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S U M M A R Y
The hydraulic conductivity can control geotechnical design, resource recovery and waste dis-
posal. We investigate the effect of pore-scale spatial variability on flow patterns and hydraulic
conductivity using network models realized with various tube size distributions, coordination
number, coefficient of variation, correlation and anisotropy. In addition, we analyse flow pat-
terns to understand observed trends in hydraulic conductivity. In most cases, the hydraulic
conductivity decreases as the variance in pore size increases because flow becomes gradu-
ally localized along fewer flow paths; as few as 10 per cent of pores may be responsible for
50 per cent of the total flow in media with high pore-size variability. Spatial correlation reduces
the probability of small tubes being next to large ones and leads to higher hydraulic conduc-
tivity while focused fluid flow takes place along interconnected regions of high conductivity.
A pronounced decrease in tortuosity is observed when pore size and spatial correlation in the
flow direction are higher than in the transverse direction. These results highlight the relevance
of grain size and formation history dependent pore size distribution and spatial variability on
hydraulic conductivity, related geo-process and engineering applications.
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1 I N T RO D U C T I O N

The hydraulic conductivity k depends on the size of pores, their
spatial distribution and connectivity. These pore-scale characteris-
tics are defined by grain size distribution and formation history. In
turn, hydraulic conductivity controls fluid invasion, flow rate and
pore fluid pressure distribution. Consequently, hydraulic conduc-
tivity affects storativity, effective stress and mechanical stability,
plays a critical role in geotechnical design, determines contam-
inant migration and the selection of remediation strategies, de-
fines the limits for resource recovery (oil production and resid-
ual oil saturation, gas extraction from hydrate bearing sediments,
methane recovery from coal bed methane, non-isothermal fluid
flow in geothermal applications), and is a central parameter in the
design of waste disposal strategies, from nuclear waste to CO2

sequestration.
In this study, we investigate the effect of pore-scale spatial vari-

ability on macroscale hydraulic conductivity using network models,
following the pioneering work by Fatt (1956a,b,c). The main advan-
tage of network models resides in their ability to capture pore-scale
characteristics within a physically sound upscaling algorithm to
render macroscale properties relevant to the porous medium. Net-
works can be generated either by assuming an idealized regular
geometry, by adopting physically representative networks that cap-

ture the porous structure (Bryant et al. 1993) or by mapping the
pore structures measured by high resolution tomographic technics
onto a network structure (Dong & Blunt 2009, see also Al-Raoush
& Wilson 2005; Narsilio et al. 2009). Network model results are
consistent with experimentally obtained values of permeability (Al-
Kharusi & Blunt 2007; Al-Kharusi & Blunt 2008). The approach
has been used to upscale a wide range of pore-scale phenomena
such as viscous drag, capillarity, phase change (e.g. ice or hydrate)
and mineral dissolution. Consequently, network models have been
used to study multiphase flow (Valvatne 2004; Al-Kharusi & Blunt
2008), wettability effects in multiphase flow (Suicmez et al. 2008),
fine migration and clogging (Kampel et al. 2008), mineral disso-
lution (Hoefner & Fogler 1988; Fredd & Fogler 1998), pressure-
induced pore closure (David 1993), CO2 sequestration (Kang et al.
2005), liquid or gas diffusion through porous media (Laudone et al.
2008; Mu et al. 2008), drying and unsaturation (Prat 2002; Surasani
et al. 2008), the effect of flow localization on diffusion (Bruderer
& Bernabé 2001) and resource recovery such as methane produc-
tion from hydrate bearing sediments (Tsimpanogiannis & Lichtner
2003; Tsimpanogiannis & Lichtner 2006). Furthermore, pore-scale
network models have been coupled to continuum models to con-
duct field-scale simulations of complex processes such as clogging,
reactive flow and non-Darcian flow near well-bores (Balhoff et al.
2007).
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The first part of the manuscript summarizes previous studies.
Then, we provide a detailed description of the numerical model, re-
port statistical results in terms of equivalent hydraulic conductivity
and compare trends against known and analytically derived lower
and upper bounds.

