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This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical
samples containing spherical glass particles. Tests were carried out with the modified resonant column
device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress
states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h
equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on
the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of
the anisotropic stress state was explained through the impact of confining pressure and anisotropic
stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ)
decreased and their strain non-linearity decreasedwith an increase in the confining pressure component
σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in
the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain
was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to
predict the reference shear strain, as a function of confining pressure and anisotropic stress components.
Additionally, the damping ratio was written as a function of the minimum damping ratio and the
reference shear strain.
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INTRODUCTION
The shear modulus and damping ratio are key parameters
to evaluate the response of soil elements subjected to cyclic
loading. These parameters are significantly affected by the
magnitude of deformation or vibration. In addition, exper-
imental studies over the past few decades have shown that
the modulus degradation and damping ratio curves are
significantly affected by confining pressure (e.g. Tatsuoka
et al., 1978; Kokusho, 1980; Seed et al., 1984). Experimental
results have shown the independency of the stiffness ratio
(G(γ)/Gmax) and damping ratio on the density of sample in
granular material (e.g. Tatsuoka et al., 1978; Kokusho, 1980;
Wichtmann & Triantafyllidis, 2013).
The small- and intermediate-strain properties of granular

materials not only depend on the confining pressure and the
amplitude of the shear strain, but might also depend on
the state of stress present in soil elements. From experimental
studies, Drnevich (1978) concluded that the increase of
damping ratio with the initial shear stress was not significant.
Tatsuoka et al. (1979) performed a series of cyclic torsional
tests to evaluate the impact of static stress conditions on the
small-strain properties of Toyoura sand. From the exper-
imental results, they concluded that the impact of stress ratio
on damping ratio was not significant, when the confining
pressure was constant and the vertical pressure was variable.
Santamarina & Cascante (1996) reported that the wave
velocity increased slightly with an increase in the stress ratio,
but the effect of stress ratio on ηmin was not significant.

Empirical relations were also developed and modified to
predict the modulus degradation and damping ratio in soil
samples subjected to isotropic loading. Hardin & Drnevich
(1972b) showed that the strain dependency of the shear
modulus can be presented with a hyperbolic curve in soil
material. They proposed a well-known empirical relation
(equation (1)) to predict the non-linear behaviour of the soil
element. Hardin’s relation is based on the maximum shear
modulus and reference shear strain.

GðγÞ
Gmax

¼ 1
1þ ðγ=γrÞ

ð1Þ

where Gmax is the maximum shear modulus, γ is shear strain
and γr is the reference shear strain.
The reference shear strain, γr, is essential for defining

hyperbolic curves in stress–strain or stiffness–strain spaces.
With regard to Hardin & Drnevich (1972a), γr is equal to the
maximum shear stress, τmax, over the maximum shear
modulus, Gmax (equation (2)).

γr ¼
τmax

Gmax
ð2Þ

where Gmax is the maximum shear modulus and τmax is the
maximum shear strength (Hardin & Drnevich, 1972a).
Hardin & Drnevich (1972a) reported that τmax depends on

the initial state of stress in the soil. They showed that, for
initial geostatic stress conditions, with the shear stress applied
to horizontal or vertical planes, τmax, is related to the strength
envelope of the soils, and can be written in the form of
equation (3).

τmax ¼ σ′v
1þ σ′h=σ′vð Þ

2

� �
sinðϕÞ

� �2

� 1� σ′h=σ′vð Þ
2

� �2 !1=2

ð3Þ
where ϕ is the friction angle, and σ′h and σ′v are the confining
and vertical pressures, respectively.
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Hardin & Drnevich (1972a) proposed equation (4) to
predict the modulus degradation.

GðγÞ
Gmax

¼ 1
1þ ðγ=γrÞ 1þ a exp �bðγ=γrÞ½ �f g ð4Þ

where a and b are fitting curve parameters and γr is the
reference shear strain.

For the samples subjected to the anisotropic stress state,
Tatsuoka et al. (1979) compared the value of γr determined
from the experimental results with the γr obtained using
equations (2) and (3). They found that γr from the
experimental results was not consistent with the value
obtained from equations (2) and (3).

