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Abstract Diffusion is a slow transport mechanism and advective transport tends to domi-
nate in large-size systems. An alternative transport mechanism is explored herein, whereby
zero time-average cyclic fluid flow is compounded with pore-scale mixing to render effective
transport. Two one-dimensional cyclic flow cases are analyzed: a rigid porous network with
two open boundaries subjected to cyclic flow through, and a compressible porous network
with only one open boundary subjected to cyclic compression. The corresponding analytical
models predict diffusion-like macroscale response and provide explicit expressions for the
effective diffusion coefficients in terms of the microstructure of the porous medium and flow
conditions. A parallel experimental study is conducted to corroborate analytical predictions.
Results confirm the relevance of pore-scale mixing in cyclic flow as a transport mechanism
in porous networks.

Keywords Porous media · Solute · Transport · Dispersion

1 Introduction

Cyclic flow with zero time-average velocity takes place in porous networks subjected to
periodic excitation. Potential examples include the cyclic flow in bones prompted by phys-
ical exercise, cyclic flow of contaminants in soils subjected to dynamic loads and saltwater
intrusion into fresh water reservoirs due to tidal action. The geometry of the porous network
and non-uniform flow conditions cause a relatively high rate of mixing within pores. As a
result, even though the effective advection is null in cyclic flow, solute is transported at a
much faster rate than possible by diffusion alone in the absence of fluid flow.

The relevance of this mechanism for nutrient transport in bones was first suggested by
Wang et al. (2000). They studied an ideal 1D porous network by means of numerical compu-
tations. For more discussions on the role of fluid flow in the transport of nutrients in bones see
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Piekarski and Munro (1977), Cedergren (1989), Dagan (1989), Bear and Bachmat (1990),
Gelhar et al. (1992), Brusseau (1994), Feyen et al. (1998), Vogel and Chrysikopoulos (2002),
Cirpa and Attinger (2003), Knothe Tate and Knothe (2000), Knothe Tate (2001). Other studies
of transport processes in porous media can be found in Saffman (1959a,b, 1960), Mei (1992),
Brenner and Edwards (1993), and Hornung (1997). In particular, we note that the transport
process described herein fundamentally differs from the Taylor–Aris dispersion (Taylor 1953;
Aris 1956, 1959) and cannot be explained by Aris’ pulsating flow model (Aris 1960).

The purpose of this article is to present theoretical solutions of this transport mechanism
for two types of porous networks and boundary conditions, followed by an experimental
validation. We obtain explicit formulae for the effective diffusion coefficients in terms of
the geometry of the medium and the flow conditions. As the time-average flow velocity is
zero and the networks exhibit a macroscopic diffusion-like behavior, we call this transport
mechanism “AC diffusion”.

2 Mathematical Model

Our two ideal porous networks are displayed in Fig. 1. They consist of large pores or lacunae
interconnected by thin channels. In both networks, the first channel is connected to a reservoir
of solute at the origin of the coordinate system, x = 0. The location of the ith channel is the
segment [(i − 1)L , i L − l] and the location of ith pore is [i L − l, i L]. The cross-sectional
area of a channel is a. We denote by Vc = (L − l)a and Vl the volume of each channel
and pore, respectively. The network in Fig. 1a extends to infinity and is rigid, i.e., Vc and
Vl are constants independent of time. On the other hand, the network of Fig. 1b contains a
finite number N of compressible lacunae of equal volume Vl that is assumed to be a known
periodic function of time t with period t0. The channels are assumed of constant volume.

An incompressible fluid with uniform density fills the networks. The solute concentration
in the reservoir remains at the constant value c0, while the solute concentration is initially 0
elsewhere.

We assume 1D flow within the channels. Thus, fluid incompressibility and mass conser-
vation imply that the fluid velocity in the channel v is independent of x

v(x, t) = vi (t) if x ∈ i th channel. (1)

Conservation of mass in the ith pore implies

dVl

dt
= a(vi − vi+1), (2)

where we take vN+1 = 0 for the compressible system.

Fig. 1 Idealized 1D networks.
a Rigid network with cyclic flow
through. b Compressible network
subjected to cyclic compression
with only one open boundary

L l aReservoir 
(a) 

(b) 

x 
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Note that a consequence of Eq. 2 is that the fluid velocities in all channels are equal in the
rigid system. This velocity is denoted by v(t) and is assumed to be a known periodic function
of t with period t0, i.e.,

vi (t) = v(t) for the rigid network. (3)

On the other hand, Eq. 2 implies

vi (t) = N − i + 1

a

dVl

dt
for the compressible network. (4)

We assume that mixing within each pore occurs in time scales much shorter than t0 so
that we can assume that mixing is instantaneous within each pore. We denote by ci (t) the
concentration of nutrients at time t in the ith pore.

