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ABSTRACT: This paper presents the development of a waveguide 
device and the corresponding processing methodology to study wave 
propagation in particulate materials. Its main advantages are: the cancel- 
lation of biasing transfer functions (e.g., transducer, coupling, and 
electronics); the determination of both velocity and attenuation in a 
wide frequency range; the evaluation of torsional, flexural, and longitu- 
dinal propagation modes; and the computation of field propagation 
parameters from laboratory multi-mode data. Fundamentals of signal 
processing are reviewed, followed by a discussion of design considera- 
tions including boundary effects and geometric dispersion. Typical 
results are presented. 
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Introduction--Laboratory Studies of Propagation 

The study of wave propagation in discrete media can be traced 
back to the work by Newton on sound propagation in air. Further 
developments in the nineteenth century included adequate models 
of dispersion whereby velocity and attenuation vary with fre- 
quency. At the beginning of this century, still in the pre-electronic 
era, B. Hopkinson studied stress pulses in solids in which the 
wavelength was much larger than the diameter of the bar. Later, 
R. Davies created an electronic version of Hopkinson's bar and 
overcame some of the early problems, allowing for the study 
of  shorter wavelengths and the shape of  the pressure-time curve 
(Kolsky 1963). 

The propagation of mechanical waves in uncemented particulate 
media is still under research. Extensive data are available on wave 
velocity, primarily at a single frequency. However, the information 
on attenuation is limited because of measurement difficulties, e.g., 
transducer-media coupling, and complexity in data interpretation, 
e.g., the prevailing effect of geometric attenuation. Current research 
issues address the understanding of  wave propagation from a 
micro-mechanics perspective, the relative contribution of electro- 
static forces in fine particles of  high specific surface like clays, 
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the effect of creep at contacts, and the role of cementation due to 
salt precipitation or the formation of silicates (Fam and Santama- 
rina 1995). 

The adequate understanding of wave propagation in paniculate 
materials opens avenues to significant potential applications in 
material characterization and process monitoring in civil engi- 
neering systems, particularly those in the near surface. The unique 
combination of inversion mathematics with wave propagation, for 
example, allows for the tomographic imaging of field parameters 
as a function of  boundary measurements of wave propagation. The 
implications are prominent, such as monitoring the migration of  
contaminants, evaluating the evolution of bentonite-cement slurry 
walls, and assessing the change in the state of stress in varied 
geotechnical systems including foundations, retaining walls, and 
slopes (Santamarina and Potts 1994). 

Typical devices used to measure wave velocity and attenuation 
in geotechnical engineering are classified according to the type of 
excitation: pulse testing (Stokoe and Woods 1972), steady-state 
resonance (Hardin and Drnevich 1972), and free vibration methods 
(Richart et al. 1970). Pulse methods are used both in the laboratory 
and in the field; however, coupling problems between sensors and 
the medium and geometric spreading invalidate the use of  this 
type of excitation for attenuation measurements in most cases. In 
resonant testing, damping and velocity are determined only for a 
narrow frequency band around resonance. Likewise, both parame- 
ters are determined only at the frequency of the first mode in free 
vibration methods. 

The purpose of this study was to develop a simple device to 
measure frequency-dependent velocity and attenuation in panicu- 
late materials. This paper starts with a review of  velocity and 
attenuation for different propagation modes. Then, relevant signal- 
processing concepts are summarized. Finally, the design of the 
waveguide device and the processing algorithm are presented fol- 
lowed by typical results. 