Stokoe et al. (1999) proposed equation (5) to capture
the effect of the confining pressure on γr, where γr is γ at
G(γ)/Gmax = 0·5

γr ¼ γr1
p′
pa

� �n
ð5Þ

where γr1 is the reference shear strain when the
confining pressure is equal to 100 kPa; pa is the atmos-
pheric pressure (assumed as 100 kPa); and n is the stress
exponent.

Damping ratio is often formulated as a function
of G(γ)/Gmax (e.g. Hardin & Drnevich, 1972a, 1972b;
Tatsuoka et al., 1978; Ishihara, 1996; Zhang et al., 2005)

ηðγÞ � ηmin ¼ c1
GðγÞ
Gmax

� �2
�c2

GðγÞ
Gmax

� �
þ ðc2 � c1Þ ð6Þ

where ηmin is the minimum damping ratio and c1 and c2 are
the constant parameters.

However, soil elements may be subjected to more compli-
cated stress states in comparison with the stress conditions
applied in the existing studies on intermediate strain
properties that have been conducted up to now. Also, there
is not any empirical relation that can predict the modulus
degradation curve and, consequently, the damping ratio
curve for granular material subjected to anisotropic stress
states. Therefore, additional systematic studies are essential
to assess the effect of anisotropic stress state on modulus
degradation and damping ratio curves and their empirical
relationships.

Micromechanical simulations with the discrete-element
method (DEM) have mostly been performed on granular
packings containing spherical particles (e.g. Cundall & Strack,
1979; Ng & Petrakis, 1996; Magnanimo et al., 2008; Gu &
Yang, 2013; O’Donovan et al., 2015). The data from micro-
mechanical simulations are helpful for the interpretation of
these experimental results. Therefore, spherical glass particles
were adopted in this experiment to study the influence of the
anisotropic stress state on intermediate properties of granular
materials. Ishibashi et al. (1991) compared the anisotropic
behaviour of Ottawa sandwith glass beads. They reported that
both materials showed very similar behaviour and concluded
that the assemblage of glass spheres can be effectively used to
study the state and evolution of the fabric of these types of
granular materials. Therefore, the results from this experiment

may be extended to the interpretation of the anisotropic
behaviour of natural soils.
Numerous studies have been conducted to assess the effect

of anisotropic stress state on Gmax using bender element and
resonant column on sands (e.g. Yu & Richart, 1984;
Santamarina & Cascante, 1996; Sadek et al., 2007; Wang
& Mok, 2008) or glass beads (e.g. Yanagisawa, 1983;
Ishibashi et al., 1991). Therefore, this study focuses on the
effect of anisotropic stress state on intermediate strain
properties.
The resonant column device was used to evaluate the effect

of the anisotropic stress state on the modulus degradation
and damping ratio in granular material. The results pre-
sented were used to extend an empirical relation to predict
the value of γr and, consequently, modulus and damping
ratio curves in the samples subjected to the anisotropic stress
state.
This paper is divided into five main sections: in the first

section, the experimental programme is discussed briefly.
In the second section, the effect of the stress ratio on the
modulus degradation and damping ratio of glass bead
packing are presented. Then, the effect of the stress ratio
on γr is assessed for different anisotropic stress states. In the
fourth section, the empirical relations are introduced to
predict the reference shear strain for samples subjected
to anisotropic stress state, and finally, in the fifth section,
the observed experimental results are discussed from a
microscopic perspective.

EXPERIMENTAL PROGRAMME
The experimental programme comprises four parts: the

apparatus, material properties, boundary conditions or stress
states, and the experimental procedure.

