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ABSTRACT: We explore the effect of vibration on interfacial friction by applying normal and parallel base 
vibration to a block that rests on an inclined plane. Results show that the block can displace at significant 
lower angles than the limiting static angle, and that the acceleration level required to cause sliding increases 
with frequency. Limiting equilibrium analysis is insufficient to explain the observed behavior. Instead, we 
compute the displacement per cycle and show that (1) the apparent quasi-continuous motion of the block 
under vibration is the accumulation of successive slip-rest events, and (2) the displacement in every cycle 
must exceed a threshold displacement in order to cause sliding. The threshold displacement is 0.1 μm for 
polished granite surfaces; a relation between the threshold displacement and the length scale of surface 
features is anticipated. 
 
 
1. INTRODUCTION 

 
Friction is the source of strength in discontinuous 

systems such as granular materials and non 
cemented interfaces. Therefore, the fundamental 
understanding of friction and its control can lead to 
enhanced construction practices and the 
development of engineered granular minerals and 
interfaces. 

The history of friction starts with early 
observations in Mesopotamia [3500 BC] and Egypt 
[2750 BC]. Theoretical developments begin in the 
XV century by L. da Vinci [1452-1519 – Italy] and 
G. Amontons [1663-1705 – France], followed by J.T. 
Desaguliers [1638-1744 – England], C.A. Coulomb 
[1736-1806 – France] and J. Leslie [1766-1832 – 
England] who consider both asperity and adhesion 
effects on friction. The effects of sliding velocity 
and lubrication gain relevance in the XX century 
with the work of W. Hardy and I. Doubleday [1922 
– England], P. Bowden [1945-1968 – Tasmanian] 
and D. Tabor [1968-1981 – Australian]. Molecular 
dynamic simulations [Alder and Wainwright in 1956 
– USA] and the development of the atomic force 
microscope by G. Binnig, C.F. Quate, and C. Gerber 
[1986 – Switzerland] bring important new tools for 
the fundamental study of friction (Note: for a 
detailed historical review see Santamarina and Díaz-
Rodríguez 2003). 

Atomistic and engineering scale observations 
show that friction and noise are interrelated: friction 
causes noise, and noise or vibration affects friction 
(Friedman and Levesque 1959; Eaves et al. 1975; 

Budanov et al. 1980; Serdyuk and Mikityanskii 
1986; Tworzydlo and Becker 1991; Skare and Stahl 
1992; Adams 1996; Bengisu and Akay 1999; 
Tomsen 1999; Littmann et al. 2001; Bucher and 
Wertheim 2001.).  

In particular, vibration can reduce the frictional 
resistance between two sliding surfaces. Theoretical 
explanations have considered excitation frequency 
and asperity resonance, local increase in temperature, 
the ratio between dynamic and static stress, and the 
ratio between surface roughness characterized by the 
size of asperities and the vibration displacement 
amplitude. 

More recent dynamic studies of friction include 
the observation of "stochastic resonance" in 
frictional systems (whereby the correlation between 
input and output increases with the addition of noise 
- Wang and Santamarina, 2003), the enhanced 
understanding of the dynamics of stick-slip motion 
between two pure crystalline surfaces separated by a 
thin liquid film (Thompson and Robbins 1990; 
Jaeger et al. 1996), and energy dissipation due to the 
viscoplastic deformation of asperities and the 
viscous properties of lubricants between surfaces 
(Oden and Martins 1985; Hunt and Crossley 1975; 
Wang and Santamarina 2007).  

We document herein an experimental and 
analytical study of vibration-induced changes in 
interfacial friction. The study places emphasis on the 
measurement and prediction of the acceleration level 
required to trigger slippage.  
 
 



2. EXPERIMENTAL STUDY 
 
2.1 Devices 

The experiments involve two polished granite 
pieces (Fig. 1): one is tilted and serves as the sliding 
surface; the other piece is the moving block that is 
placed on the inclined plane (29x36 mm, apparent 
contact area 10.2 cm2, weight 27.2 gr). The static 
friction angle between the two granite blocks is 
φ=18º. 

