bridge elements, a reliability
analysis of individual bridges, and an effective approach for the selection
of repairs within the whole network. There are two primary constraints:
First, the methodology must be relatively simple to be systematically im-
plemented to all bridges in the network. And, second, the data needed in
the reliability analysis should be contained within the bridge inspection and
inventory data base.

Previous work (Cesare et al. 1992a; Jiang 1989; MacCalmont 1990) dis-
cussed the modeling of deterioration and repairs by Markov processes;
therefore, it is assumed that Markovian transition matrices are available.
In this paper, a procedure is described for evaluating the reliability of a
bridge in any year in the future, without repair or with a particular repair
done in any year. This information is then used to select the combination
of repairs that minimizes the total risk for all bridges in the network.

METHODOLOGY

The proposed methodology consists of several steps symbolically outlined
in Fig. 1. A brief description follows (Appendix II summarizes the notation).

Step 1: Condition Rating of an Element
In this first step, the probability distribution g for the condition rating of
each element is determined for each year n; the distribution is obtained for
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FIG. 1. Symbolic Outline of Risk-Based Management System

every year in the horizon, before and after the year r, of repairs. Appropriate
Markovian transition matrices are used in this task, specifically developed
for the given bridge element (e.g., foundation, structure, wearing surface):

qn = qoI™ T P (1a)
g, = qoT"RT" ™" =S (1b)

The application of Markov chains to condition ratings of the various
elements of a bridge provides a discrete probability distribution for the
condition of each item inspected for each year in the future, within a pre-
determined horizon (Cesare et al. 1992).

Step 2: Probability of Failure of an Element

Given a function F(*) that relates condition ratings to reliability index of
an element, and assuming normal distribution @, the probability of failure
of each element P, in each year n is obtained by summing over all valid
values of all condition ratings, to obtain the total probability of failure

Peo= D O 2 quga qu®Feryrer,)] oo (2)

crl cr2 crm

Note that the function F(*) is specific to the element being considered
and cannot be expressed in a general form. The estimation of this function
is discussed later in the text.

Step 3: Probability of Failure of Bridge

The probability of failure of the N, elements of a given bridge are com-
bined by system reliability to obtain the probability of failure of that bridge
P7 in each year n:

Ne
gzl_];‘[].(]‘__PEl) ...................................... (3)

A series system is assumed, in this calculation of the reliability of a bridge,
because most elements that are important enough to have their own con-
dition rating will also cause closure of the bridge if they are found likely to
fail (the exception being joints and railing).

Step 4: Risk due to Bridge Failure

The probability of failure, taken as the need for closure, of a bridge P,
in year n, and the consequences K of a failure define the risk Q,, due to
“failure” in year n:
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In a first approximation, consequences K can be evaluated as the product
of the average daily traffic ADT,, and the detour around the bridge, DT,
(in units of time, distance or cost). This can be interpreted as the expected
number of kilometers (miles), hours, or dollars of inconvenience to the
public.

Then, the total risk that bridge b presents within the N, years of the
planning horizon is computed taking into consideration the probability of
failure P(b, n, j,, n,,) in each year n, and the repair j, done in year nr,

N

y

Ob, jy, try) = > P(b, 1, ju, nr,)ADT, DT, .o (5)

n=1

Note that if no repair is done, j, = 0 and tr, is irrelevant.

A more comprehensive form of consequences K incorporates additional
terms to account for other costs. For example, lane width and clearance
deficiencies, accidents (traffic safety) and construction delays (Erickson
etal. 1989). In order to incorporate these other costs, they must be converted
to the same units before summing.

Step 5: Total Network Risk
Finally, the total risk Q for the whole network, throughout the planning
horizon is found by summing the individual total risks Q(b) for all N, bridges

Q = Z 010 D (6)
Observations

Risk in step 4 could be computed by associating a cost function to each
element probability of failure (step 2) and summing to obtain the total risk.
However, this requires the subjective assignment of weights or detailed
replacement cost data.

Within the context of the proposed approach, the total risk Q is the most
meaningful parameter to assess the soundness of a repair option. Two prob-
lems remain: (1) The definition of functions F(*) that relate condition rating
of elements to their reliability index; and (2) the generation of optimal
repair options. These two problems are addressed next.

CONDITION RATING AND RELIABILITY

The proposed methodology attempts to maximize the usage of available
inspection information; however, it requires a correlation function Fp,(*)
to transform condition ratings to the reliability index of a given element.
This function can be found using either subjective estimates or first-order
reliability methods (FORM) (Thoft-Christensen 1982; Moses 1987). This
time independent function is based only on the condition rating of the given
element; therefore, deterioration and safety are both accounted for, but
kept separate.

In some cases there will be only one relevant condition rating; in other
cases two or more condition ratings are involved. Because F(*) does not
have generic form, specific cases are presented.
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One Condition Rating—No Detailed Information

Two extreme points and a linear relationship are assumed. Elements are
designed for a B of about 4 (Moses 1987), which by definition corresponds
to condition rating 7 (“new”: 1-7 scale), hence the point (B = 4, CR =
7) is known. The lowest condition rating, 1, defined as ‘“‘hazardous” is
associated with a low value of the reliability index, B = 1.5. It follows that
the linear relationship B = a, + b CR, becomes B = 1.08 + 0.42 CR.