Apparatus
The resonant column device at Ruhr-Universität Bochum

was used to perform test on soils subjected to anisotropic
stress states (Fig. 1). The Bochum resonant column device
is based on the rotational vibration of a cylindrical sample
with given initial dimensions to determine the rotational
resonant frequency (Wichtmann et al., 2001). In the Bochum
resonant column device, two mini-shakers are mounted on
the top of the sample to apply a sinusoidal rotational
vibration to the top of the sample. The generated rotational
excitation forces were controlled using transducers which
were installed on the shakers in both sides of the actuator.
In addition, the rotational displacement of the specimen
was controlled by transducers, which were mounted at the
corners of the actuator. Both of the received signals from
transducers (force and displacement signals) were visualised
using the oscilloscope device. The resonant frequency was
detected when the phase difference between received signals
was π/2.
Different vibration amplitudes and consequently

different ranges of strain are applied on the top of the
sample by increasing the amplitude of the rotational
excitation. Equation (7) shows the governing equation to
calculate the amplitude of the shear strain in the Bochum
resonant column device (Wichtmann et al., 2001;
Wichtmann & Triantafyllidis, 2013)

γ r; xð Þ ¼ r
@θ

@x
¼ �r

θmax

cos αð Þ � ðJ0=JÞα sinðαÞ
α

L
sin

αx
L

� �
þ J0

J
α cos

αx
L

� �� �
ð7Þ
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where θmax is the maximum rotation at the top of the sample.
α is equal to ωL/vs, ω is the rotational frequency, vs is the
shear wave velocity, J0 and JL are polar mass moments of
inertia for the bottom and top of the sample and J is the
polar mass moment of inertia of the sample. Equation (7)
shows that the shear strain is a function of the radius, r.
Therefore, to eliminate the effect of r, the shear strain was
normalised with respect to the volume of the sample as

γ̄ ¼ D
3L

θmax 1� 1
cos αð Þ � ðJ0=JÞα sinðαÞ

� �
ð8Þ

where γ̄ is the normalised shear strainwith respect to thevolume
of the sample,D is the diameterof the sample,L is the length of
the sample. γ̄ is simply shown by γ in the analysis of the test
results in this paper. The shear strain amplitudes that can be
tested in the device lie in the range of 5� 10�7 to 5� 10�4.
Furthermore, seven non-contact displacement transducers

were mounted around and on top of the sample to measure
the radial and vertical deformations of samples due to the
loading and during resonant column tests (Fig. 1).
To apply an additional vertical stress inside the sample, the

actuator was loaded in the vertical direction by a double-
acting pressure cylinder. The load of the cylinder was
transferred through a loading bar, a hardened steel tip, to a
hardened steel plate which was mounted at the central axis on
the actuator. The influence of the loading equipment on the
dynamic behaviour of the system and its interaction with the
actuator was evaluated using numerical and experimental
procedures (Goudarzy, 2015).
The energy method is used to calculate damping ratio of

soil samples using the Bochum resonant column device
(Wichtmann et al., 2001; Wichtmann & Triantafyllidis,
2013). In this method, damping is determined as a ratio of
the dissipated energy (ΔW ) divided by 4π times the total
energy (W ). Calibration of the device for damping ratio was
done with an aluminium sample using bandwidth, free
vibration decay curve and energy methods (Goudarzy, 2015).

Material properties
Glass bead samples (10 cm dia. and 20 cm high) with

Gs = 2·55, emax = 0·618, emin = 0·578 and d=1·10–1·65 mm,
were used for this experimental programme (Fig. 2).
The stress–strain and volumetric behaviour of the adopted

material were essential for explaining the results from
resonant column test. Thus, triaxial testing was conducted
on the dense samples with a relative density of 90% and
confining pressure of 200 kPa. The results of the triaxial test
are presented in Fig. 3. This figure shows the well-known
behaviour of dense granular materials during a drained
triaxial loading path.

Stress path
Resonant column tests were conducted on the dry samples

subjected to two anisotropic stress states: (a) anisotropic
stress state GB-I, confining pressure, σ′h, was kept constant
and σ′v was increased up to σ′v/σ′h = 2; (b) anisotropic stress
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Fig. 1. Schematic sketch of the Bochum resonant column device for performing test on samples subjected to anisotropic stress states
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Fig. 2. Grain size distribution and microscopic image of the glass
beads adopted for the study
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state GB-II, σ′v/σ′h was equal to two for this stress state. Fig. 4
shows the adopted stress states for this experimental
programme. For stress state GB-I, vertical stress (σ′v) was
increased and horizontal stress (σ′h) was kept constant at
200 kPa during the resonant column test. For stress state
GB-II, the stress ratio (K= σ′v/σ′h = 2) was constant. In this
stress state, the horizontal stress (σ′h) was equal to 150, 200
and 300 kPa.