A minishaker (PCB Piezotronics) is coupled to 
the lower piece to input base vibration. The 
sinusoidal input signal is created using a function 
generator and fed to the shaker through a power 
amplifier to attain a wide range of frequencies and 
amplitudes. The vibrations of the base and the 
moving blocks are monitored with mini-
accelerometers (weight 1.9 gr). Instrumentation and 
peripheral electronics are shown in Fig. 1.  

 
 

 
 

Fig. 1: Test configuration, instrumentation and peripheral 
electronic devices. Base vibration either normal or parallel to 
the sliding plane are imposed on any given test. The filled 
rectangle represents the moving block. Accelerometers are 
shown as empty rectangles, and the shaker as a double arrow. 
SG: signal generator. PA: power amplifier. SC: signal 
conditioner. Osc: Oscilloscope. 
 
 
2.2 Experimental Results 

We study the effect of two base vibration 
directions: one is normal to the plane, and the other 
is parallel to the dip vector. The procedure for each 
measurement follows: (1) select the vibration 
frequency, (2) increase the amplitude of the imposed 
vibration until the upper block begins sliding, (3) 
record the amplitude of the acceleration measured 
on the sliding block at the verge of sliding. 
Measurements are repeated for different vibration 
frequencies and slope angles. 
Data gathered for base vibration normal to the base 
and parallel to the dip vector are shown in Fig. 2. 
These figures show that (1) the higher the slope 
angle, the lower the acceleration required to trigger 
slippage, (2) the acceleration required to cause 
slippage increases with frequency.  
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Fig. 2: Acceleration required to bring the block to the verge of 
slippage for different slope angles and excitation frequencies. 
(a) Sinusoidal vibration normal to the sliding surface. (b) 
Sinusoidal vibration parallel to the dip vector. Points represent 
accelerations measured o n the block. Dashed lines correspond 
to the limit equilibrium prediction. Solid lines indicate the 
acceleration that generates a constant relative displacement of 
0.1 μm. Note: the granite-to-granite static friction angle is 
φ=18º. 
  

 
 
3. ANALYSES 
 
3.1 Static condition 

Consider a block weight W sitting on an inclined 
plane at angle β (Fig. 3a). Limiting equilibrium 
requires the balance between the driving and the 
resisting shear forces Tdr=Tres:  
 drT W sin= β  [1] 
 resT W cos tan= β ϕ  [2] 
In the limit Tdr=Tres, and we conclude that the block 
will slide when the inclination angle exceeds β=φ. 
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Fig. 3: Forces acting on a block resting on an inclined plane. 
(a) Static condition. (b) Subjected to base vibration normal to 
the plane, and (c) parallel to the plane. 
 
 
3.2 Limiting Equilibrium  

Limiting equilibrium must take into account the 
dynamic force Ndyn(t) when vibration normal to the 
sliding surface is imposed (Fig. 3b). In this case, the 
driving component Tdr is the static one (Eq. 1), but 
the resistant force varies with time as  
 ( )res

aT W cos sin t tan
g
⊥⎡

= β + ω⎢
⎣ ⎦

⎤
φ⎥  [3] 

The block reaches limiting equilibrium when the 
resistant force at its minimum becomes equal or 
lower than the driving force. Then, the normal 
acceleration a┴ required to bring the block to the 
verge of slippage is 

 ( )a costan tan
g t
⊥ β

= ϕ − β
φan

 [4] 

Note that the asymptotic value is a┴=g for β→0, i.e., 
the block must loose contact with the base 
momentarily in every cycle. 