2 VA R I A B I L I T Y I N H Y D R AU L I C
C O N D U C T I V I T Y — P R E V I O U S S T U D I E S

Hydraulic conductivity can vary by more than 10 orders of magni-
tude, from very low values in montmorillonitic shale to high val-
ues in gravels and boulders. Hydraulic conductivity varies widely
even for a given material. The coefficient of variation, defined as
the ratio between the standard deviation and the mean, can range
from 100 to 800 per cent for both natural sediments (Libardi et al.
1980; Warrick & Nielsen 1980; Cassel 1983; Albrecht et al. 1985;
Duffera et al. 2007) and remolded sediments (Benson 1993; Benson

& Daniel 1994). Data are typically log-normal distributed so that
x = log(k/[k]) is Gaussian, where [k] captures the dimensions of k
(Freeze 1975; Hoeksema & Kitanidis 1985).

The correlation length L is the distance where the spatial autocor-
relation decays by 1/e ∼= 0.368. The correlation length for hydraulic
conductivity ranges from less than a meter to hundreds of meters. It
is typically longer in the horizontal plane than in the vertical direc-
tion, in agreement with layering and weathering patterns (Ditmars
et al. 1988; Bjerg et al. 1992; DeGroot 1996; Lacasse & Nadim
1996).

The equivalent hydraulic conductivity keq of spatially varying
media reflects the distribution of individual values ki, their spatial
correlation and flow conditions. Available close-form solutions are
summarized in Table 1. In particular, the equivalent hydraulic con-
ductivity keq is (1) the harmonic mean of individual ki values in 1-D
systems, (2) the geometric mean in 2-D media and (3) higher than
the geometric mean when seepage in 3-D systems can take place

Table 1. Equivalent hydraulic conductivity-mixture models and bounds.

Equivalent, keq Assumptions/comments References

ka =
N∑

i=1

ti ki

/
N∑

i=1

ti

Arithmetic mean—parallel
Parallel stratified media
Upper bound

Wiener (1912)

kh =
N∑

i=1

ti

/
N∑

i=1

ti
ki

Harmonic mean—Series
Perpendicular stratified media
(1-D flow)
Lower bound

kg =
(

N∏
1

ki

)1/N Geometric mean
Lognormal ki distribution/isotropic
media (2-D flow)

Warren & Price (1961)

keq = kα
a k1−α

h

(
α = D − 1

D

) Statistically homogeneous and
isotropic. Weighted average of
Wiener bounds

Landau & Lifshitz
(1960)

ka − f1 f0(k1 − k0)2

k0(D − f0) + k1 f0
≤ keq ≤ ka − f1 f0(k1 − k0)2

k1(D − f1)2 + k0 f1

Based on a model constructed of
composite spheres. Isotropic binary
medium. Uniform flow

Hashin & Shtrikman
(1962)

if f0 ≥ 0.5 ⇒ keq ≥ kac

if f0 ≤ 0.5 ⇒ keq ≤ kac

if f0 = 0.5 ⇒ keq = √
k1k0,

where kac = 1

2

[
( f1 − f0)(k1 − k0) +

√
( f1 − f0)2(k1 − k0)2 + 4k1k0

]

Isotropic 2-D random two phase
mosaic medium. Uniform flow.

Matheron (1967)

if f0 ≥ 0.5 ⇒ keq ≤ km

km = f1k0k1 + f0ka
√

k0(2ka − k0)

f1m∗ + f0
√

k0(2ka − k0)

if f0 ≤ 0.5 ⇒ keq ≥ km

km = k0k1
f0ka + f1

√
k0(2m∗ − k0)

f1k0k1 + f1m∗√k0(2m∗ − k0)

Note: keq is the equivalent hydraulic conductivity; f 0 and f 1 are the fractions of the medium with hydraulic conductivity k0 and k1, where k1 > k0, D is the
space dimension (i.e. 1, 2 or 3); m∗ = f1k0 + f0k1.
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through multiple alternative flow paths. The equivalent hydraulic
conductivity in these three cases can be computed in terms of the
geometric mean kg and the variance σ 2 in log(k/[k]), as captured in
the following expressions (Gutjahr et al. 1978; Dagan 1979—refer
to Table 1):

keq = kh = kg

[
1 − (

σ 2
log k

/
2
)]

(1-D system) (1)

keq = kg (2-D system) (2)

keq = kg

[
1 + (

σ 2
log k

/
6
)]

(3-D system). (3)

More complex systems have been studied using equivalent con-
tinuum numerical methods. Those results show that (1) flow rate
decreases as the coefficient of variation COV(k) increases and (2)
the mean hydraulic conductivity in correlated fields is higher than
in uncorrelated fields with the same coefficient of variation COV(k)
(Griffiths & Fenton 1993; Griffiths et al. 1994; Griffiths & Fenton
1997).