Velocity and AttenuationmPropagation Mode 

Wave propagation in particulate media can be described by 
frequency-dependent velocity and attenuation. Velocity and attenu- 
ation vary for different modes of propagation. Velocity depends on 
the elastic and inertial properties of the medium. In nondispersive 
elastic media, the P-wave (infinite space), longitudinal wave (longi- 
tudinal-rod),  S-wave, and Rayleigh wave velocities are: 
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~.(  1 -  ~ 
Vp = M =  VL 1 + v ) O -  2~) P-wave (1) 

VL = ~ /E  Longitudinal wave (2) 

= + ~) S-wave (3) 

KS ~ / ~  1 
VR = K S VS = VL 1 + v) Rayleigh wave (4) 

where M, E, and G are the constrained, longitudinal, and shear 
moduli, p is the material density, K s = to/Vs, KR = tolVR, and the 
ratio KSIKR is equal to 0.919 for Poisson's ratio v = 0.25. Measured 
rod values for V L and Vs can be used to determine Poisson's ratio 

v =  ~ k ~ S j  - 1 (5) 

and to compute the field velocity Vp according to Eq 1. 
Amplitude decays as a function of time and distance. Attenuation 

reflects geometrical spreading, scattering at boundaries, diffraction 
around voids and inclusions, and material losses due to viscous 
and hysteretic processes; energy is dissipated in the form of heat 
and emissions. The two typical cases of geometrical attenuation 
are (from Green's theorem): 

A--2 = r-21 for spherical spreading (6) 
A I r2 

A_.~2 
= r3/~-~ for cylindrical spreading (7) 

AI 

where amplitudes A! and A 2 are determined at corresponding dis- 
tances r 1 and r2 from the source. Plane waves and 1-D propagation 
are not subjected to geometrical spreading. 

Distributed material losses are modeled as an exponential decay. 
For measurements conducted at two different locations 

A2 = A1 e-~Ar2-rl) (8) 

where tx r is the attenuation coefficient in distance. When measure- 
ments are performed at the same location but at different times 

A(t2) = A(tl)e -at(t2-tl) (9) 

where A(tl) and A(t2) are the amplitudes at times t 1 and t2, respec- 
tively, and a t is the attenuation coefficient in dme. The damping 
coefficient D and the quality factor Q are commonly used instead 
of ec The relationships between these measurements of attenuation 
under low-loss assumptions follow (Hall and Richart 1963; John- 
ston and Toks6z 1981): 

C, rX 
D = 2~r (10) 

oLtT 
D - ( t l )  

2~r 

1 
-- = 2D (12) Q 

where T is the period, and X is the wavelength. Winkler and 
Nur (1979) derived the relationship between the quality factors in 
isotropic elastic materials for plane P-waves in infinite media, 
longitudinal waves in rods, shear waves, and bulk compression. 

These expressions assume low-loss mechanisms. In terms of damp- 
ing, these relationships are 

Dp(I - v)(l - 2v) = DL(I + v) -- 2Ds~(2 - v) (13) 

DK(1 -- 2~0) = 3D L - 2Ds(1 + ~) (14) 

DK(1 + v) = 3Dp(I - v) - 2Os(1 - 2v) (15) 

where D e is the damping for plane P-waves in infinite media, D L 
for longitudinal waves in rods, D s for shear waves, and D K for bulk 
compression. These expressions imply that one of the following 
relations must be true: 

D S > D L > Dp > D K (16) 

or 

or 

D S = D L = Dp = D K (17) 

Ds < DL < Dp < D K (18) 

Equations 13, 14, and 15 can be combined to obtain field attenua- 
tion from laboratory measurements of attenuation in the longitudi- 
nal and shear modes: 

DL(1 + v )  -- 2,.,(2 - -v )  
Os D__.£= 

(19) 
O s (1 - v)(l - 2v) 

D L _  
D__ K = 3 DSS 2(1 + . )  

(20) 
Ds 1 - 2 .  

These expressions are plotted in Fig. 1 in terms of DLID s for 
different values of Poisson's ratio. The constraints expressed in 
Eqs 16, 17, and 18 are readily confirmed in these plots. 

Brief Review of  Signal Processing for Propagation Studies 

The process of wave-material interaction can be considered as 
the transformation of an input signal x(t) into an output signal y(t) 
through the unknown transfer function of the soil mass h(t). The 
goal of  this study is to obtain h(t) knowing x(t) and y(t). Linear 
time invariance is assumed, meaning that the superposition princi- 
ple applies (linear behavior is restricted to low strain) and that 
the system does not change its response during a measurement 
(Oppenheim and Willsky 1983). 