Two Condition Ratings—No Detailed Information

A similar approach may be used if two condition ratings contribute to
the reliability of an element and detailed information is not available. This
case may apply to pier footings where the risk depends on the footing rating
itself and the erosion control rating. A simple model is proposed as

FEi(CRl) CRz) =a + bCRl + CCRZ ........................... (7)

Three points are needed: (1) If both condition ratings are good, CR, =
CRy = 7, then the reliability will be high, B = 4; (2) if both are low, CR4
= CRy; = 1, the reliability will be low, B = 1; and (3) for CR, = 7 and
CR; = 1 a moderate level of reliability may be expected, B = 2.5. If more
points are ‘“known,” surfaces with curvature can be developed.

One Condition Rating—Objective Analysis

Based on the methods used for determining load capacity of bridges
(Moses 1987), a simple analytical method is proposed to determine reliability
index from condition rating. Let’s assume a short concrete pier (buckling
not considered) for which the original design load and the current usage
are known from the inventory data, but detailed dimensions are not. The
original capacity can be approximated from the design equation. This orig-
inal capacity, R,, is reduced by a factor A, which is a function of the condition
rating. The coefficient of variation for A is considered 0.0% at CR = 7 and
20% at CR = 1 (Moses 1987).

A limit-state function of the form g = R — S is used with the first-order
reliability method (FORM) to find the reliability as a function of the con-
dition rating, assuming all variables are lognormally distributed. FORM is
run for all condition ratings. No structural analysis is needed because the
influence coefficient for the loading will not have changed from the original
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FIG. 2. Relationship between Condition Rating and Reliability
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FIG. 3. Relatonship between Multiple Condition Rating and Reliability

design. Fig. 2 is a plot of B-versus-CR for this example. The relation found
by the simplified method (case 1) is also shown.

Two Condition Ratings— Objective Analysis

The final case for determining F(*) examines a situation where the failure
probability of an element depends on two condition ratings. Let us consider
the case of the primary structure and the wearing surface. F(*) for the
“primary-structure element’” combines the condition rating of the primary
structure CRim, and the wearing surface CRys. These values are based
on a linear mapping of the condition rating into the various structural
parameters.

The case was simulated through a FORM, where CR,;;,,. was varied giving
an indication of the loss in carrying capacity, and CR,, modeled the change
in dynamic impact factor. Results are presented in Fig. 3. Note that is not
a mapping of condition rating into B as in the simplified case, but the result
of considering the actual physical characteristics of the elements. A more
detailed analysis is not warranted given the verbal and qualitative definitions
of condition ratings (Bridge inspection 1982b).

Averaged Condition Rating and Bridge Reliability

Instead of developed F(*) functions at the element level, condition ratings
could be averaged for the bridge, following approaches used by most state
agencies. Then, the weighted average condition rating (WAC) could be
related to the bridge reliability index by a global function Fy,, (WAC).
While this approach would be simpler than performing Step 2, there was
concern about its validity because condition ratings for different elements
may reflect different levels of reliability, and averaging formulas may not
properly characterize the elemental contributions to the system.

A preliminary study was conducted to compare the reliability method
with the New York weighted-average condition formula (WAC), (Bridge
inspection 1982a, 1982b). The WAC is based on 13 structural and non-
structural condition ratings. The reliability portion of this study was done
using the method presented as case 1 for the determination of the elemental
B, using appropriate parameters for each element. Table 1 shows the state
weights and the parameters used for the reliability method. The results of
both methods for 500 synthetically generated bridges are compared by plot-
ting the WAC and reliability in Fig. 4.

Results indicate that while there is some relation between the parameters,
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TABLE 1. Weights and Reliability Indices (for Fig. 4)

B at B at
Element Weight CR =3 CR =7
(1) (2) 3) (4)
Main members 10 2 4
Abutments 8 2 4
Piers 8 2 4
Seats 6 2 4
Backwall 5 3 4
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FIG. 4. Comparison of Global Reliability and Weighted Average Condition Rating

for the same WAC the reliability of the bridge can vary by an order of
magnitude. Therefore, when using risk as a criterion for project selection
the results may vary greatly from a system that uses the weighted average
model, because the set of repairs that yields a minimum risk may not have
the highest average condition rating.

SELECTION OF OPTIMIZATION ALGORITHM: PROBLEM SIZE

The problem of bridge management by risk minimization can be for-
mulated to be solved by many available methods. Unfortunately, risk as-
sessment procedures provide a three-dimensional array of risks for a pop-
ulation of bridges, Q(b, j,, nr,) where b is the bridge number, j, is the
repair for the bridge, and nr, is the year to repair bridge b. Then, a major
consideration in the selection of an optimization algorithm becomes the size
of the problem. Comments based on the writers’ experiences with different
algorithms follow.