For x in the channels, we denote by c(x, t) the concentration of nutrients at x and time t .
We neglect mixing within the channels (to highlight the difference with Taylor–Aris disper-
sion). Thus, the solute flows with the same velocity as the fluid within the channels and the
equation for solute conservation within the channels reduces to

∂c

∂t
+ vi

∂c

∂x
= 0 if x ∈ i th channel. (5)

Whenever the fluid velocity in a channel is positive, solute flows from the ith channel into the
ith pore at a rate avi (t)c(i L − l, t). Solute also flows out of that same pore into the (i + 1)th
channel at a rate avi+1(t)ci (t). Analogously, when the velocity is negative, solute flows from
the (i + 1)th channel into the ith lacuna at a rate −avi+1(t)c(i L , t) and flows out of that
same pore into the ith channel at a rate −avi (t)ci (t). Thus,

1

a

d(Vlci )

dt
=

{
vi (t)c(i L − l, t) − vi+1(t)ci (t) when vi (t) > 0
vi (t)ci (t) − vi+1(t)c(i L , t) when vi (t) < 0.

(6)

Whenever the velocity is positive, solute flows from the (i − 1)th pore into the ith channel
and thus, the solute concentration in the left-end of ith channel is equal to the solute con-
centration in the (i − 1)th pore. Analogously, whenever the velocity is negative, the solute
concentration in the right end of ith channel is equal to the solute concentration in the ith
pore. Mathematically,

c((i − 1)L , t) = ci−1(t) if vi (t) > 0 (7)

c(i L − l, t) = ci (t) if vi (t) < 0.

Note that the above equation is also valid for i = 1 taking c0(t) = c0, the concentration of
solute in the reservoir.

The initial concentration in the network is 0, thus

ci (0) = 0 i > 0. (8)

We assume that the flow velocity in the channels v has zero time average, in both rigid and
compressible cases,

t0∫
0

v(t)dt = 0. (9)

In the rigid case, we assume that there exist 0 < t∗ < t0 such that v(t) > 0 if 0 < t < t∗
and v(t) < 0 if t∗ < t < t0. Thus, the volume of fluid that flows from the reservoir into the
network in the time interval 0 < t < t∗ is
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VF = a

t∗∫
0

v(t)dt . (10)

Our analysis shows that the effective diffusion of the rigid system is Dr, defined in Eq. 19.
More precisely, let ρ = ρ(z, t) be the solution of

∂ρ

∂t
= Dr

∂2ρ

∂z2 for t > 0 and z > 0, (11)

subjected to the initial conditions

ρ(z, 0) = 0 for z > 0 (12)

and boundary conditions

ρ(0, t) = c0 and lim
z→+∞ ρ(z, t) = 0 for t ≥ 0. (13)

Extend the definition of ρ to z < 0 as follows:

ρ(z, t) = c0 if z ≤ 0, (14)

and let zi = zi (t) be defined as

zi (t) = i L − aL

Vl + Vc

t∫
0

v(s)ds. (15)

Note that the variable z is like a Lagrangian coordinate, which is related to the original space
variable x by the formula

z = x − aL

Vl + Vc

t∫
0

v(s)ds. (16)

We show that ρ gives the asymptotic approximation of the concentrations, i.e.,

ci (t) ∼= ρ(zi (t), t) if VF 	 Vc. (17)

This system of equations can be solved explicitly,

ρ(z, t) = c0 − c0

z/(2
√

Dr t)∫
0

exp(−s2)ds. (18)

Our analysis shows that the effective diffusion coefficient Dr is (Goldsztein and Santamarina
2004)

Dr =
(

Vl

Vc + Vl

)2 (
VF

Vc + Vl

) (
L2

t0

)
. (19)

Note Dr is determined by the periodicity t0 and the invaded volume VF, and is unaffected by
other characteristics of the function selected for the fluid velocity in channels.
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In the compressible case, we assume that there exist 0 < t∗ < t0 such that the volume of
each lacuna Vl(t) increases in the time interval 0 < t < t∗ and decreases in the time interval
t∗ < t < t0. Thus, the difference between the largest and smallest value Vl(t) is

�Vl = 1

2

t0∫
0

∣∣∣∣dVl

dt
(t)

∣∣∣∣dt. (20)

