STABILITY ANALYSTS WITH NON-RIGID WEDGES

C. Santamarina® and G.A. Leonards?

SUMMARY. Current limiting equilibrium analyses of the stability of slopes
assume rigid wedges. A new approach that relaxes this requirement is
proposed in this paper. The calculation algorithm and a computer program
based on it are described. It is shown that the stiffness of the wedge and
the interaction along the sliding surface are important factors affecting
the stability of slopes.

1. Introduction

Conventional slope stability analyses assume rigid wedges, hence the
relation between the shear stress mobilized along the slip surface and the
deformation of the soil mass is not considered. While these algorithms
have proved useful in examining the safety of slopes in limiting
equilibrium, they do not favor understanding the fundamental nature of
slope stability. Indeed, the sliding wedge interacts with the base
material: the associated modification of internal forces produces
deformations within the sliding wedge (and within the base material);
these deformations and the stiffness of the wedge mobilize varying
fractions of the resistance along the base of the slide. The wedge-base
interaction determines the stability conditions of the slope.

Some phenomena cannot be adequately studied unless the nature of this
interaction is modeled. Examples include the development of progressive
failure in strain-softening soils, and the use of anchors ot other
synthetic inclusions to improve stability. This paper presents an attempt
to model the interaction process by relaxing the rigidity requirement. In
this first attempt a number of simplifying assumptions are made in order
to highlight the basiec concepts.

2. Formulation and Algorithm

The solution presented herein assumes that interslice forces are parallel
to the sliding plane, and that slices translate without rotation. The
force mobilized at the base of the slice is taken as a function of the
displacement parallel to the sliding plane §//

Taob™ @ Tiax vhere o= £(§{/) and T~ shear strength (1).
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where N; is the effective normal force, b is the slice thickness and 8,
is the average slope at the base of the slice (see Figure 1). The two
force equilibrium equations for slice "i" are:

ZF =~ 0

ficosﬂi " fi+1cosﬂi+1 - Tmobcosﬁave + NiSinﬁava (3)
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Introducing equation 2 in 3&4, and solving for N,
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And from equation 3

£ ficos8; - T,pC08PB,.e + Nysing, . (6)
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The horizontal deformation of a given slice is calculated using the change
in the horizontal components of the interslice forces due to excavation,.
The displaced position of the interslice plane "i+l" is obtained by adding
the width "b" to the displaced position of the interslice plane "i", and
the change in width Ab of the i*" slice. Ab results from the change in the
average interslice forces between the initial values and the current ones:

(Af;cosB,+Af, ,co88,,,) b
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Xi+1= Xi + b +
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where E, is Young’s modulus for the material in the i* slice, and h, is
the height of the slice. Then, the displacement parallel to the sliding
plane for the next slice can be computed as follows,
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The calculation algorithm is summarized in Table 1.

Known: f, and £,
Assume: X% for i=1
["" Calculate: !/ (equation 8)
o (predefined function of 6£’)
N; {equation 5)
Toob (equation 2)
£ {(equation 6)
Xie) (equation 7)

Check equilibrium at toe:
IF £331°> f£kIo"M THEN increase xU®¥

Table 1: Calculation Algorithm




3. Initial Forces

Similar to other analyses where the effects of deformations are accounted
for, the initial interslice forces must be known. In the case of level
ground, prior to an excavation, the pgeostatic in situ state of stress
results in initial interslice forces normal to the vertical slices. During
excavation there 1is a rotation of principal stresses. Herein, it is
assumed that the directions of the interslice forces are parallel to the
slope surface and that only the normal components of the interslice forces
cause dimensional changes in the width of the slices.

The at-rest condition also involves shear stresses on inclined planes. On
the preselected sliding surface

1o = 07(1-ky) sin(B,,.) (9)

Hence, there is an associated initial value T,, and equation 1 is modified
as follows,

Toop= Top + Tinax (10)

4. Modulus Degradation and Tension Cracks

It is known that Young's modulus decreases with the increase in stress
ratio o,/0; and strain level ¢, and with the decrease in confining stresses
o.. These three parameters are affected when a slope is activated. In
fact, during lateral unloading such as in the excavation of level ground,
the three parameters are affected in a sense that reduces E,

This effect can be modeled. For example, a rule can be used to vary the
modulus of each slice as & function of the interslice forces, from an
initial value Ep..; to a final value Ej . ;= pEp,;. Assuming a simple
liner model, '

f.+f
Ei= Eyjgn-y ¥ ["“;E}—f—éil* (1 - p) + PJ (11)
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Eyw In granular materials becomes eventually =zero when there is no
confinement, and a tension crack does not develop. On the other hand,
E, .0 in unconfined saturated fine grained soils that where unloaded in
undrained conditions; a tension crack may develop within the slope,
splitting the wedge into a stationary and a moving mass.

5, Computer Program

A computer program was developed using the algorithm and concepts
discussed above. The slide 1s represented by n slices of equal width. REach
slice and each interslice plane have an associated list of attributes,
shown in Figure 1.




Slice
w(i) weight
f; h(i) height
E(4) Young's Modulus
\\ W'i s(1) ' Shear Strength
¢{1) Friction Angle
""“Etfl S(1) Defoxmation to Yield
\\ Interslice Plane
Tmob ‘\\\ :
e £E & £9+1 Initial Imterslice Forces
£y & f£i43 Calculated Interslice Forces
Ni Bave : x4 Position of interslice plane i

Figure 1: A Slice and Its Attributes

An elasto-plastic model for the shear stress along the sliding surface has
been implemented in the current version. If T, is normalized with respect
€o Ty, the soil model is represented by the a function (Equations 1 and.
10) as shown in Figure 2. A strain softening condition (dashed line in
Figure 2) can readily be implemented

@ = Tmob

Tmax
1.040.......