The input and output time series can be represented by a summa- 
tion of sines and cosines. Using this representation, the signals in 
the time domain are transformed to the frequency domain without 
losing information. The Fourier transform is defined as: 

X(to) = (= x(t)e-Jt°tdt (21) 

and its inverse is: 

= J_~ X(ea)eJ~tdm (22) x(t) 

where to is the circular frequency. The transformation equation 
for digital signals of finite lengths is: 

T N - I  
X(rnAto) =~[  ~ x(nAt)e -jnm/N (23) 

n=0 
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FIG. l--Damping in infinite and bounded media: Computation of field 

damping from laboratory measurements for different Poisson's ratios: (a) 
damping for P-waves; (b) damping for bulk compression. 

where N is the number of points in the time series, At is the 
sampling interval, At,) is the frequency interval, and m and n 
are integers. Signal processing in the frequency domain permits 
computing phase and amplitude changes between input and output 
signals as a function of frequency. Table 1 summarizes functions 
and operations needed for noiseless and noisy signals. In the case 
of noisy signals, averaging results in noise cancellation. The signal- 
to-noise ratio function evaluates the relative strength of the signal 
with respect to noise. The coherence function indicates how much 
of the output can be caused by the input (Otnes and Enochson 
1978; Hewlett-Packard 1991). 

Waveguide  Dev ice  (PDC)  

The test device is shown in Fig. 2a. It consists of a long cylindri- 
cal specimen that acts as a waveguide to the propagating signal. 
The geometry of  the specimen is L ~ 1.6 m long and d = 0.10 
m in diameter. The top cap is made of aluminum (diameter d = 
0.10 m and thickness th = 0.012 m). The specimen rests on a 
steel rod L s = 0.58 m long and d = 0.10 m in diameter. The steel 
rod is attached to a steel base 0.01 m thick and 0.55 m wide. 
The particulate material under test is contained within a latex 
membrane, and confining pressure is applied by internal vacuum 
or external pressure. 

Pulse testing the specimen as a waveguide and first-mode vibra- 
tion testing are possible with such a device. In pulse testing, the 
signal and its multiple reflections are monitored by a single sensor. 

TABLE 1 Summary of the functions used in signal processing. 

Ideal Signal Noisy Signal 

Time Domain 
x(t) x(t) 

Input Signal 
y(t) y(t) + s(t) 

Output Signal 

Frequency Domain 
x(to) 

Input Signal Y(o~) 
Output Signal 

X(to) 

Y(0~) + S(o~) 

Fourier Transform (FFT) X(to) = Re X(oJ) + l m  X(to) 

Complex Conjugate X*(oJ) = Re X(to) - lm X(o~) 

Power Spectrum Density Psd(to) = (ReX(to)) 2 + (Ira Y(to)) 2 

Cross Power Spectrum Gy x = Y(to)X*(o) 

Average Cross Power Spectrum '~ Gyx = Y(to)X*(to) 

Cross Correlation 

Transfer Function a 

Phase Shift 

Cy~ = FFT" I(Gyx) 

r(~) Gyx 
H(~) = ~ H((~) = G-~ 

[ ImH( to ) ] 
qD(~) = tall -1 L~J 

Modulus IH(oJ)t = ~/(ReH(ea)) 2 + (imH(to))2 

Coherence Function a 

Signal-to-Noise Ratio 

n/a 

n/a 

~ 2 ( ~ )  = 

SNR(~) = ~  

Gyx G*yx 

~2(o) 

1 - ~2(~) 

aThe bar over functions means average of multiple similarly mea- 
sured signals. 