Experimental procedure
Dense samples with a relative density of 90% (Dr = 90%)

were prepared by the dry pluviation method. The maximum
vacuum of 50 kPa was applied through the top and bottom
caps to stabilise the sample before assembling the resonant
column device. Afterwards, the vacuum was reduced and the
confining pressure was increased gradually. The specimens
were subjected to the target isotropic stress state of 100, 200,
300 and 400 kPa for performing resonant column tests. For
anisotropic stress state GB-I, the confining pressure was kept
constant at 200 kPa and the vertical load was increased up to
the target vertical stress (in this study, vertical stress was
increased to 250, 300, 350 and 400 kPa). For anisotropic
stress state of GB-II, the confining pressure (σ′h) was increased
up to the target isotropic pressure (150, 200 and 300 kPa)
and then the vertical stress was increased to get the stress ratio
(σ′v/σ′h) to equal two. After consolidation of the sample at the
desired stress conditions, the amplitude of excitation was
increased to get the resonant frequency and, consequently,

the stiffness and damping ratio at different amplitudes of
excitation.
This experiment has been done on dry samples; therefore,

the effective stress is replaced by total stress in the next
sections.

TEST RESULTS
The effect of induced anisotropy on G(γ) and η(γ)
The resonant column test results of the glass bead samples

are presented in this section. This section is divided into two
main parts: in the first part, the results of isotropic stress state
are presented and afterwards, the results of anisotropic stress
state are presented in the second part.

Isotropic loading. It is well known that, at a given strain
amplitude, the shear modulus, G(γ), and modulus ratio,
G(γ)/Gmax, increase with an increase in the confining
pressure, and the damping ratio decreases with an increase
in the confining pressure. The observed experimental results
(Figs 5(a)–5(c)) also show the dependency of modulus
degradation and the damping ratio on the isotropic confining
pressure and the amplitude of shear strain, which is in line
with the observed results in the literature.
Figure 6 shows that the shear modulus is constant and

equal to the maximum shear modulus (G(γ)/Gmax = 1) up to a
certain shear strain termed the threshold shear strain, γet. γet
is a value between 2� 10�6 and 5� 10�6 for glass beads
subjected to an isotropic stress state. This figure reveals that
γet increases with p for samples subjected to an isotropic stress
state.

Anisotropic loading. Figures 7(a) and 7(b) show the effect
of shear strain on the shear modulus of glass bead samples
with the relative density of 90% and subjected to anisotropic
stress states GB-I and GB-II, respectively. Fig. 7(a) shows
that the shear stiffness increases with an increase in the
vertical stress (σv) up to the vertical stress of 350 kPa, and
then the shear stiffness decreases with a further increase in
the vertical stress, further explained in the section entitled
‘Empirical relationships’. However, for stress state GB-II, the
shear stiffness increases with an increase in the confining and
vertical stress (Fig. 7(b)). Additionally, the results presented
show the dependency of the shear stiffness on the shear strain
in samples subjected to the anisotropic stress states GB-I and
GB-II.
Figures 8(a) and 8(b) show the effect of stress-induced

anisotropy on the damping ratio plotted against the shear
strain for stress states GB-I and GB-II, respectively. For stress
state GB-I, the experimental test data show that damping
ratio decreases slightly with an increase in the vertical stress
up to a vertical stress of 350 kPa and it then increases at a
vertical stress of 400 kPa (Fig. 8(a)). For stress path II,
however, the damping ratio decreases with an increase in the
confining and vertical stress (Fig. 8(b)). Fig. 8 shows that the
effect of the anisotropic stress state on the damping ratio for
stress state GB-II is more obvious than for stress state GB-I.
The effect of anisotropic stress state on the modulus ratio
(G(γ)/Gmax) is presented in Figs 9(a) and 9(b) for stress states I
and II, respectively. For stress state GB-I, Fig. 9(a) reveals that
the modulus ratio increases slightly with an increase in the
vertical stress up to a vertical stress of 350 kPa and it then
decreases at the vertical stress of 400 kPa. Fig. 9(b) shows that
modulus ratio increases significantly with an increase in the
confining pressure and the vertical stress. Fig. 9 reveals that
the effect of the anisotropic stress states on G/Gmax for stress
state GB-II is more significant than for stress state GB-I.
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Fig. 3. Triaxial test results of the glass beads adopted, e0 = 0·59 and
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COMPARISON WITH PUBLISHED DATA
The measured stiffness ratio, G(γ)/Gmax, and the damping