We denote the average of Vl(t) by 〈Vl〉

〈Vl〉 = 1

t0

t0∫
0

Vl(t)dt. (21)

Let

Df = N

(
�Vl

〈Vl〉
) (

L2

t0

)
(22)

and ρ = ρ(x, t) be the solution

∂ρ

∂t
= Df

∂

∂x

((
1 − x

N L

) ∂ρ

∂x

)
for t > 0 and 0 ≤ x ≤ N L (23)

subjected to the initial conditions

ρ(x, 0) = 0 for 0 ≤ x ≤ N L, (24)

and boundary conditions

ρ(0, t) = c0 and
∂ρ

∂x
(N L , t) = 0 for t > 0. (25)

We show that ρ gives the asymptotic approximation of the concentrations, more precisely, if

Vc

〈Vl〉 
 1,
�Vl

〈Vl〉 
 1, N 	 1 and
Vc

�Vl

 1, (26)

then

ci (t) ∼= ρ(i L , t). (27)

The value Df (1 − x/(N L)) in Eq. 23 is the effective diffusion coefficient. Note that the
diffusion coefficient varies in space, decreasing linearly from Df at the open boundary to
zero at the closed boundary, analogous to the decreasing cyclic flow. Therefore, AC diffu-
sion vanishes toward the closed boundary. The derivation equations (22–27) are given in the
Appendix.

3 Experimental Study

Experiments were designed to study AC diffusion in compressible and rigid network systems
and the associated boundary conditions.

The case of a rigid network with cyclic flow through was investigated with a packing of
glass beads (1.5-mm diameter, packing porosity n ≈ 0.33), held within a flexible latex mem-
brane in the shape of a cylindrical specimen (60-mm tall and 25-mm diameter). A pressure
of 90 kPa is hydraulically applied onto the membrane to render the granular skeleton rigid.
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Fig. 2 Physical models—experimental study. a Rigid network with cyclic flow through. b Compressible
network subjected to cyclic compression with only one open boundary. Note: sketches not to scale; asterisks
denote measurement points; all dimensions in millimeter
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Fig. 3 Rigid network with cyclic flow through. Entry and exit boundaries remain open. High concentration
is maintained in the lower boundary. Data points are experimental results (Note: there are four separate tests).
Analytical predictions are shown as dashed lines for various diffusion coefficients (refer to Table 1)

Cyclic flow is imposed through the lower end using a syringe pump, while free drainage
conditions are allowed at the upper end. The porous medium is filled with deionized water,
while the pore fluid cycled trough the lower boundary is a 0.3 M NaCl solution. The arrival of
the diffusion front at x = 60 mm is detected with a 1.5-mm diameter electrical conductivity
probe placed near the upper cap (schematic and details in Fig. 2a).

Various tests were conducted by imposing cyclic volumes that ranged between VF/Vl = 60
and 400 and cyclic frequencies between 0.1 and 0.6 Hz. The frequency–volume combina-
tions were selected to render similar peak flow rates (1.1–1.6 cm3/s). Results for four tests
are presented in Fig. 3 in terms of normalized concentration versus time (Note: the diffu-
sion fronts arrive around cycles ∼20 and ∼1, 200 for the highest and lowest cyclic volumes,
respectively). The theoretical solution to the diffusion equation is fitted to invert the effective
AC-diffusion coefficient D (Eqs. 11, 19).

The case of a compressible network with only one open boundary was studied with a pack-
ing of rubber particles (diameter 3.5 mm) held between two parallel rigid plates with closed
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Fig. 4 Compressible network subjected to cyclic compression with only one open boundary; high ionic con-
centration is maintained outside this boundary. Data points are experimental results (Note: measurements at
distance x = 63, 114, and 164 mm). Analytical predictions shown as dotted lines correspond to Eq. 23. Trends
for chemical diffusion on the right are predicted for standard diffusion under hydrostatic conditions at different
x-locations

fluid flow on three sides, forming a specimen 202-mm long and 57-mm wide. The plates
were cyclically compressed against each other (frequency 0.8 Hz; cyclic volume change rel-
ative to pore volume �Vl/Vl = 60 ≈ 0.12). The evolution of the concentration front was
monitored with three electrical probes mounted through the top plate as shown in Fig. 2b.
Data gathered in three separate tests are presented in Fig. 4. The theoretical solution (Eq. 23)
is simultaneously adjusted to the three measurement sets by fitting only one parameter Df .

4 Discussion and Conclusions

Clearly, experiments involve a more complex pore topology than that assumed in the analy-
ses. Yet, in both experiments and analyses, the global flow is 1D (i.e., x-direction in model
channels) while mixing presumes multi-directional fluid motion in pores (i.e., lacunae in the
model).