One-dimensional propagation avoids geometrical spreading, and 
one-sensor monitoring permits canceling the transfer function of 
the transducer and electronics (demonstrated later in the text). 
Similar types of self-correcting measurements have been used 
elsewhere (Achenbach et al. 1992). Phase velocity and attenuation 
can be determined for longitudinal, torsional-shear, and flexural 
modes of propagation. 

First-Mode Testing 

In first-mode free-vibration testing, a quasi-static displacement 
or rotation is imposed on the specimen. Then the specimen is 
released and the amplitude of oscillation is measured with time. 
First-mode longitudinal excitation is difficult to generate because 
motion rapidly changes into flexural vibration due to the high 
slenderness of the specimen. 

Flexural waves are dispersive for all frequencies. For long wave- 
lengths, the dispersion relation can be approximated as VL F~ex = 
"rrVLd/(2h) (Kolsky 1963), where VL Flex is the longitudinal wave 
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FIG. 2--Device and experimental setup: (a) schematic diagram of general device and instrumentation; (b) detail of top cap for torsional vibration 

monitoring. 

velocity in flexural excitation. Our approach was to use energy 
principles to determine the first mode of a cantilever beam of 
constant stiffness considering only flexural energy (Jacobsen and 
Ayre 1958). The solution is in terms of E and p; thus, it is used 
to compute the longitudinal wave velocity from flexural excitation 

2"rrf F L2 
V L -  0 . 8 8 ~  (24) 

where d is the diameter of  the specimen. For nondispersive shear 
waves, energy principles are used to compute the shear wave 
velocity directly from the first mode torsional excitation. The 
assumed deformed shape of the column is a quarter of sine wave. 

Vs = 4frL (25) 

Equations 24 and 25 apply for fixed-free conditions and massless 
cap. More accurate equations were derived to take the cap into 

consideration; however, the effect is small for the first mode of 
this device. 

On the other hand, attenuation in time is computed from the 
logarithmic decrement of peak amplitudes 

1 A(iT) 
a t - - -  In - -  (26) 

( j -  i)T A(jT) 

where i and j are the correlative number of selected peaks and A 
is amplitude. In this study at was obtained by fitting Eq 26 to the 
peaks of the measured signal. 

Pulse Testing: Velocity 

Velocity dispersion can be assessed by: the "w-point" phase 
comparison method, the phase spectrum approach, and the ampli- 
tude spectrum approach (Sachse and Pao 1978; Pialucha et al. 
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1989). The "rr-point method requires changing the propagation 
distance of a monochromatic wave within the specimen until a "rr- 
phase change is obtained in the received signal. This method can 
also be implemented by changing the excitation frequency and 
measuring the phase change between input and output at fixed 
points. This method is tedious and difficult to implement in solids 
(Sachse and Pao 1978). In the phase spectrum approach, phase 
velocity is obtained from two separate measurements in transmis- 
sion or echo pulse. The method determines the phase spectrum of 
the input and output signals, and the phase velocity is calculated 
from the difference of these spectra ~(t0), 

Vph(co ) _ toL 
q~(o~) (27) 

This method requires the discrimination of the different reflections 
in echo mode. Alternatively, the amplitude spectrum approach is 
preferred when reflections can not be discriminated (Pialucha et 
al. 1989). 

The phase spectrum approach is used in this work, but modified 
to account for low signal-to-noise ratios at very low frequencies 
(unexpected jumps in the saw-tooth phase diagram). The method 
can be summarized as follows: 

1. Determine the change in phase between two consecutive 
reflections a(t) and b(t) from the transfer function H(oJ) that relates 
A(co) and B(to): 

lm(H(o~)) 
q~(to) - - -  (28) 

Re(n(o~)) 

2. Unwrap phase changes by adding 2at at every phase jump 
in the phase-versus-frequency plot. 

3. Curve fit the nondispersive low-frequency range and deter- 
mine the zero-frequency intercept 60. 

4. Subtract dO0 from the unwrapped phase to obtain the corrected 
phase q~'(to). 

5. Compute phase velocity for each frequency vPh(to) according 
to Eq 27 with the corrected phase q/(o~). 

It can be shown that the coherence function remains at ~1.0 
without major valleys in the region where this analysis is 
acceptable. 

