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Abstract 

 

The inversion of cross-hole data leading to tomographic imaging magnifies model and 

measurement errors. This effect couples with limited illumination angles and mixed-

determination to render irrelevant images which often resemble the spatial coverage of 

the measurements. Yet, proper inversions may still be obtained by adding information to 

the inverse problem. This paper centers on the pre-processing of cross-hole 

tomographic data to identify the general characteristics of the host medium, the 

presence of anomalies, and the overall nature of the inverse problem. Several pre-

processing strategies are examined within the context of two well-documented case 

histories. Results confirm the ability of pre-processing to provide foresight about the 

medium to be imaged and to help select an adequate inversion strategy. 
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Introduction 

 

Tomographic imaging is the inversion of boundary measurements to determine the 

distribution of a parameter within a medium. In the case of tomographic imaging with 

seismic or electromagnetic waves, transducers are placed on the boundaries of the 

unknown region, and measured travel times or amplitudes are used to compute velocity 

or attenuation tomograms. 

 

Tomographic imaging the subsurface has proven to be significantly more complex than 

initially expected. The remarkable success of tomographic imaging in medical diagnosis 

and a large number of publications with simulated data showing excellent 

reconstructions have led to high expectations for geotomography, and made difficult the 

identification of the critical issues that are faced. 

 

A linear transformation is the simplest mathematical formulation of tomographic 

imaging. In the case of travel time tomography under the validity of the ray 

approximation,  

 

 t L s= ⋅           (1) 

where 

 t (mx1) array; ti is the i-th measured travel time 

 s (nx1) array; sj is j-th unknown pixel slowness (slowness = 1/velocity) 

 L (mxn) matrix; Li,j is the inferred length traveled by the i-th ray in the j-th pixel. 

The purpose of tomography is to obtain the unmeasured values of slowness s from the 

measured values of travel times t (a similar formulation can be used for amplitude 

measurements). A model must be assumed to capture the physics of wave propagation 

in order to compute the entries of L. The inverted values s are used to color the 

corresponding pixels, rendering the tomographic image. 

 

The entries of the non-negative matrix L are inferred by ray tracing; this is the forward 

problem. Differences between the forward model simulator and the physical reality in 

the subsurface cause modeling errors. For example, straight rays may be used, yet the 

medium may have a strong velocity gradient causing ray bending. Measured travel 



times t include systematic and accidental errors; these reflect triggering problems, 

difficulties in the detection of first arrivals, and misinterpretation of records (multi-

propagation modes such as P, S and surface waves, multiple travel paths, indirect 

paths with higher energy, etc.). Measurement and modeling errors render the resulting 

system of equations inconsistent. Limitations in illumination angles in geotechnical 

tomography and the uneven spatial coverage of the region add additional difficulty. For 

example, the L2 error function (sum of the square errors) is not strictly convex in cross-

hole tomography. In this case, the solution may be trapped in local minima 

(Santamarina and Reed 1994). 

 

The geotomographic inverse problem is ill-conditioned, hence its solution is severely 

hampered by the magnification of measurement and modeling errors. This situation is 

improved by adding information to the system, such as an initial guess of the solution so 

weighting the measurements, or enforcing some property to the solution in the form of a 

regularization matrix (Morozov 1993; Santamarina and Fratta 1998).  

 

Early experimental studies with cross-hole data obtained within ideal laboratory 

conditions highlighted the importance of data pre-processing in gaining insight into the 

characteristics of the medium and the presence of anomalies. This information can be 

used to properly guide the inversion process. Data pre-processing is the central theme 

of this paper. Case history data are used to demonstrate different techniques. 

 

 

Case Histories 

 

Two well-documented case histories are selected for this study. Both cases involve 

cross-hole transmission measurements of travel time using mechanical waves. 

 

 

Case 1: High velocity anomaly in homogeneous-isotropic host medium.  