The AC-diffusion coefficients are predicted using pore-scale parameters estimated for the
two tested systems (Eqs. 19, 22) and inverted by matching the experimental measurements
(Eqs. 11 and 23—Note: the inter-pore distance L is assumed to scale with the grain size).
Predicted and fitted coefficients are compared in Table 1. For clarity, the concentration-time
trends for chemical diffusion under hydrostatic conditions predicted with a diffusion coeffi-
cient for NaCl of D = 0.0015 mm2/s (infinite medium) are superimposed in Figs. 3 and 4.

There are two important observations. First, the AC-diffusion coefficients predicted using
the 1D pore-scale models solved here are in the same order of magnitude as the fitted diffu-
sion values (Table 1). Second, transport by AC diffusion can be orders of magnitude more
efficient than diffusive transport in a hydrostatic system; for example, the validation experi-
ments show 102 to 105 shorter times (see analytical predictions and experimental results in
Table 1; Figs. 3, 4). Therefore, both analytical and experimental results confirm the relevance
of pore-scale mixing in chemical transport when porous networks are subjected to cyclic fluid
flow.

The AC-diffusion coefficients are macroscopic parameters, i.e., the length scale of the
phenomenon is much larger than the pore scale. Yet, they do involve the internal length scale
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Table 1 Comparison between predicted diffusion coefficients (based on microscale properties) and fitted
values

System Predicted AC diffusion (based
on pore-scale information)

Diffusion coeffi-
cient D fitted to
the data (mm2/s)

Equation Parameters D predicted from
microstructure
(mm2/s)VF

Vl
L2

t0
(mm2/s)

Rigid network
with cyclic
flow through

D ∼= VF
Vl

L2

t0
0.6 1.3 0.8 0.15

1.8 0.6 1.1 0.6

4 0.3 1.2 1.9

Compressible network
with one open
boundary, under
cyclic compression

D ∼= �Vl
Vl

N L2

t0
�Vl
Vl

∼ 0.12 N ∼ 60 L2

t0
∼ 10 72 100

Chemical diffusion
coefficient (in bulk
fluid)

0.001–0.003 mm2/s

of the porous medium through the pore volume and the pore-to-pore distance. The analytical
solution for the effective AD diffusion coefficients reveals the interplay between the physical
parameters involved.

Acknowledgments Support for this research was provided by the Goizueta Foundation and the National
Science Foundation.

Appendix

We define the function f = f (s) as follows

Vl = 〈Vl〉 (1 + δ f (t/t0)) (28)

where

1∫
0

| f ′(s)|ds = 1, (29)

where f ′ is the derivative of f . Note that f is periodic, with period one and zero average.
We also define

ai = 1 − (i − 1)

N
(30)

and

ε = Vc

〈Vl〉 δN
, (31)
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which we assume small

ε 
 1. (32)

Simple calculations show that

vi (t) = ai

ε

(L − l)

t0
f ′(t/t0). (33)

We define

βi =

⎧⎪⎪⎨
⎪⎪⎩

εt0

(
1

ai f ′(t/t0)
+ ε

f ′′(t/t0)

2a2
i ( f ′(t/t0))3

)
if f ′(t/t0) > 0

εt0

(
− 1

ai+1 f ′(t/t0)
+ ε

f ′′(t/t0)

2a2
i+1( f ′(t/t0))3

)
if f ′(t/t0) < 0.

(34)

In Sect. A.1 below we show that

c (i L − l, t) ≈ ci−1 (t − βi ) if f ′(t/t0) > 0 (35)

c (i L , t) ≈ ci+1 (t − βi ) if f ′(t/t0) < 0.

We use this last equation to transform Eq. 6 in

1

a

d (Vlci )

dt
=

{
vi (t)ci−1(t − βi ) − vi+1(t)ci (t) if f ′(t/t0) > 0
vi (t)ci (t) − vi+1(t)ci+1(t − βi ) if f ′(t/t0) < 0.