Correction for Geometry Dispersion--The propagation of longi- 
tudinal waves is dispersive in rods even if the material is nondisper- 
sive. The velocity for longitudinal waves computed in Eq 2 
presumes that the cross section of  the rod remains plane during 
the propagation of the wave. This is valid for low frequencies and 
implies that central and peripheral elements within the rod deform 
in three dimensions as unconstrained bodies. As the frequency 
increases, inertial forces become important: central elements in 
the rod are effectively constrained and forced to deform only in 
the longitudinal direction (stiffness M and velocity Vp--Eq 1), 
while peripheral elements are still unconstrained without radial 
normal stress or shear component, % = 0 and "rrz = 0 (stiffness 
E and velocity VL). Thus, the wave front curves (note the Rayteigh- 
type motion of peripheral elements). When the wavelength 
approaches the radius of an infinitely long rod, the velocity of 
propagation is the Rayleigh wave velocity. The frequency depen- 
dency of the inertial component explains the dispersive nature of 
propagation. This qualitative analysis is captured in Rayleigh's 
approximate solution, which fits well Pochhammer's close form 

solution for long wavelengths, d/(2h) < 0.15. The Rayleigh equa- 
tion is: 

(29) 

where V L is the phase velocity for infinite wavelength. Torsional 
waves do not present dispersion in the first mode of vibration, i.e., 
each section rotates as a unit about its center (Kotsky 1963). 

Pulse Testing: Attenuation 

Digitized signals are modified time series of the wave that 
arrived at the transducer. Alterations are imposed by the coupling 
of the transducer to the soil mass and by the response of the 
transducer and the peripheral electronic devices used in the mea- 
surements (e.g., cables, filters, amplifiers, A/D converter, etc.). 
Given an input signal x(t) with Fourier transform X(to), the mea- 
sured signal is Xl(tO ) = X(co)Hx(cO), where Hx(o~ ) is the system 
transfer function at the input. The output signal y(t) in the frequency 
domain is Y(co) = e (-°e('°) ' 2L)e(-ja~(,,))X(to), which is the input 
signal but attenuated and time shifted through the specimen. The 
measured signal YI(o~) is also affected by the installation and 
peripherals, hence yl(to) _ e ( - a r ( t o ) -  2 L )  e(-j~(to)) X(t.o) Hy(tO), 
where Hy(t~) is the system transfer function at the output. The 
material transfer function is: 

H(to) = Yl(C°) - e(-ar(°~)'2L)e-J2x~(°J)__o);,o))X(H,,( 
Xl(CO) X(oJ)Hx(to) 

(3O) 

and the modulus is: 

_ I Y I ( o ~ ) t  _ Hy(o~) e_C~t(~) L 
t H(o~)l IXl(to) l Hx(tO) (31) 

When multiple reflections are measured with a single sensor, the 
system transfer functions Hx(o~) and Hv(to ) are one and the same. 
Finally, attenuation in distance ar(O~) can be determined as (see 
also Kline 1984): 

(32) 

Correction for Boundaries--The device designed for these tests 
resembles free-fixed boundary conditions. The high-impedance 
boundary is modeled with the steel rod and steel base plate to 
maximize the impedance mismatch. The free-end low-impedance 
boundary at the top of the specimen was approximated using the 
thin aluminum cap (see Fig. 2). 