 

An acoustic tomographer was built to simulate the gathering of cross-hole data in the 

field. The instrumentation frame (1.5m x 1.5m) is held on a horizontal plane, at mid-



height in the laboratory. Floor and ceiling reflections arrive significantly after the direct 

arrival, causing no interference. The single propagation mode in acoustic waves and the 

lack of interference due to the remote location of boundaries facilitates the interpretation 

of records and the detection of first arrivals.  

 

One side of the frame supports 16 equally spaced capacitor microphones. The source is 

activated at 16 equally spaced locations along the opposite side, to generate cross-hole 

data. The signals detected by the microphones are digitized and stored in a PC-based 

digital storage oscilloscope that is triggered with the source. Data presented in this 

study corresponds to a 0.46m diameter circular balloon filled with helium and placed at 

the center of the instrumented frame (Figure 1a). This is a high velocity inclusion. 

 

 

Case 2: Low velocity anomaly in heterogeneous-anisotropic host medium 

 

The purpose of this tomographic study was to image a tunnel 81m below the surface 

(Figure 1b; Rechtien and Ballard 1993; see also Rechtien et al. 1995). The dimensions 

of the tunnel are approximately 2.7m wide and 2.2m high. A sparker source was used to 

generate signals with a frequency range between 1.4 kHz and 1.7 kHz. A hydrophone 

was used as the receiver. Seven cross-hole data sets were collected. Each data set 

was obtained by simultaneously lowering both the source and the receiver in the two 

parallel vertical holes, 15.2m apart. In one data set, the source and the receiver were 

kept at the same elevation (θ=0°). The other data sets were obtained by offsetting the 

elevations of the source and the receiver to generate rays at different inclinations, θ= 

+45°, +30°, +15°, -15°, -30° and -45°. Measurements were repeated every 0.2 meter. 

There are 150 travel times in each set. 

 

 

Data Pre-Processing 

 

Data pre-processing helps the engineer gain insight into the characteristics of the data 

and the experiment, in order to select the most convenient model and parameters for 

data inversion. The following procedures are discussed and demonstrated within the 



context of the two case histories described above: spatial resolution, errors, information 

content and spatial coverage, average velocity and residuals, characteristics of the host 

medium (anisotropy, gradual changes in field parameters), and pre-detection of 

anomalies. Some of these strategies can also be considered while planning the 

tomographic study to optimize experimental design.  

 

 

Spatial Resolution (Fresnel’s Ellipse and Penetration Depth) 

 

The trade-off between spatial resolution and penetration depth is inherent to 

tomographic imaging: short wavelength is needed to detect small anomalies, yet long 

wavelengths must be used to obtain adequate penetration over practical distances.  

 

The wavelength is the spatial scale of wave phenomena. Hence, the selected pixel size 

should not be much smaller than the wavelength. The wave length λ is estimated with 

the frequency of the arriving front. Consider the i-th ray, with length Li and measured 

travel time ti. The estimated λest is   
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When the size of inclusions is within the same order of magnitude as the wavelength, 

propagation must be considered from the point of view of the wave front and scattered 

energy. Diffraction degrades the quality of tomograms when the linear ray assumption is 

made: low velocity inclusions are imaged smaller than real size, and high velocity 

anomalies are imaged larger. Furthermore, diffraction healing adds difficulty to the 

detection of low velocity anomalies; this is particularly important when the plane of 

receivers is about two diameters or more away from the inclusion (Potts and 

Santamarina  1993). 

 

The position of scatterers that affect the wave front arriving at a receiver is also related 

to the wave length λ. Consider a source S and a receiver R separated by a distance 

LSR. The Fresnel ellipse is drawn with foci at S and R and cord length LSR+λ/4 (in the 



case of multiple reflectors, the cord length becomes LSR+λ/2). Any anomaly located 

within this ellipse will generate a reflection that will arrive to the source in phase with the 

direct wave traveling the straight path LSR. This situation resembles a "thick ray" and 

should be considered while selecting the separation between transducers during 

experimental design: transducers that render extensive superposition of the 

corresponding Fresnel’s ellipses do not contribute independent information. 