3 N E T W O R K M O D E L S

Network models consist of tubes connected at nodes and can be
used to simulate fluid flow through pervious materials. Volume can
be added at nodes to reproduce various conditions (Reeves & Celia
1996; Blunt 2001; Acharya et al. 2004). The flow rate through a
tube q [m3 s−1] is a function of fluid viscosity η [Ns m−2], tube
radius R [m], tube length �L [m] and pressure difference between
end nodes �P [N m−2]

q = π R4

8 η �L
�P = α �P tube equation − Poiseuille, (4)

where α = πR4/(8η�L) under isothermal condition, constant vis-
cosity and constant tube radius. Mass conservation requires that the
total flow rate into a node equals the total flow rate out of the node∑

qi = 0 node equation. (5)

Eqs (4) and (5) can be combined to determine the pressure at a
central node Pc as a function of the pressure at neighbouring nodes
Pi.

Pc =
∑

αi Pi∑
αi

. (6)

If all α-values are equal, eq. (6) predicts Pc = (Pa + Pb + Pr + Pl)/4.
It is worth noting that this equation is identical to the first-order
central finite difference formulation of Laplace’s field equation.

Eq. (6) is written at all internal nodes to obtain a system of linear
equations which can be captured in matrix form

AP = B, (7)

where the matrix A is computed with tube conductivities α, P is
the vector of unknown pressures at internal nodes and the vector B
captures known boundary pressures. The vector P can be recovered
as P = A−1B. Once fluid pressures Pi are known at all nodes,
the global flow rate Q through the network is obtained by adding
the flow rate q (eq. 4) in all tubes that cross a plane normal to the
flow direction. The equivalent network hydraulic conductivity in the
direction of the prescribed external pressure gradient is calculated
from the computed flow rate Q and the imposed pressure gradient
between inlet and outlet boundaries. Insightful information is gained
by analysing prevailing flow patterns within the networks as will be
shown later in this manuscript.

Networks are realized with pre-specified statistical characteris-
tics. We control the coefficient of variation in tube size, spatial
correlation and isotropy to generate networks with different tube
size distribution (monosized, bimodal or log-normal distributed)
spatially uncorrelated or correlated and isotropic or anisotropic.
Every realization is identified according to these three qualifiers.

Pore size R is log-normally distributed in sediments. Mercury
intrusion porosimetry data for a wide range of soils and effective
stress conditions show that the standard deviation in σ [ln(R/[μm])]
is about 0.4 ± 0.2. Examples of statistical distributions used in
this study are shown in Fig. 1. Throughout the manuscript, the log-
normal distribution of pore cross sectional area is used in terms
of R2, that is, log(R2/[R]2) where [R] indicates unit of R. Tube R2

values are generated as R2 = 10a where a is a set of Gaussian
distributed random numbers with given standard deviation. Values
R2 are scaled to satisfy the selected mean value. While we assume

Figure 1. Schematic of typical distribution of R2 in spatially varying fields.
(a) Bimodal distribution of tubes (used in Figs 2 and 3) when fraction of
small tubes is 20 per cent. The relative size of large to small tube radii is
(RL/RS)4 = 103. (b) Two distributions of tube size R2 with the same μ(R2)
but different standard deviation used in Figs 4, 6 and 7. As the coefficient
of variation increases, the distribution of R2 is skewed to the right. (c)
Distributions of R2 used in Fig. 5. Note that σ (R2) of two sets of tube size
distribution with different μ(R2) are adjusted to have same COV(R2).
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log-normal distribution for network generation, we analyse results
and global trends in terms of the mean and standard deviation of
R2, that is μ(R2) and σ (R2) for each realization.

The computer code is written in MATLAB. The run time for each
realization in a 2.4 GHz processor is ∼40 min. The reported study
was conducted using a stack of dual-core computers.

4 S T U D I E D C A S E S — N U M E R I C A L
R E S U LT S

Network models are used herein to extend previous studies on the
effect of spatial variability and anisotropy on hydraulic conductivity.

Numerical results are presented next. Simulation details are listed
in the corresponding figure captions.