The previous analysis is repeated for vibration 
parallel to the sliding surface (Fig. 3c). In this case, 
the resistance force Tres is the same as in the static 
case (Eq. 2), but the driving force Tdr combines both 
static and dynamic components: 
 ( )dr

a
T W sin sin t

g
⎡

= β + ω⎢
⎣ ⎦

⎤
⎥  [5] 

The block reaches limiting equilibrium when the 
driving force at its maximum equals or exceeds the 
resistance force Tres. Then, the acceleration of the 
block parallel to the plane required to bring the 
block to the verge of slippage a|| is 

 ( )
a

tan tan cos
g

= ϕ − β

The asymptotic value is a||/g=tanφ for β→0, i.e., the 
dynamic horizontal force imposed on the block must 
exceed the frictional resistance. 

Equations 4 and 6 predict that the acceleration 
required to cause slippage depends on the slope 
angle β and the angle of friction between the block 
and the surface φ, and that the acceleration will 
increase as the static block stability increases, i.e., as 
(tanφ-tanβ) increases.  

Note that a||/a┴=tanφ. In most cases, φ<45º,  
therefore a||<a┴ and a lower acceleration is needed to 
cause slippage when the imposed vibration is 
parallel to the static component.  

Limiting accelerations computed with Eq. 4 and 6 
are superimposed on Fig. 2. The predicted frequency 
independent response satisfies experimental results 
at low frequencies, but deviates from the data at high 
frequencies. This situation is further analyzed in the 
following section.  

 
3.3 Displacement Threshold  

The block slides for a short lapse of time in every 
cycle while the vibration level exceeds the limiting 
equilibrium condition. This situation is captured in 
Fig. 4 for both vibration normal to the plane and 
parallel to the dip vector. 
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Fig. 4: Short-time incursions into instability driven by base 
vibration (a) normal to the sliding plane, and (b) parallel to th  

 shows the forces acting on the bloc  
e
kdip vector. The figure

parallel to the sliding surface in each case. The displacement in 
each cycle is obtained by integrating the block acceleration. 
 



The duration of the incursion into instability is 
very short at high frequencies (and low vibration 
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a plitudes), and the integration of the acceleration 
results in small predicted displacements. Yet, the 
displacement in each cycle must exceed a minimum 
"displacement threshold" to allow for block sliding. 
We anticipate a displacement threshold in all 
conditions, and this length scale can range from the 
size of asperities in rough surfaces to the angstrom 
scale for atomically smooth surfaces.  

We compute the displacement of the block by 
successive integrations of the acceleration, 
analogous to Newmark’s method (see calculated 
displacements associated to various waveforms in 
Sarma 1975 and Yegian et al. 1988 and 1991). 
Results show that the displacement of the sliding 
block in each cycle of the sinusoidal harmonic 
vibration is proportional to the amplitude of the 
acceleration above stability conditions, and inversely 
proportional to the frequency squared. 

We superimpose on Fig. 2 the normal and parallel 
base accelerations required to cause a certain 
displacement. This "threshold displacement" is 
selected to satisfy all the data with a single value: 
the inverted displacement is 0.1 μm per cycle and it 
applies to the two datasets obtained with normal and 
parallel vibrations. Data scatter reflects the 
difficulties in determining the precise moment and 
level of acceleration when sliding starts. 

 
 
4. CONCLUSIONS 
 

Vibration reduce
acilitates sliding. Thef

li iting equilibrium and trigger sliding increases as 
the static block stability increases, i.e., as (tanφ-
tanβ) increases. 

A lower acceleration is required when vibration is 
imposed parallel to the sliding plane (i.e., cyclic 
increase in driving force) than normal to it (i.e., 
cyclic decrease in normal force). 

The observed displacement consists of 
cumulative slip-rest motions. The displacement in 
each cycle is proportional (1) to the excess 
acceleration imposed above the acceleration 
required for limiting equilibrium, and (2) to the 
duration of the instability incursion. Experimental, 
numerical and analytical results show that the 
displacement in each cycle is inversely proportional 
to the square of the frequency. 

There is a displacement threshold for interface 
sliding. Single cycle displacements lower than the 
threshold will not lead to the accumulation of 
displacement and sliding. We expect the 

displacement threshold to be a function of interfacial 
characteristics, such as the geometry of surface 
asperities.  
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