 

The skin depth is the inverse of the spatial attenuation α [Np/m], 

 

 Sd =
1
α

          (3) 

 

For mechanical waves, the attenuation coefficient can be estimated from the damping 

coefficient D, α=2πD/λ. Then, 
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     Mechanical Waves  (4) 

 

where λ and f are wavelength and frequency, respectively. In general D<5% and the 

skin depth Sd is several times the wave length; in this case amplitude decay is governed 

by geometric spreading. In the case of electromagnetic waves, the attenuation 

coefficient is the real part of the propagation constant. Then, the skin depth can be 

expressed as, 
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  Electromagnetic Waves (5) 

 

where the wave length λo=Vo/f and Vo=3⋅108 m/s is the speed of light in free space, εo is 

the permittivity of free space, εr and μr are the relative permittivity and permeability of 

the medium, and σ its conductivity.  

 



The wavelength in the balloon study is λest≈ 0.15m, which is smaller than the anomaly 

and compatible with the separation between transducers. The wavelength for the tunnel 

study is λest≈3 m and about the tunnel size. The separation between transducers in this 

case is much smaller than the wavelength; in fact, half of the measurements would have 

proven sufficient. 

 

 

Global Information Content 

 

How many linear independent equations are available in the matrix L? While “rank” is a 

clear mathematical concept, its interpretation is not trivial. For example, the second row 

in the 2x2 matrix [(1,0),(1,10-10)] is almost the same as the first one, yet the rank is 2.  

 

An alternative approach to identify rank deficiency is to compute the singular values of 

the matrix. The  mxn matrix L can be written as the product of three matrices: L=U⋅Ω⋅VT 

(Golub and Van Loan 1989). The columns of the mxm matrix U are eigenvectors of L⋅LT 

and span the space of the measurements. The columns of the nxn matrix V are 

eigenvectors of LTL and span the space of the unknown pixel values. The mxn matrix Ω 

is formed with the eigenvalues ω of LTL (the non-zero eigenvalues are the same as for 

L⋅LT): the diagonal elements are Ωi,i=ωi and all other entries are Ωi,j=0. The number of 

non-zero singular values is the best indicator of rank deficiency in the L matrix. A related 

difficulty is to decide how small a singular value should be before it stops being 

considered. The plot of sorted singular values, or spectrum, can be used to facilitate this 

decision.  

 

Let’s consider the cross-hole tomographic experiment with the balloon. The L matrix is 

generated assuming straight rays for different pixel resolutions; for example, if the 

space is discretized in 8-by-8, there are 64 pixels or unknowns. Figure 2a shows the 

spectra for selected resolutions (the spectrum is the plot of sorted singular values 

against the index number). Each spectrum is normalized with respect to its largest 

singular value to facilitate the comparison. 
 



Figure 2b shows the number “p” of significant singular values normalized with respect to 

the number of measurements or rows m, for each degree of resolution. The value of p is 

obtained by counting the singular values in the interval [ωmax, ωmax/100]. This plot 

suggests that the deficiency between available information (p non-zero singular values) 

and requested information (m pixel values) becomes pronounced if resolution exceeds 

8x8 pixels. Still, higher resolution can be achieved while controlling ill-posedness if 

additional information can be included in the form of regularization, initial guess, 

weights, etc. 
 

 

Spatial Coverage 

 

Civil engineering applications of tomographic imaging often face restrictions in possible 

illumination angles. This situation causes the uneven spatial coverage of the region 

under study, mix-determination, and spatial variation of the variance of the solution. The 

coverage Ψj of the j-th pixel can be estimated as the length traversed by all rays in that 

pixel, which is the sum of the columns in L (Santamarina 1994), 
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Figures 3a&b show the spatial coverage of a region with side-to-side and top-to-side 

illuminations. Noise caused by model and data errors tends to be “dumped” in low 

information regions. Thus, the analyst is well advised to skeptically consider a 

tomographic image that resembles the corresponding image of spatial coverage. 