4.1 Bimodal distribution—effect of coordination
number and bounds

Consider a bimodal distribution made of large and small tubes of
relative size RL/RS = 5.62 so that their conductivity ratio is kL/kS =
103 for constant tube length (refer to eq. 4). 20 spatially randomly
arranged networks are generated for each fixed fraction of small
tubes. 2-D networks with coordination number, cn = 4, 6 and 8
and 3-D networks with coordination number cn = 6 are used to

Figure 2. Effect of coordination number cn on equivalent hydraulic conductivity in bimodal distribution kmix normalized by the hydraulic conductivity in the
field composed of only large tubes kL. Each point is the average value of 20 realizations. Bimodal distribution of tubes. The relative size of large L to small S
tube radii is (RL/RS)4 = 103. 2-D network model: 50 × 50 nodes, 4900 tubes and cn = 4 (circle)/cn = 6 (triangle)/cn = 8 (square). 3-D network model: 15 ×
15 × 15 nodes, 9450 tubes and cn = 6 (diamond).

Figure 3. Computed equivalent hydraulic conductivity in bimodal distribution kmix normalized by the hydraulic conductivity in the field composed of only
large tubes kL, models and bounds as a function of the fraction of small tubes. Points represent the maximum (square), average (triangle) and minimum (circle)
values of 20 realizations at each fraction of small tubes. Bounds and models are described in Table 1. 2-D network model: 50 × 50 nodes, 4900 tubes, bimodal
distribution of tubes, relative size of large L to small S tube radii (RL/RS)4 = 103 and coordination number cn = 4.

C© 2011 The Authors, GJI, 184, 1167–1179

Geophysical Journal International C© 2011 RAS



Hydraulic conductivity – spatial variability 1171

investigate the effect of coordination number on flow conditions.
Computed hydraulic conductivities are averaged for the 20 realiza-
tions and plotted in Fig. 2 where the mean value is normalized by
the hydraulic conductivity of the network model made of large tubes
only, kmix/kL.

Results in Fig. 2 show that network conductivity range in three
orders of magnitude from kmix/kL = 0.001 to 1.0 in agreement with

the size ratio (RL/RS)4 = 103. Hydraulic conductivity values in-
crease as the coordination number increases. There is a pronounced
decrease in flow rate where large tubes cease to form a percolat-
ing path. Percolation thresholds (readily identified in linear–linear
plots—see also Hoshen & Kopelman 1976) decrease as coordination
numbers increase; results are consistent with reported percolation
thresholds for various networks: 2-D-honeycomb (fraction of small

Figure 4. Equivalent hydraulic conductivity in uncorrelated tube network kdist normalized by the hydraulic conductivity for the monosized tube network kmono

as a function of the coefficient of variation of R2. Each point is a single realization. All realizations have the same μ(R2). 2-D network model: 50 × 50 nodes,
4900 tubes and cn = 4 (empty triangle), cn = 6 (empty square), cn = 8 (empty circle). 3-D network model: 15 × 15 × 15 nodes, 9450 tubes and cn = 6 (solid
diamond). Shaded areas show arithmetic ka, geometric kg, harmonic kh mean of 2-D and 3-D system and analytical solution keq of 3-D system (eq. 3).

Figure 5. Anisotropic conductivity: equivalent hydraulic conductivity in uncorrelated and distributed tube network kdist normalized by the hydraulic conductivity
for the monosized tube network kmono as a function of coefficient of variation of R2. Normalized hydraulic conductivities are obtained at different values of
the ratio between the mean tube size parallel and transverse to the flow direction (RP/RT)2. Each point is the average value of 20 realizations (using same set
of tube sizes, but different spatial distribution). For clarity, results for intermediate sequences are shown as shaded area. Normalized hydraulic conductivities
in series of parallel and parallel of series circuits are also obtained. 2-D network model: 50 × 50 nodes, 4900 tubes, cn = 4 and log-normal distribution of R2.
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tubes = 0.65), 2-D-square (0.5), 2-D-triangular (0.35) and 3-D-
simple cubic arrangement (0.25) (Stauffer & Aharony 1992; Sahimi
1994).

Analytical solutions for equivalent hydraulic conductivity and
lower and upper bounds summarized in Table 1 are compared to
numerical results in Fig. 3. The normalized mean hydraulic con-
ductivity for 20 realizations using 2-D networks with cn = 4 fol-
lows the Matheron’s mixture model. All simulation results are be-
tween Wiener’s and Hashin and Shtrikman’s upper and lower bounds
(Table 1). Hashin and Shtrikman bounds incorporate the dimension-
ality of the system resulting in 3-D bounds that are shifted towards
high keq values compared to 2-D bounds. Overall, numerical and
analytical results point to higher value of hydraulic conductivity
with a larger number of alternative flow paths.