The problem of transmission and reflection in three media was 
solved by evaluating these boundary conditions. The frequency- 
dependent coefficient of  reflection for the lower steel boundary is: 

z2 / \  zz/ 
c(co) = (33) 

- 1 - -  1 -  eJ~-2K:Ls ~ 

where zl, z2, and z3 are the impedances of the specimen, steel, 
and floor, K 2 is the wave number in the steel rod, and L s is 
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the length of the steel rod. Figure 3 shows the modulus of the 
reflection coefficient versus frequency for a typical soil impedance 
(zl = 0.7 GPa.s/m). The impedance of the floor was varied from 
z3 = 4 to 8 GPa's/m. For frequenciesf > 1000 Hz, the reflection 
coefficient is almost independent of the floor impedance z3, i.e., 
the impedance of the third medium. Corrections in this study were 
done considering the impedance of the floor z3 = 6 GPa.s/m. 

The frequency-dependent reflection coefficient c(¢o) is taken 
into consideration in the evaluation of the attenuation coefficient 
ot r by modifying Eq 32. It can be shown that 

1 , 
Otr(('O)----" 2 ~ ' n l  [ (34) 

where n is the number of reflections between the input signal x(t) 
and the output signal y(t). Contrary to the lower boundary, the 
upper free boundary changes its response to the fixed boundary 
at high frequencies (approximately 40 kHz). 
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Results and Analyses 

Results for a multi-propagation mode test are presented in this 
section. The selected soil was Barco sand (emi n = 0.5, ernax = 0.74, 
DI0 = 0.31 mm, D6o = 0,45 mm). The specimen was prepared 
by the dry pluviation method, raining the sand inside the split 
mold with the rubber membrane. Additional energy was applied 
by lightly tapping the sides of the split mold. The final dimensions 
of the specimen were L = 1.58 m length, diameter D = 0.10 m, 
unit weight "y = 16.7 kN/m 3, and void ratio e = 0.55. The specimen 
was confined by applying negative pore pressure with a vacuum 
pump, There was a stress gradient throughout the specimen, yet 
its effect on velocity was less than the error in standard travel time 
measurement procedures. 

Three different transducers were used to capture signals: piezo- 
crystals, accelerometers (Columbia Research model 8402), and a 
proximitor (Bently Nevada 7200). The sampling rate in the digital 
storage oscilloscope (Rapid System 2000) was selected in accor- 
dance with the Nyquist criterion to adequately capture frequencies 
of interest. Anti-aliasing filtering and amplification (Krohn Hite 
3944) were also used. Stored signals were processed using a signal 
processing software and computation sheets prepared in MathCad. 
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FIG, 4---First-mode torsional excitation: (a) signal from Accelerometer 
A; (b) signal from accelerometer B; (c) addition of responses A and B 
and computed exponential decay; (d) power spectral density of com- 
bined signal. 
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FIG. 3--Reflection coefficient in three media. Comparison ~ r  three 
different floor impedances, z 3 = 4, 6, and 8 GPa.s/m (soil impedance z I 
= 0.7 GPa.s/m; steel rod impedance z 2 = 40 GPa-slm). 

First-Mode Results 

First-mode testing was performed by applying a quasi-static 
deformation on the top of the specimen and suddenly releasing it. 
Torsional and flexural waves were produced by applying torsional 
or bending moments, respectively. Because of the slenderness of 
the specimen and the free boundary condition at the top of the 
specimen, the system had a great tendency to convert energy 
into the flexural mode regardless of the type of excitation. Two 
measurement "'tricks" facilitated monitoring the torsional mode. 
First, accelerometers were used to enhance higher frequency com- 
ponents acting as progressive high-pass filters (the resonant fre- 
quency of the torsional mode was significantly higher than the 
frequency of the first flexural mode--Table 2). Second, two accel- 
erometers were mounted diametrically opposed; signals were com- 
bined to cancel the displacement component produced by the 
flexural mode and to enhance the rotational component correspond- 
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TABLE 2--Summary of  results. 