(36)

We propose the anzats

ci (t) = ρ (y = i/N , τ = t/t0) . (37)

We set

α1 = 1

εN
, α2 = δ

ε
(38)

assume that both α1and α2 to be order 1 quantities, and define

b(x, τ ) =
⎧⎨
⎩

ε 1
(1−x+α1ε) f ′ + ε2 f ′′

2(1−x+α1ε)2( f ′)3 if f ′ > 0

−ε 1
(1−x) f ′ + ε2 f ′′

2(1−x)2( f ′)3 if f ′ < 0,
(39)

where f ′ and f ′′ are evaluated at τ . Plugging the above anzats (37) into Eq. 36, making use
of the above equations, and simple manipulations lead to

α1

α2

∂ [(1 + α2ε f ) ρ(x, τ )]

∂τ

=
{

(1 − x + α1ε) f ′ρ (x − α1ε, τ − b) − (1 − x) f ′ρ(x, τ ) if f ′ > 0
(1 − x + α1ε) f ′ρ(x, τ ) − (1 − x) f ′ρ (x + α1ε, τ − b) if f ′ < 0

(40)

where f and f ′ are evaluated at τ, b is evaluated at (x, τ ).
We now follow standard two-time scale asymptotic techniques. We introduce a slow time

variable

θ = ε2τ, (41)

propose the anzats

ρ = ρ0(x, θ) + ερ1(x, τ ) + ε2ρ2(x, τ ). (42)
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Plug this anzats into Eq. 40. Expand in powers of ε to get at O(ε)

α1

α2

∂ρ1

∂τ
= −α2 f ′ρ0 − α1 f ′ ∂ ((1 − x)ρ0)

∂x
(43)

and at O(ε2)

α1

α2

(
∂ρ2

∂τ
+ ∂ρ0

∂θ

)
+ (1 + α1 f )

∂ρ1

∂τ
= (1 − x)

( | f ′|
2

α2
1
∂2ρ0

∂x2 − f ′α1
∂ρ1

∂x

)
− f ′+α2

1
∂ρ0

∂x
,

(44)

where f ′+ = max
{

f ′, 0
}
. From Eq. 43 we obtain ρ1,

α1

α2
ρ1 = −α2 fρ0 − α1 f

∂ ((1 − x)ρ0)

∂x
. (45)

We now require ρ2 to be periodic in τ with period 1, replace the expression for ρ1 (Eq. 45)
into Eq. 44, integrate the result over one period in τ to get

∂ρ0

∂θ
= α1α2

2

⎛
⎝

1∫
0

| f ′(s)|ds

⎞
⎠ ∂

(
(1 − x)

∂ρ0
∂x

)
∂x

, (46)

which, after going back to the dimensional variables, reduces to Eq. 23.

A.1 Derivation of Eqs. 34–35

Let X = X (s) be a solution of

X ′(s) = vi (s) and X (t) = i L − l. (47)

Fix t and let βi > 0. If (i − 1)L ≤ X (s) ≤ i L − l for all s ∈ [t − βi , t], then, Eq. 5 implies
that c is constant along the characteristic paths, and thus, c (X (s), s) is independent of s for
s ∈ [t − βi , t]. Thus, assuming that vi (s) > 0 for all s ∈ [t − βi , t] and βi is implicitly given
by the equation

X (t − βi ) = (i − 1)L , (48)

we have that c (i L − l, t) = c (X (t), t) = c (X (t − βi ), t − βi ) = c ((i − 1)L , t − βi ). On
the other hand, as vi (t − βi ) > 0, Eq. 7 implies that c ((i − 1)L , t − βi ) = ci−1(t − βi ).
Thus,

c (i L − l, t) = ci−1(t − βi ). (49)

We now proceed to compute βi . Using Taylor expansions, we have X (t ′) ≈ X (t) + vi (t)
(t ′ − t) + v′(t)(t ′ − t)2/2 for |t ′ − t | 
 t0. Thus, using Eq. 33 we obtain

X (t ′)≈ X (t)+ ai

ε

(L−l)

t0
f ′(t/t0)(t ′−t)+ 1

2

ai

ε

(L−l)

t2
0

f ′′(t/t0)(t ′−t)2 for |t ′−t | 
 t0.

(50)

Using this approximation in Eq. 48 we get

(i − 1)L ≈ i L − 1 − ai

ε

(L − l)

t0
f ′(t/t0)βi + 1

2

ai

ε

(L − l)

t2
0

f ′′(t/t0)β
2
i . (51)
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We substract (i − 1)L on both sides of the above equation, then multiply by ε/(L − l) to get

0 ≈ ε − ai f ′(t/t0)
βi

t0
+ 1

2
ai f ′′(t/t0)

β2
i

t2
0

. (52)

From Eq. 52, expanding βi in powers of ε and noting that vi (t) and f ′(t/t0) have the same
sign, it is easy to show that Eqs. 34 and 35 are valid for f ′(t/t0) > 0. Similar arguments
show that those equations are also valid when f ′(t/t0) < 0.
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