4.2 Coefficient of variation in random networks

We explore next the effect of variance in R2 by creating 2-D and 3-D
networks with the same nominal mean μ(R2). Network statistics,
mean μ(R2), standard deviation σ (R2) and coefficient of variation
COV(R2) are evaluated for each realization. Note that R2 distribu-
tions are skewed towards higher values as the coefficient of variation
increases (Fig. 1b) even though they all have the same μ(R2).

The conductivity of a given realization kdist is normalized by
the conductivity kmono of the network made of all equal size tubes,
that is, R2 = μ(R2) and COV(R2) = 0. The normalized hydraulic
conductivity kdist/kmono decreases as the coefficient of variation of
R2 increases (Fig. 4) (see similar results in Bernabé & Bruderer
1998). The normalized arithmetic, geometric and harmonic means
computed for each network are shown as shaded areas on Fig. 4.
The range in normalized hydraulic conductivities for 2-D cn =
4 networks coincides with the shaded band of geometric means
computed for all networks. Computed hydraulic conductivity values
for 3-D cn = 6 and 2-D cn = 6 networks are the same as the range
obtained using eq. (3) and confirm the applicability of the close-
form solutions.

These trends result from the increased probability of large tubes
becoming surrounded by smaller tubes, that is, there is an increased
probability of finding a small tube along every potential flow path
with increasing coefficient of variation COV(R2). This effect is more
pronounced when the coordination number decreases because there
are fewer alternative flow paths; in other words, network models with
high coordination number are less sensitive to variation in pore size
COV(R2) because a higher number of alternative flow paths develop
in high connectivity condition. Flow patterns are analysed in detail
later in this manuscript.

Figure 6. Correlated field. (a) Equivalent hydraulic conductivity in isotropic uncorrelated and correlated tube network kcor normalized by the hydraulic
conductivity for the monosized tube network kmono as a function of the coefficient of variation of R2. (b) Coefficient of variation of the equivalent hydraulic
conductivities as a function of the coefficient of variation of R2. The correlation length L is reported relative to the specimen size. Each point stands for the
average of 100 realizations. 2-D network model: 40 × 40 nodes, 3120 tubes, cn = 4 and log-normal distribution of R2.
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4.3 Anisotropic, uncorrelated networks

When tubes parallel to the predominant fluid flow direction are
monosized RP (‘parallel tubes’), the flow rate is proportional to
R4

P and the distribution of tube size transverse to flow direction RT

(‘transverse tubes’) does not affect the global flow rate because there
is no local gradient or fluid flow transverse to the main flow direc-
tion. This is not the case when tubes parallel to the flow direction
are of different size, that is, not monosized.

Let’s consider log-normal distributions for the size R2
P and R2

T of
both parallel and transverse tubes. We select different mean values
μ(R2

P) 	= μ(R2
T) and adjust standard deviations σ (R2

P) and σ (R2
T) so

that both parallel and transverse tubes have the same coefficient of
variation COV(R2).

Results in Fig. 5 show that the normalized hydraulic conductivity
decreases as the coefficient of variation COV(R2) increases when
μ(R2

P)/μ(R2
T) > 1. However, the hydraulic conductivity may ac-

tually increase when transverse tubes are of high conductivity as
shown by the μ(R2

P)/μ(R2
T) = 10−2 case: fluid flows along trans-

verse tubes until it finds parallel tubes of high conductivity, mostly
with R2

P > μ(R2
P).

Two extreme networks of ‘series-of-parallel’ and ‘parallel-of-
series’ tubes provide upper and lower bounds to the numerical results
(shown as lines in Fig. 5). When the ratio of (RP/RT)2 is larger than
10−1, the network responds as a parallel combination of tubes in
series. When the ratio of (RP/RT)2 is smaller than 10−1, pressure is
homogenized along the relatively large transverse tubes, as captured
in the series-of-parallel bound.