Mode Propagation Velocity Attentuation 

First Mode Flexural VL = 392.1 m/s  a t  = 0.05 s -1 
(e = t .2 - 10 -4) (at 2.20 Hz) DF = 0.0036 

Torsional V s = 264.2 m/s  a t = 0.94 s -1 
(~ = 3.7 - 10 -6) (at 41.8 Hz) D s = 0.0040 

Pulse Testing Torsional 

('y = 1 .0 '  10 -5) 

Longitudinal 

(e = 7.7 • 10 -7) 

Vs cc  = 261.2 m/s  

VsPh ~- 263 m/s  (constant) 

VL cc  = 392.1 m/s  

VL ph ~ 4 1 4 - 3 7 0  m/s(variable) 

a s = 0.13 m -1 (at 400 Hz) 

Ds Ps° = 0.0083 

Ds rs =- 0.0068 

~x/. = 0110 m - I  (at 1000 Hz) 

Dt. eso = 0.0040 

DL TS = 0.0041 

V c c  = calculated with the travel time f rom cross correlation. 
V ph = phase velocity. 
D PsD = obtained from power  spectral densities in third and fourth reflections. 
D rs = obtained f rom curve-fitting late peaks  in pulse testing (see Fig. 6). 

ing to the torsional mode. Figure 2b shows the mounting of  acceler- o.2. 
ometers on the bar attached to the  aluminum cap. ~,  

O.1" Figure 4 presents the two time series obtained with the acceler- ® 
ometers, the combined signal, and the power spectral density. The x~ 

0" 
measured central frequency is 41.8 Hz. The corresponding shear ~o. -oli  
wave velocity computed with Eq 25 is Vs = 264.2 m/s. Attenuation 
et L is obtained from the logarithmic decrement by fitting the expo- -o2 
nential function to the series of peak amplitudes. Results are sum- 
marized in Table 2. 

The first-mode flexural vibration occurs at low frequency and 
was monitored with a proximitor. It was mounted on an auxiliary o.o4 
frame to measure the displacements of the top of the specimen. ~" 0.02- 
F igure  5 presents the series obtained from the proximitor, the fitted x~® 
decay function, and the power spectral density. The measured ~ _ 0 
central frequency is 2.20 Hz. The estimated longitudinal velocity o. E -o.o2- 
according to Eq 24 is VL Flex = 392.1 m/s. Results and average < 
strain levels are summarized in Table 2. -oo4 
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FIG. 5--First-mode.flexural excitation: (a) signal from proxinzitor and 
computed exponential decay," (b) power spectral density o f  signal. 
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FIG. 6~Pulse  testing--velocit)v (a) hmgitudinal excitation: direct sig- 

nal and reflections: (b) longitudinal excitation: autocorrelation; (c) tor- 
sional excitation: direct signal and reflections; (d) torsional excitation: 
alltocorrelation. 
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FIG. 7--Unaveraged phase velocity computed from different reflections: (a) longitudinal phase velocity and Rayleigh's approximate solution; 
(b) torsional phase velocity--no dispersion (note: first and second reflections present better signal-to-noise ratios in a wider frequency band). 

Pulse Testing--Results 

Pulses were produced by free-fall impact. Frequency content, 
energy, and duration were controlled by varying the height, chang- 
ing the mass, using different materials for the falling sphere, and 
by placing "cushions" at the place of the impact. 

Longitudinal pulses were monitored with a single piezoelectric 
crystal mounted horizontally on the lower boundary at the center 
of the steel rod. Torsional pulses were monitored with the acceler- 
ometers mounted on the top cap+ In both cases, signal processing 
was based on the methodology described above for one transducer 
and multiple reflections. 

Figure 6 shows typical longitudinal wave (Fig. 6a) and shear 
wave (Fig. 6c) signals and their corresponding autocorrelations 
(Figs. 6b and 6d). The change in phase between consecutive reflec- 
tions due to the free boundary condition at the top is readily seen. 
Figures 6a and 6c also present the fitted exponential decay of 
reflections peaks. The attenuation computed in this case is repre- 
sentative of the central frequency. 