ratio, η(γ), from this experiment were compared with pre-
viously published data ranges for silts and sands (Figs 10(a)
and 10(b)). The results show that the data fit with the
range proposed for granular materials. Fig. 10(a) shows that
G(γ)/Gmax curves for glass bead samples are close to the
upper line proposed by Rollins et al. (1998) for sands. This
could be due to the poor grain size distribution of the
adopted material. This is in agreement with Wichtmann &

Triantafyllidis (2013), who observed that, for poorly graded
sands, the curves of G/Gmax were above the proposed range
for G/Gmax of sands.

EMPIRICAL RELATIONSHIPS
To predict the G(γ) using equations (1) or (4) the value of γr

must be determined. The value of γr can be determined by
two methods: (a) using equations (2) and (3) for isotropic
loading; (b) back analysis, fitting equation (1) to the test data
in the G(γ)/Gmax–γ plot to obtain the maximum R2 (Zhang
et al., 2005).
In the first method, with the triaxial test results, the value

of the friction angle (ϕ) for dense glass bead packing was
approximately 30°. Based on equations (2) and (3), for a
dense sample at confining pressure of 100 kPa, the value of γr
(so-called γr1) was 3·31� 10�4.
In the second method, the value of γr was determined

by fitting the hyperbolic function (equation (1)) to the
G(γ)/Gmax–γ curves (Zhang et al., 2005). The value of γr1
was equal to 3·56� 10�4 with this method.
Tatsuoka et al. (1979) reported that equations (2) and (3)

are not applicable to estimate the value of γr for samples
subjected to an anisotropic stress state. As an example, for a
sample subjected to the stress state of GB-II and cell pressure
of 200 kPa, γr using equations (2) and (3) will be equal to
5� 10�4. If this value is used as γr in equation (1) to predict
the G(γ)/Gmax–γ curve, the value of R2 will be 0·83 (in
comparison with the measured results for this stress state).
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However, γr using the second method will be equal to
7·88� 10�4 (R2 = 0·99).

The reference shear strain is employed to define hyper-
bolic curves using equations (1) or (4). However, there is no
suitable method to estimate γr for samples subjected to

an anisotropic stress state, as also reported by Tatsuoka et al.
(1979). The back analysis of equation (1) (second method)
was used to determine γr for samples subjected to isotropic
and anisotropic stress states. The measured γr have been
drawn against the compression pressure component, σvσh,
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equation (9) with fitting parameters from Fig. 11
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and anisotropic pressure component, σv/σh, in three-
dimensional space (Fig. 11). A surface, in the form of
equation (9), was fitted to the data.

γr ¼ γr1
σvσh
p2a

� �mv σv
σh

� �mh

ð9Þ

where γr is the reference shear strain and γr1 is the reference
shear strain for an isotropic stress state of 100 kPa. σv and σh
are the principal vertical and horizontal stress components,
respectively; mv and mh are exponents of the compression
pressure parameter and the anisotropic pressure parameter,
respectively.

To obtain the best-fitted surface in Fig. 11, mv and mh
must be equal to 0·39 and �0·08, respectively (R2 = 0·94).
This means that γr has been slightly affected by the σv/σh
component. Fig. 12 shows a two-dimensional representation
of the normalised γr plotted against the compression pressure
parameter, σvσh. The solid line in this figure is equation (7),
where mv and mh are equal to 0·39 and �0·08, respectively.
It is worth mentioning that γr1 could be an appropriate
reference value in equation (9) as long as the effect of the
stress-induced anisotropy on the fabric of the sample is not
significant.