 

Spatial coverage and the singular values of L can be estimated in advance by assuming 

straight rays. Hence these techniques are helpful while designing optimal experimental 

configurations. 

 

 



Heterogeneity and Anisotropy in the Host Medium 

 

Average ray velocities can be estimated before inversion assuming straight rays: 
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Polar and spatial variations in average velocity provide clear indications of heterogeneity 

and anisotropy in the host medium.  

 

Let’s consider the tunnel data. Figure 4-a shows the variation of average velocity vs. the 

average depth of rays [(depth source + depth receiver)/2]. Results are presented for 

three different ray inclinations. There is a gradual increase in vertical velocity at a rate of 

~12(m/s)/m. On the other hand, Figure 4-b shows the variation of average ray velocity 

vs. the inclination of rays, for three different depths. The observed anisotropy is about 

7% between the horizontal and the ±45° rays. Clearly, the medium is anisotropic and 

vertically heterogeneous (velocity increases with depth). 

 

 

Analysis of Shadows: Anomalies and Errors 

 

The analysis of projections, or “shadows” facilitates detecting the presence of 

anomalies, their position and size. The analogy is equivalent to illuminating the space 

with a flashlight and observing the shadow on a projection screen. In order to avoid the 

effect of path length, the average ray velocity is computed for each source and receiver 

pair assuming a straight ray path (Equation 7). Shadows are formed by plotting the 

average ray velocity against the location of corresponding receivers, as schematically 

shown in Figure 5.  

 

Shadows can be constructed using fan ray paths (from a single source or from a single 

receiver) or parallel ray paths. They can be back-projected to constrain the location of 

the anomaly (a technique based on fuzzy logic is described in Santamarina and Fratta 

1998; the Fourier slice theorem, back-projection and back-propagation are discussed in 



Kak and Slaney 1988; the cross-hole implementation is presented in Witten and 

Molyneux 1988). The shadows for the balloon case are shown in Figure 6. The gradual 

shifting of the high-velocity shadow as the source is moved from location s1 to location 

s16 is distinctly shown. 

 

An important byproduct of this plot is the detection of errors in the measurements.  

Fluctuations in average velocity are about ±0.5m/s. On the other hand, the presence of 

the anomaly increases the average ray velocity from 343m/s to about 360m/s so that 

ΔVave=17m/s. Hence, the presence of the balloon (size and velocity contrast) is clearly 

detectable above the noise level.  

 

Singular value decomposition shows that small singular values magnify the effect of 

measurement errors during inversion. Hence, it is advantageous to remove 

measurement errors before proceeding with data inversion. In this context, the analyst 

may chose to low-pass filter the shadows to remove the high frequency noise. 

Corrected travel times are computed as ticorr=Li/(Vave)filtered. This approach is suggested 

only if there is clear evidence that local fluctuations in average ray velocity shadows are 

the effect of measurement noise. 

 

 

Time-length Plots: Systematic Errors and Alternative paths 

 

The presence of systematic errors can be investigated with travel length vs. travel time 

plots. The plot of travel time vs. ray length should define a straight line through the 

origin when data was gathered for a homogeneous isotropic medium. Hence, the zero-

length time offset is a measure of a systematic error in the data, such as trigger delay. 

This analysis is weakened when there are multiple anomalies, large anomalies, or if all 

rays are of about the same length. For example, rays in cross-hole data gathered at 

angles between +45° and -45° vary in length between the borehole spacing B and 1.4B. 

Figure 7 shows time-length plots for the balloon data. Most rays are affected by the 

balloon and a blind regression would be misleading. 