Figure 7 presents unaveraged phase velocity plots computed for 
several reflections in longitudinal and torsional excitation. In each 
case, the frequency range of the velocity spectrum is conditioned 
by the signal-to-noise ratio (e.g., see high scatter at very low and 
high frequencies). The dispersion in the longitudinal phase velocity 
fits well the theoretical solution given by Rayleigh. The torsional 
phase velocity presents no dispersion in agreement with theory. 
These results confirm that the dry sand is nondispersive within 
the frequency range valid for this analysis. 

Poisson's ratio is computed with Eq 5, using V s and V L corre- 
sponding to the travel time determined with the cross-correlation 
function (group velocity--energy). The computed value is v = 
0.13. 

The frequency-dependent attenuation of longitudinal waves is 
computed taking into consideration the frequency-dependent 
reflection of the lower boundary (Eqs 32 and 34). Figure 8 presents 
results corresponding to the longitudinal excitation. Figure 8a 
shows attenuation values obtained by averaging results values from 
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FIG. 8--Longitudinal pulse testing--attenuation: (a) averaged attenuation from five signals and linear regression," (b) coherence; (c) variation of 

attenuation with reflection and attenuation obtained from fitting tail peaks in Fig. 6a. 

five reflected signals. Assuming constant damping D(to), the linear 
regression of c~l(to ) versus to is computed in the region where 
coherence remains close to 1,~, Attenuation deviates from the 
linear fit when coherence drop~ at high frequencies (f > ~ 10 
kHz; Fig. 8b). Figure 8c presents the decrease in computed attenua- 

tion when later reflections are considered. This figure also includes 
the attenuation coefficient calculated by curve fitting the peaks of 
the time series (Fig. 6a). Figure 9 presents similar results for the 
torsional excitation (Eq 32--uncorrected for reflection loss). The 
scatter in the measured averaged values at 0.1 and 1.1 kHz (Fig. 
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attenuation with reflection and attenuation obtained from fitting tail peaks in Fig. 6c. 
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9a) coincide with a drop in the coherence level (Fig. 9b). Results 
and estimated average strain levels are summarized in Table 2. 

Comparison--Field Values 

Velocities computed from torsional first-mode testing are almost 
identical to those measured in torsional pulse mode (Table 2). 
These results show consistency between the two modes of testing. 
The field P-wave velocity can be estimated from Eq 1: for Poisson's 
v = 0.13, Vp = 1.020 V L. Unless an adequate mechanical model 
of  the system is available, first-mode testing is more prone to bias. 
In any case, pulse propagation is richer in information. 

Damping values for shear wave propagation are similar for first- 
mode and pulse propagation. The field value for the attenuation 
of  P-waves is computed with Eq 19 (Fig. la):  given DL/D s = 
0.64, Dp = 0.0025 (Ds and DL corresponds to damping values 
calculated from curve fitting the peaks of  pulse time series--see 
Fig. 6). The computed bulk damping is negative. Winkler and Nur 
(1979) also computed negative values of DK for a dry specimen 
of Massilon Sandstone and argued on the effect of data errors. In 
our case, the different strain levels compound with the sensitivity 
of the mapping for DLIDs < 1, leading to negative values. Other 
explanations must be explored, such as the foundations of Eqs 13, 
14, and 15 and the implications of the linear elastic isotropic 
assumption made in their derivation. In any case, further analyses 
must be conducted with realistic numbers of signal stacking to 
adequately increase the signal-to-noise ratio. 

Conclusions 

The proposed waveguide device and test procedure involve 
multi-mode wave propagation testing to determine velocity and 
damping. These parameters can be obtained for a wide frequency 
range using pulse transmission or, for a single frequency, using 
first-mode vibration and logarithmic decrement analysis. 

In pulse transmission, a single sensor is used and multiple reflec- 
tions are detected. This setup results in the cancellation of the 
system's transfer function, including the effects of the transducer, 
the transducer-soil coupling, and the peripheral electronics. Geom- 
etry dispersion in bounded media and frequency-dependent reflec- 
tion at boundaries must be taken into consideration. 

Field velocity and damping can be determined from multi-mode 
laboratory measurements. 
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