Therefore, with the empirical relation obtained by this
study (equation (9)): (a) G(γ) increases, η(γ) decreases and
their strain non-linearity decreases with an increase in the
confining pressure parameter σvσh; (b) G(γ) decreases, η(γ)
increases and their strain non-linearity increases with an
increase in the anisotropic stress state parameter σv/σh from

1·0 towards the value at failure. This means equations (2), (3)
and (9) can be used together to estimate the value of reference
shear strain for samples subjected to an anisotropic stress
state.

PREDICTION OF G(γ )/Gmax
The normalised shear strain, γ/γr, is a key parameter in

the prediction of G(γ)/Gmax using equations (1) and (4). To
predict the G(γ)/Gmax, the shear strain was normalised with
respect to γr, which was obtained from equation (9) (see
previous section ‘Empirical relationships’).
Figure 13 shows the G(γ)/Gmax curves plotted against the

normalised shear strain for the samples subjected to the
isotropic (Fig. 13(a)) and anisotropic stress state (Figs 13(b)
and 13(c)). In Fig. 13, the solid lines are the predicted results
using equation (4), where the fitting parameters a and b were
equal to 0·05 and 1, and γr was determined with equation (9).
Fig. 14 shows the damping ratio plotted against the
normalised shear strain for all of the stress states (isotropic
(Fig. 14(a)) and the anisotropic stress state (Figs 14(b) and
14(c))). The predicted curves, using equation (6), have been
added as solid lines in these figures. The values of ηmin, c1 and
c2 in equation (6) were equal to 0·0102, 0·393 and 0·808,
respectively.
In the next analysis, the damping ratio, η(γ), was

normalised with respect to the minimum damping ratio,
ηmin. Shear strain,γ, was also normalised with respect to the
reference shear strain, γr. It is worth mentioning that γr was
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Fig. 13. Modulus ratio plotted against the normalised shear strain (γr is from equation (9)), e0 = 0·59 and subjected to: (a) isotropic stress state;
(b) stress state GB-I; (c) stress state GB-II. The solid line is equation (4), where γr is assumed to be γr for the isotropic stress state of 100 kPa
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estimated using equation (9). Normalised damping ratio
was plotted against γ=γr for all of the samples in Fig. 15.
A curve in the form of equation (10) can be fitted to all of the
data.

ηðγÞ
ηmin

¼ Λ
ðγ=γrÞ

1þ ðγ=γrÞ
� �Γ

þ1 ð10Þ

where Λ and Γ are fitting parameters, ηmin is the minimum
damping ratio and γr is the reference shear strain. The solid
line in Fig. 15 is equation (6) with fitting parameters
determined using polynomial regression of data in η(γ)–G
(γ)/Gmax plots (ηmin, c1 and c2 are equal to 0·0102, 0·393 and
0·808, respectively). The dashed line is equation (10), where
Λ and Γ are 28 and 1·6, respectively.
It is worthwhile to mention that equations (4) and (10)

are based on the reference shear strain. The reference
shear strain is estimated through equation (9), and calibrated
based on the experimental data from the current study.
However, the fitting parameters of these models must be
calibrated for other soils. γr is challenging; therefore, Yniesta
& Brandenberg (2016) showed that γ/γr can be replaced by
stress ratio (τ/σv, where τ=Gγ and σv is vertical stress) for the
interpretation of experimental data.

THE EFFECT OF THE STRESS STATE ON
ΔH–γ CURVES
Two non-contact transducers were mounted on the top of