 



There is an important advantage in time-length plots: the identification of different 

“events” which are evidenced by characteristic nucleations of datapoints. For example, 

straight lines suggest straight paths, a line that changes slope insinuates refraction, and 

power relations indicate reflections and out-of-plane paths. 

 

 

Inversion - Tomographic Images 

 

The tomographic data for the two cases are inverted using matrix-based algorithms. 

Decisions related to the inversion procedure are made on the bases of the information 

obtained during pre-processing. 

 

 

Summary of Pre-processing Results - Initial Guess 

 

Pre-processing results obtained for the balloon tomographic data indicate that resolution 

is constrained by ill-posedness which increases for a resolution greater than 8x8, unless 

additional information is added. The host medium is homogeneous and isotropic with 

velocity Vhost≈343 m/s. There is a high velocity anomaly; the graphical back-projection of 

its shadows suggests that the anomaly is centrally located. In summary, the velocity of 

the host medium is used as the initial guess: (sj)o=(Vj)-1
o =(343 m/s), the medium is 

discretized in 10x10 pixels, and image enhancement will be guided to highlight contrast 

with a high velocity anomaly. 

 

Preprocessing results for the tunnel data indicate that resolution is constrained by 

wavelength λ=3m rather than by the separation between transducers (0.2m) or the 

density of the spatial coverage. The medium is anisotropic and vertically 

heterogeneous. There is at least one low velocity region suggested by the shadows. 

The selected initial guess for the slowness field (sj)o=(Vj)-1
o =(3160 + 12⋅z)-1, and the 

medium is discretized in 10x30. 

 

 



Inversion Procedure 

 

Matrix inversion methods are versatile. However, since the matrix of travel lengths L is  

large, matrix-based inversion is storage and computer demanding. In a dense n×n 

matrix, the order of computation complexity is O(n3), and O(n2) for storage. On the other 

hand, the matrix L is sparse. Even though there are n pixels (columns in L), only few 

pixels are touched by a given ray. For example, consider the tunnel tomogram: there 

are n=10x30=300 pixels, yet only 10-to-15 pixels are touched by any cross-hole ray. 

Thus there are only 10 to 15 non-zero entries, out of the 300 elements in each row of L. 

There are efficient algorithms to process sparse matrices, which can reduce the order of 

computational complexity to O(n1.3) and storage requirements to O(n) (Press, et al. 

1992). The tomographic software written as part of this study uses sparse matrix 

algorithms (Gheshlaghi et al. 1995).  

 

The tomographic data gathered in the two case histories were inverted using the 

regularized least squares procedure with initial guess (Tarantola 1987; Santamarina and 

Gheshlaghi 1995),  
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The regularization matrix was based on laplacian smoothing. The smoothing kernel for a 

central pixel is [(0,1,0),(1,-4,1),(0,1,0)]. Kernels for boundary pixels were developed 

following the reflection rule. The optimal regularization coefficient λ was determined 

from the maximum value of the joint distribution between computed and measured 

travel times (Gheshlaghi 1997; Menke 1989). 

 

 



Post-processing 

 

The computed tomograms are presented in Figure 8. Pixel values were thresholded to 

enhance contrast. Notice the ghost in the upper part of the tunnel tomogram which 

results from the low information density in that region. The smearing of the tunnel in the 

direction of the rays is a consequence of limited illumination angles. 

 

 

Conclusions 

 

Measurement and model errors are magnified during data inversion in ill-posed inverse 

problems. Data pre-processing can help 

• identify measurement errors,  

• recognize the general characteristics of the host medium and the presence of 

anomalies, 

• define a good initial guess of the solution which is used to anchor the inversion,  

• select adequate models (e.g., straight or curved rays, isotropic or anisotropic media),  

• chose the proper resolution for the tomogram, taking into consideration wave 

physics, data density, and information content, 

• corroborate that the resulting image is not an artifact of the inversion procedure that 

could result from the uneven spatial coverage and the presence of model and 

measurement errors. 
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