Gy 6/

Figure 2: Soil Model at the Base of the Slices

There are very limited field data to guide the estimation of &.. However,

8, must be related to the shear modulus and the thickness t of the shear
zone.

E T

€= 2(11y) - 53?; (12)

For the case of undrained loading, Poisson’s ratio is wv= 0.5 and assuming
a reasonable relation between Ey-ave— 200 to 600 s, the estimate for 6, is
between t/50 to t/150. The thickness of the shear zone, t, may range from
a few centimeters to a meter or more.

Because the position of the slices changes as the wedge deforms and the
shear strength is mobilized, B's are reevaluated in every iteration. To
facilitate this calculation, the sliding plane is defined as a curve with
continuous first derivative. Two functions are included in the current
version: fourth degree polynomial curve and circular arc.



The user may input the initial values of the interslice forces and shear
forces at the base of the slices, or run an option that generates them
automatically, assuming at-rest conditions for the unexcavated slope.

The program outputs the local factor of safety, FS.= Thaxt1) /Tmob(yy » the
interslice forces, the displaced position of each slice, and the total
strain energy. A global factor of safety is also computed for circular
failure surfaces, based on moment equilibrium of the entire wedge,

T
FSGlobal= 5 Tma‘: ( 13 )
mo!

In each run, the output indicates any negative interslice forces. A
limiting tensile strength can also be specified; in this case the program
outputs the negative interslice forces that exceed this 1imit. The
formation of a tension crack can be simulated by fixing the interslice
force equal to zero and re-running the program.

6. Sample Runs

The following examples study illustrate the proposed method of analysis,
and shows the influence of the stiffness of the wedge material (E) and the
deformation needed to mobilize the shear strength along the failure plane
(8y) on the behavior of the slope. The case modeled is that of level
ground that is subsequently excavated vertically to a depth of 10 m. A
clay soil was selected, with total unit weight Yeop= 2000 kg/m®, and
undrained shear strength s,~ 1.0 kg/cm?. These parameters result in
stability numbers s,/yH of 0.250 for Cullmann’s method, and 0.261 for
solutions based on circular and logarithmic spiral failure surfaces.

The critical circular failure surface was selected using the Simplified
Bishop's Method, then the current program was run. For the calculation of
the initial forces, an isotropic state of stresses was assumed, k,=1.0,
therefore T,= 0. Two levels of undrained modulus were selected for the
parametric study: E~ 200s= 200 kg/cm®, and E,= 600s,~ 600 kg/cm?., Three
levels of deformation to yield the shear strength along the sliding plane
were used: 6,~ 0.06cm, 0.2cm, and 1.0cm. The linear modulus degradation
function suggested in Equation 11 was used, with p= 0.1,

Table 2 summarizes the results obtained. Depending on the modulus and the
deformation to yield, tensile interslice forces ‘can develop. In those
cases (E= 600kg/cm? and 6y~ 0.2 and 1.0), an arbitrary tensile interslice
force of up to 0.1S h, was allowed. The negative interslice forces did not
exceed this bound in any case, hence no tensile crack was modeled. The
interslice forces shown in Figure 3. Figure 4 shows the local factor of
safety in each case.
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Non-Rigid Analysis

E, 8, E*8, t [cm]} FSgi0bal Notes

200 0.06 12 . 4 1.922 no-tension

200 0.2 40 13 1.922 no-tension

600 0.2 120 40 1.921 tension, no-crack
600 1.0 600 200 1.921 tension, no-crack

Rigid Wedge Analysis

Method FSG].obal
Closed Form Solutions 1.916%
Bishop's Simp. Meth. 1.923°
Janbu's Method 2.059

Notes

1: Tenslle stresses up to 0.1 Su were allowed between slices
2: Based on circular or log spiral surfaces.

3: Tension in the top 12 jinterslices out of 50 slices

Table 2: Parametric Study - Results

Based on the results presented here, and others not shown, the following
observations can be made:

- The product E «*¥8, appears to be very important in characterizing the
interaction between the sliding mass and the base material. As shown
in Equation 12, it represents the thickness of the shear zone times
the shear strength.

- For a given wedge stiffness, the pattern of displacements is similar
for different §,. The lateral expansion of the wedge as a result of
lateral unloading is clearly shown.

- The lower E*§,, the higher the interslice forces.

- The distribution of the interslice forces is quite sensitive to
assumptions regarding modulus degradation, allowable tensile
interslice forces and crack formation.

- While the global factor of safety is the same, the distribution of
the local factor of safety 1s very semsitive to E, *5

- For a given geometry, failure tends to start at the bottom of the
slide for low E*§ , and at the crest for high E %6,.

The last observation is based on the distribution of the local factors of
safety (Figure 4), and was confirmed with other cases not presented in
this paper.

Finally, the effect of the initial state of stress was analyzed changing
the value of K; in the generation of the initial forces for the case of E,=
600 kg/cm?® and 6y= 0.2cm. The value of K, was varied from 0.2 to 1.4, and a
modulus degradation ratio p= 0.1 was used. The global factors of safety




were identical in all cases (FS, .= 1.921). Figure 5 shows the effect of
Ky, on the local factors of safety.
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Figure 5: Local Factor of Safety - Effect of K,

7. Conclusions

A new algorithm for the stability analysis of slopes was introduced. Its
salient characteristic is the relaxation of the rigidity requirement. It
was shown that the stiffness of the sliding material and the deformation
needed to mobilize the shear strength along the sliding surface are very
important parameters affecting the behavior of earth slopes.