the actuator in the resonant column device (Fig. 1). These
non-contact transducers were used to record the vertical
deformation (settlement) of the sample during vibration.
Fig. 16 shows the effect of the stress path on the settlement of
the sample, ΔH, plotted against the amplitude of the shear
strain during the resonant column test. Fig. 16(a) indicates
that the settlement of the sample plotted against the shear
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Fig. 15. Normalised damping ratio plotted against normalised shear
strain for samples subjected to isotropic stress state, anisotropic stress
states of GB-I and GB-II
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Fig. 14. Damping ratio plotted against the normalised shear strain (γr is from equation (9)), e0 = 0·59 and subjected to: (a) isotropic stress state;
(b) stress state GB-I; (c) stress state GB-II. The solid line is equation (6), where γr is assumed to be γr for isotropic stress state of 100 kPa and
G(γ)/Gmax is from equation (4)
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strain decreases with an increase in the confining pressure for
the sample subjected to isotropic loading. Furthermore, this
figure reveals the shear strain that the settlement of the
sample initiates, γst, increases with an increase in the isotropic
confining pressure. Fig. 16(b) shows the settlement of the
sample increases with an increase in the vertical stress
for stress state GB-I and γst decreases with an increase in
the vertical stress. From Fig. 16(c), it can be concluded that
the settlement of a sample decreases with an increase in the
confining pressure for stress state GB-II and γst increases with
an increase in the mean effective stress.

DISCUSSION FROMAMICROSCOPIC PERSPECTIVE
The small-strain properties of granular materials depend

on the microstructural properties, particularly the particle
and contact properties. However, for a given material, par-
ticle properties may remain the same and contact properties
may make a major contribution to the small-strain properties
of granular packing at the macroscopic level (e.g.
Santamarina & Aloufi, 1999).

Chang & Liao (1994) and Otsubo et al. (2015) used a
micromechanics based model to relate the shear modulus
(Gmax) of an assembly of randomly packed identical spheres to
normal (KN) and tangential (KT) stiffness at contact points.
Chang & Liao (1994) proposed a model (equation (11)) to
predict maximum shear modulus of granular packing, which
is a function of the contact characteristics (details can be found
in Chang & Liao (1994) and Otsubo et al. (2015)).

Gmax ¼ 2NR2KN

3V
5RK

3þ 2RK

� 	
ð11Þ

where N is equal to the total number of contacts between
particles in the volume of sample, V, and RK is the stiffness
ratio, which is calculated by

RK ¼ KT

KN
¼ 2ð1� νÞ

2� ν
1� fT

μfN

� 	
ð12Þ

where KT and KN are tangential and normal stiffness; ν is the
Poisson ratio of particles; fT and fN are shear and normal
contact forces; and μ is the friction coefficient (Deresiewicz,
1953; Otsubo et al., 2015). DEM simulations have been
carried out to assess the effect of the stress state on contact
properties of granular mixtures, mainly on spherical particles
(e.g. Cundall, 1988; Rothenburg & Bathurst, 1989; Emeriault
& Chang, 1997; Yimsiri & Soga, 2002; Magnanimo et al.,
2008; Wang & Mok, 2008; La Ragione & Magnanimo,
2012a, 2012b; Goudarzy, 2015). These studies revealed that
the normal contact force between particles increases with
an increase in the isotropic stress. As is apparent from
equations (11) and (12), the normal contact force and contact
numbers have a positive effect on the stiffness. Therefore
stiffness increases as long as isotropic stress increases. This is
in agreement with the observed trends for the stiffness of
samples subjected to an isotropic stress state.
The damping ratio is also affected by the mean effective

stress. The dissipation of energy at contacts is one of the
sources of energy losses in granular packing subjected to
tangential oscillation. Equation (13) shows dissipation of
energy between two particles subjected to a low amplitude of
vibration (Johnson, 1985). This equation shows that the
normal contact force has a negative effect on the dissipation
of energy between two spherical particles subjected to a low
amplitude of oscillation (equation (13)).
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Fig. 16. Settlement of sample, ΔH, plotted against the shear strain, e0 = 0·59 and subjected to: (a) isotropic stress state; (b) stress state GB-I;
(c) stress state GB-II
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Δw ¼ 1
36ξμfN