4.4 Spatial correlation in pore size—isotropic networks

Spatial correlation in pore size upscales to the macroscale hydraulic
conductivity in unexpected ways. The methodology followed in this
study starts with a set of tubes with fixed μ(R2) and COV(R2). Then,
we use the same set of tubes to generate 100 randomly redistributed
spatially uncorrelated networks and other three sets of 100 isotropi-
cally correlated networks with correlation lengths L/D = 5/39, 15/39

Figure 7. Effect of anisotropic correlation on equivalent hydraulic conductivity in an anisotropically correlated tube network kCOV>0 normalized by the
hydraulic conductivity for the monosized tube network kmono. Three sets of tubes different COV(R2) are generated and used to form correlated fields of
different anisotropic correlation length. LP and LT are the correlation lengths parallel and transverse to flow direction. D is the length of medium perpendicular
to the flow direction. In the range between LP/LT = 0.01–1, LP = 2D/39 fixed and LT changes from 2D/39 to 30D/39. In the range between LP/LT = 1–100,
LT = 2D/39 fixed and LP changes from 2D/39 to 30D/39. Each point is an average of 20 realizations. 2-D network model: 40 × 40 nodes, 3120 tubes, cn = 4
and log-normal distribution of R2.
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and 30/39 (where L is correlation length and D is the network size
transverse to the overall flow direction) and for different COV(R2).
We use the method by Taskinen et al. (2008) to create correlated
fields.

Hydraulic conductivities are numerically computed for all net-
works kcor. For comparison, the hydraulic conductivity kmono is eval-
uated for a network of equal size tubes, that is, COV(R2) = 0. The
normalized mean hydraulic conductivity kcor/kmono computed using
the 100 realizations for each COV(R2) is plotted versus COV(R2) in
Fig. 6a. The normalized mean conductivity decreases with COV(R2)
in all cases in agreement with Fig. 4, but it is higher in correlated
than in uncorrelated networks. Note that the variance from the mean
trend also increases with COV(R2) and it is exacerbated by spatial
correlation L/D (Fig. 6b).

4.5 Spatial correlation in pore size—anisotropic networks

To gain further insight into the previous results, we study the effect
of anisotropy in correlation length following a similar approach,
but in this case we distinguish the correlation length parallel to
the overall flow direction LP from the correlation length transverse
to the overall flow direction LT. The isotropic case is created with
LP/D = LT/D = 2/39 so that LP/LT = 1.0. High correlation parallel
to the flow direction is simulated by increasing LP/D, while high
correlation transverse to the flow direction is imposed by increasing
LT/D. The study is repeated for three sets of R2 with COV(R2) =
0.5, 1.4 and 2.8.

Average hydraulic conductivity values (based on 20 realizations)
are normalized by the hydraulic conductivity kmono of the network
made of equal size tubes. Results in Fig. 7 show that the normalized
hydraulic conductivity kCOV>0/kmono increases as spatial correlation
parallel to the flow direction LP/LT increases and it may even exceed
the conductivity of the monosized tube network in highly anisotropic
networks with very high LP/LT values. Otherwise, variation in tube
size COV(R2) has a similar effect reported previously: an increase
in COV(R2) causes a decrease in hydraulic conductivity (see Figs 4
and 6). Overall, results in Fig. 7 point to pore-scale flow conditions
similar to those identified in Fig. 5.

5 D I S C U S S I O N

Numerical results show the evolution of percolation in bimodal
system (Figs 2 and 3) and the decrease in hydraulic conductivity
with increasing variance in pore size while the mean value of pore
size remains constant. This is observed for all types of network
topology (Fig. 4) and in both spatially correlated and uncorrelated
networks (Fig. 6). The only exception to this trend is found in
highly anisotropic porous media in the direction that favours fluid
flow (Figs 5 and 7).

To facilitate the visualization of flow patterns, we compute tube
flow rates (eq. 4) and represent tubes with lines of thickness pro-
portional to flow rate (additional plotting details are noted in figure
captions). Fig. 8(a) shows flow patterns in bimodal distribution net-
works made of different fractions of small tubes. Flow localizes

Figure 8. Analysis of flow pattern in network model of bimodal distribution of R2 (2-D cn = 4 – Percolation occurs when the fraction of small tubes is 0.5.
Refer to Figs 2 and 3 for simulation details). (a) Flow intensity in each tube of the network of different fraction of small tubes. The change of flow pattern in
each fraction of small tubes is well detected. The arrow indicates the predominant fluid flow direction. (b) Fraction of tubes tube50 per cent responsible for 50
per cent of total conductivity. The fraction total-tube50 per cent is the summation of small-tube50 per cent and large-tube50 per cent.
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along dominant flow channels when the fraction of small tubes is
50 per cent, which is near the percolation threshold for this network
(2-D cn = 4). Few flow paths are responsible for the global conduc-
tivity in networks where the fraction of either small or large tubes is
∼50 per cent (Fig. 8a�); conversely, multiple flow paths contribute
to the global conductivity in networks made of a majority of either
small or large tubes (Fig. 8a� and �).