Mathematical Programming

The sum of the risk on all bridges can be minimized by mathematical
programming or other optimization methods. Along with the yearly budget
constraint, this can be written as:

min Zbl O(b, Jios MFB) oo oo (8)



such that

Np

> C(b, j,, nry) < B(n) foreachn ........... ... ... ... ... 9)

b=1

In this equation, nr, is in the set of possible years for repair, j, is in the set
of possible repairs, C(b, j,, nry) is the cost of repair j, on bridge b in year
nr,, and B(t) is the budget constraint for year ¢.

A valid restriction to the solution space would be the number of repairs
per bridge per horizon. Artificial constraints such as not considering bridges
in good condition for repairs are not valid because bridges decay at different
rates. Similarly, constraints of “acceptable-minimum’ type are not appli-
cable as they can lead to unfeasibility at a given budget level. Should these
artificial constraints be applicable, they they will naturally manifest them-
selves in the optimum solution.

Search Strategies

“Full search” and even ‘‘branch-and-bound” are inapplicable to large
problems of this type. On the other hand, heuristic methods require exten-
sive past experience and careful selection of parameters.

The problem could be reduced by preselecting bridges according to thresh-
olds on an overall rating scale: e.g., one above, which no projects are done;
or another below, which projects must be done (acceptable and minimum
levels of service). Such acceptable levels could be set in the risk-based
method. For example never do a repair above 3 = 3 and always do a repair
below B = 2. However, with bridges deteriorating at different rates, the
use of only the current condition alone, may result in nonoptimal allocations
throughout the planning horizon.

Near-Optimum Solutions

In the context of this research the solution of the risk based bridge project
selection problem has been solved by a class of optimization procedures
known as “genetic algorithms” (Goldberg 1989). These methods evolve a
population of solutions toward the optimal by recombining and mutating
existing solutions to form new ones, and discarding those with higher total
risk (Cesare 1991). The solution evolves rapidly in the earlier iterations,
finally becoming increasingly close to the optimal solution. The user may
monitor the evolution of the solution and decide when a sufficiently ac-
ceptable result has been reached. Results obtained with this approach are
presented in the following section.

PARAMETRIC STUDY — CASE HISTORY

A problem with 50 bridges was run using the methods proposed and the
genetic algorithm-based optimization. Each bridge was considered for one
of six possible repairs in the next eight years. The results for several different
cases are shown in Table 2 (risk is in units of distance, expected value of
autokilometers [car miles]). The first two cases bound the possible solutions,
and correspond to no budget and unlimited budget.

The third case presented the total risk if repair decisions are based on
condition rating. The fourth case is based on risk minimization without
consideration of deterioration. The last case is also based on risk minimi-
zation, but deterioration is taken into consideration.
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TABLE 2. Optimization—Parametric Study

Case description Total risk
(1) (@)

Large budget: all repairs can be done if needed

(minimum risk) 75,313
Projects selected based on condition rating, and

fixed budget 191,561
Projects selected by risk minimization without ac-

counting for deterioration, and fixed budget 180,023
Projects selected by risk minimization, accounting

for deterioration, and with fixed budget 170,767

It is observed that the lowest total risk is obtained when decisions are
based on risk minimization, taking into consideration deterioration of the
bridge components within the planning horizon.

ANALYSIS

The proposed approach is more cumbersome to implement than most
standard management methodologies. It requires more information, and
awareness of the uncertainty of such information. For example, a significant
historical database, discriminated by element and materials is needed to
develop significant Markovian transition matrices, and to assess the sta-
tionarity of the deterioration process.

The final optimization is complicated by the size of the solution space
that expands in the time dimension. Therefore solution algorithms are com-
putation intensive. Shortcuts such as the use of the weighted average con-
dition rating and artificial constraints are discouraged, but could be used to
start the genetic algorithm. Near-optimum solutions may be preferred in
solving this problem.

The risk-based approach can also be used for a more appropriate planning
scheduling of inspections.

The implementation of the proposed methodology still needs better def-
initions of limit states for each element, adequate data bases and the com-
parative evaluation of more comprehensive cost functions.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

ADT, = average daily traffic bridge b;
B(n) = budget in year n;
C() = cost of repairs;
CR = condition rating;
crl, cr2,--- = condition ratings of specific elements;
DT, = detour—bridge b;
F(*) = reliability index as function of condition rating;
g = limit state function,;
J, = repair—bridge b;
K = consequences of closure;
m = number of condition ratings;
Nb = number of bridges;
Ne = number of elements;
Ny = number of years;
n = year number;
nr, = year of repair—bridge b;
P.;, = probability of failure of element i;
% = system failure probability in year n;
Q = total network risk for planning horizon;
Q, = risk in year n of bridge;
g = distribution of condition rating;
R = resistance;
r = number of years before repair;
S = load;
T = Markovian transition matrix for deterioration;
B = reliability index; and
® = unit normal distribution.
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