2� ν1
G1

þ 2� ν2
G2

� 	
Q3

0 ð13Þ

where ξ is the radius of contact; Q0 is the amplitude of
oscillation; fN is the normal contact force; μ is the friction
coefficient between two grains; and ν and G are the Poisson
ratio and shear modulus of grains. From this equation, it can
be concluded that the damping ratio decreases with an
increase in the normal contact forces, fN, between particles.
This is in agreement with the observed trend for the damping
ratio in samples subjected to an isotropic pressure.
In samples subjected to an anisotropic stress state, normal

contact forces and shear contact forces increase along the
adopted stress path (e.g. Cundall & Strack, 1979; Rothenburg
& Bathurst, 1989; Emeriault & Chang, 1997). The effect of
anisotropic stress state on the shear stiffness and damping
ratio depends on the magnitude of deviatoric stress. First, for
low stress levels (low deviatoric stress), normal and shear con-
tact forces increase with an increase in the anisotropic stress,
but in low stress ratios normal contact forces are dominant.
Therefore, stiffness increases slightly (equations (11) and (12));
however, the rate of the increase in stiffness is less than for
isotropic loading, and can be attributed to the increase of
shear contact forces during anisotropic loading. However, at
higher stress levels, dilation will occur in the dense sample.
Therefore, the coordination number and number of contacts
will decrease and stiffness will significantly decrease.

CONCLUSIONS
The modulus degradation and damping ratio can both be

affected by stress-induced anisotropic loading. The effect of
anisotropic loading on G(γ) and η(γ) depends on the adopted
anisotropic stress state. The experimental results showed that
the effect of stress state GB-II (constant stress ratio) on the
modulus ratio and damping ratio is more significant and
obvious than that of stress state GB- I (confining pressure
constant and vertical pressure variable).
Furthermore, reference shear strain data revealed that:

(a)G(γ) increases, η(γ) decreases and their strain non-linearity
decreases with an increase in the confining pressure par-
ameter σvσh; (b) G(γ) decreases, η(γ) increases and their strain
non-linearity increases with an increase in the anisotropic
stress state parameter σv/σh from 1·0 towards the value at
failure.
Empirical relations can also be used to predict the

modulus degradation curves in soil elements subjected to
anisotropic loading. The normalisations performed showed
that a principal stress function ( f (σ)) can be used with
sufficient accuracy to find the reference shear strain (γr) for
soil samples subjected to anisotropic loading. The damping
ratio can be written as a function of the reference shear strain
and minimum damping ratio.
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NOTATION
a, b constant fitting parameters in equation (4)

c1 and c2 constant fitting parameters of equation (6)
D diameter of sample
Dr relative density
d diameter of particles

emin and emax minimum and maximum void ratio
fN normal contact force
fT shear contact force

Gmax maximum shear modulus
Gs specific gravity of particles

G(γ) shear modulus
G1 and G2 shear stiffness of particles 1 and 2 in equation (13)

J polar mass moment of inertia of sample
JL polar mass moment of inertia of rotatable top part

of resonant column device
J0 polar mass moment of inertia of rotatable bottom

part of resonant column device
KN normal stiffness between two particles
KT shear stiffness between two particles
L height of sample

mv and mh stress exponents in equation (9)
N number of particles in equation (11)
n stress exponents in equation (5)
pa atmospheric pressure, 100 kPa
p′ mean effective stress ((σ′vþ 2σ′h)/3)
Q0 amplitude of oscillation
q shear stress (σ′v� σ′h)
R radius of particles

RK contact stiffness ratio, KT/KN
r distance of point from the centre of sample in

equation (7)
V volume of sample
vs shear wave velocity
W total energy
x distance of point in the sample from base of the

sample in equation (7)
α parameter equal to ωL/vs
γ shear strain
γ̄ normalised shear strain with respect to volume of

sample
γet maximum shear strain that G/Gmax = 1
γr reference shear strain
γr1 reference shear strain for isotropic pressure of

100 kPa
γst shear strain that the settlement of sample start

ΔH settlement of sample
ΔW dissipation of energy
εv volumetric strain in the triaxial test
ε1 vertical strain in the triaxial test

ηmin minimum damping ratio
η(γ) damping ratio
θmax maximum rotation in top of sample during

resonant column test
Λ and Γ fitting parameters of equation (10)

μ friction coefficient
ν Poisson ratio of particles

ν1 and ν2 Poisson ratio of particles 1 and 2 in equation (13)
ξ contact radius
σh total horizontal stress component
σ′h effective horizontal stress component
σv total vertical stress component
σ′v effective vertical stress component

τmax maximum shear strength
ϕ friction angle
ω rotational frequency
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