The fraction of parallel tubes, which conducts 50 per cent of
the total flow, tubes50 per cent, quantifies this observation (Fig. 8b).
The values is tubes50 per cent = 50 per cent when all tubes are of the
same size, either large or small, which means flow is homogeneous.
Fluid preferentially flows along the large tubes so that large tubes
are responsible for 50 per cent of the total flow until the fraction of
small tubes exceeds ∼65 per cent. The participation of small tubes
starts to increase above the large-tube percolation threshold (0.5 –
Point � in Fig. 8b). In general, flow always seeks the larger tubes.

Distributed tube diameters exhibit a similar response. Most par-
allel tubes contribute to total flow when the coefficient of varia-

tion of R2 is low (Fig. 9a�). Flow becomes gradually localized as
COV(R2) increases and fewer channels contribute to global flow
(tubes50 per cent in Fig. 9c). Consequently, hydraulic conductivity de-
creases as shown earlier (Figs 4 and 6). The main effect of spatial
correlation is to channel flow along interconnected regions of high
conductivity (compare Figs 9a and b, see also Bruderer-Weng et al.
2004 for the effect of different correlation lengths on flow chan-
nelling).

Flow patterns in anisotropic networks are shown in Figs 10
and 11 for 18 realizations with different degrees of anisotropy
μ(R2

P)/μ(R2
T), spatial correlation LP/LT and tube size variability

COV(R2). The number of parallel tubes responsible for 50 per
cent of the total flow is included in Fig. 12 for all cases. Signif-
icant flow takes place along transverse tubes when transverse tubes
are much more conductive than parallel tubes μ(R2

P) 
 μ(R2
T)

(Fig. 10a), or when there is high transverse correlation LP/LT 

1 (Fig. 11a—upper bound was labelled ‘series-of-parallel’ config-
uration in Fig. 5). On the other hand, there is virtually no flow

Figure 9. Analysis of flow pattern in network model of log-normal distribution of R2 (refer to Figs 4 and 6 for simulation details). (a) Flow intensity in each
tube in spatially uncorrelated network. (b) Flow intensity in each tube in spatially correlated networks. Thickness of line represents the intensity of flow rate.
(c) Fraction of tubes tube50 per cent responsible for 50 per cent of total conductivity.
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Figure 10. Analysis of flow patterns in anisotropic networks made of tubes with the same mean size μ(R2) but different variance in size as captured in COV(R2)
(refer to Fig. 5 for simulation details). Anisotropy ratios: (a) μ(R2

P)/μ(R2
T) = 0.01, (b) μ(R2

P)/μ(R2
T) = 1.0, (c) μ(R2

P)/μ(R2
T) = 100. The arrow indicates the

global flow direction. The line thickness used to represent the tubes is proportional to the flow intensity in each tube. Tortuosity values τ are shown for each
case.

along transverse paths when parallel tubes are much larger than
the transverse tubes μ(R2

P) � μ(R2
T) (Fig. 10c) or when there is

high longitudinal correlation LP/LT � 1 (Fig. 11c); in these cases,
flow localizes along linear flow paths and global conductivity is
limited by the smallest tubes along their longitudinal paths (third
row in Figs 10 and 11—referred to the ‘parallel-of-series’ bound
in Fig. 5). Therefore, the number of parallel tubes responsible for
most of the flow decreases with increasing COV(R2) in this case as
well.

Let’s define the network tortuosity factor as the ratio τ =
(NCP/Nhom)2 between the total number of tubes in the backbone of
the critical path NCP and the number of tubes in a straight streamline
parallel to the global flow direction Nhom (details in David 1993). A
critical path analysis in terms of tube flow rate is used to compute
the tortuosity factors for fluid flow (see Bernabé & Bruderer 1998).
Figs 10 and 11 show flow patterns and associated tortuosity values.
In agreement with visual patterns, there is a pronounced decrease in

tortuosity when μ(R2
P) � μ(R2

T) in anisotropic uncorrelated fields
(Fig. 10) or when LP/LT � 1 in anisotropic correlated fields with
high COV(R2) (Fig. 11).

Spatial correlation reduces the probability of small tubes being
next to large ones and leads to more focused channelling of fluid
flow through the porous network. This can be observed by visual
inspection of cases shown in Fig. 11 in comparison to the corre-
sponding ones in Fig. 10.

Simple geometrical analyses show that the distance between ad-
jacent pore centres is 2R for simple cubic packing and face-centred
cubic packing and

√
1.5R for tetrahedral packing, where R is the

grain radius (see also Lindquist et al. 2000). However, the constant
tube length assumption made in this study is only an idealization for
real sediments (Bryant et al. 1993). For example, the distance be-
tween adjacent pore centres in Fontainebleau and Berea sandstones
ranges from 20 to 600 μm with most tube lengths between 130 and
200 μm (Lindquist et al. 2000; Dong & Blunt 2009).
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Figure 11. Analysis of flow pattern in anisotropically correlated networks made of three sets of tube areas with different COV(R2) (refer to Fig. 7 for simulation
details). Anisotropy ratios: (a) LP/LT = 1/15, (b) LP/LT = 1/1 and (c) LP/LT = 15/1. The arrow indicates the global flow direction. The line thickness used to
represent the tubes is proportional to the flow intensity in each tube. Tortuosity values τ are shown for each case.

Figure 12. Fraction of tubes tubes50 per cent carrying 50 per cent of the total flux as a function of (a) coefficient of variation of R2 in anisotropically uncorrelated
field and (b) the ratio of parallel to transverse correlation length LP/LT.
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While pore-to-pore distance varies in real sediments, we note that
the hydraulic conductivity of tubes is much more dependent on the
radius than on the tube length (see eq. 4). Therefore, the imposed
variability in tube radius causes variability in tube conductivity q
that could equally capture tube length variability. Clearly, variations
in tube length would imply a non-regular network topology.

6 C O N C LU S I O N S

Grain size and formation history dependent pore size distribution
and spatial variability determine the hydraulic conductivity, im-
miscible fluid invasion and mixed fluid flow, resource recovery,
storativity and the performance of remediation strategies. Numeri-
cal simulations with porous networks permit the study of pore-size
distribution, spatial correlation and anisotropy on hydraulic con-
ductivity and flow patterns in pervious media.

In most cases, the hydraulic conductivity decreases as the vari-
ance in pore size increases because flow becomes gradually local-
ized along fewer flow paths. As few as 10 per cent of pores may
be responsible for 50 per cent of the total flow in media with high
pore-size variability. The equivalent conductivity remains within
Hashin and Shtrickman bounds.

Spatial correlation reduces the probability of small pores being
next to large ones. There is more focused channelling of fluid flow
along interconnected regions of high conductivity and the hydraulic
conductivity is higher than in an uncorrelated medium with the
same pore size distribution.

The equivalent hydraulic conductivity in anisotropic correlated
media increases as the correlation length parallel to the flow direc-
tion increases relative to the transverse correlation. The hydraulic
conductivity in anisotropic uncorrelated pore networks is bounded
by the two extreme ‘parallel-of-series’ and ‘series-of-parallel’ tube
configurations. Flow analysis shows a pronounced decrease in tor-
tuosity when pore size and spatial correlation in the flow direction
are higher than in the transverse direction.

While Poiseuille flow defines the governing role of pore size
on hydraulic conductivity, the numerical results presented in this
manuscript show the combined effects of pore size distribution and
variance, spatial correlation and anisotropy (either in mean pore size
or in correlation length). In particular, results show that the proper
analysis of hydraulic conductivity requires adequate interpretation
of preferential flow paths or localization along interconnected high
conductivity paths, often prompted by variance and spatial correla-
tion. The development of flow localization will impact a wide range
of flow related conditions including the performance of seal layers
and storativity, invasion and mixed fluid flow, contaminant migra-
tion and remediation, efficiency in resource recovery, the formation
of dissolution pipes in reactive transport and the evolution of fine
migration and clogging.
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Königlichen Sächsischen Gesellschaft der Wissenschaften, 32, 509.

C© 2011 The Authors, GJI, 184, 1167–1179

Geophysical Journal International C© 2011 RAS


