Modeling and Analysis

Reactive fluid flow in CO₂ storage reservoirs: A 2-D pore network model study

Seunghee Kim, Western New England University, Springfield, MA, USA
J. Carlos Santamarina, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract: Water acidifies in the presence of CO₂ and prompts mineral dissolution. A 2-D pore network model scheme is developed to investigate reactive fluid flow in CO₂ storage reservoirs during injection when advective transport prevails. Mineral dissolution satisfies kinetic rate laws and continues until thermodynamic equilibrium is reached. In advection-dominant regimes, network simulation results show that species concentration, tube enlargement and flow rate can be summarized in terms of the dimensionless Damköhler number Da which is the ratio between advection time along a pore and the reaction time. Reservoirs will tend to experience localized enlargement near injection wells (before water drying) and compact dissolution in the far-field. The Damköhler number couples with initial pore-size variability to distort the relationship between mean tube diameter and either local or network-average flow rates. Both the Damköhler number and pore-size variability should be considered in field-scale numerical simulators. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Keywords: geological CO₂ storage; reactive fluid transport; pore network model; mineral dissolution; localization

Introduction

Carbon storage in geological saline aquifers has been suggested to reduce carbon emissions into the atmosphere. CO₂ enters supercritical state at temperature and pressure conditions reached when reservoir depths exceed ~800 m (T > 304.1K and P > 7.38 MPa).¹ The solubility of supercritical CO₂ in water can reach 1–2 moles/L.²⁻⁴ In the presence of CO₂, water with hydrogen ions H⁺ and aqueous carbon dioxide CO₂(aq) acidifies to pH~3,⁵ and prompts mineral dissolution.

The evolution of reactive fluid flow depends on mineral reactivity, advection, and diffusion. Reactive fluid flow through porous media has been studied using equivalent continuum models,⁶⁻¹⁰ single-flow channel or wormhole models,¹¹⁻¹³ lattice Boltzmann pore-scale models,¹⁴ and both network and discrete fracture network models.¹⁵

In particular, network models capture pore-scale phenomena and upscale them to predict macro-scale behavior and properties.¹⁶ Mineral dissolution during reactive fluid flow adds complexity to network simulation, and there are only a few modeling attempts reported in the literature.¹⁷⁻²⁷ Published results show that (i) dissolution can take place uniformly across the medium, advance as a front or form wormholes depending on the ratio between advection, diffusion and reaction rates (2D);²¹ (ii) the exponent of the Kozeny-Carman equation changes for different dissolution scenarios (3D);¹⁷,²⁰,²⁵ and (iii) reaction rates are affected by the spatial distribution.
of minerals (3D). Network models cannot readily accommodate mechanical coupling (a study using discrete elements can be found in Shin and Santamarina).

In this study, we develop a network simulation code to investigate fluid-mineral interaction when acidified water flows through a porous network. We focus on saline aquifers in carbonate formations in the context of CO₂ geologic storage.

**Network simulation – preliminary concepts**

**Mineral dissolution – rate laws**

Consider a system of interconnected pores within a calcium carbonate formation to represent minerals with fast reaction rate in saline reservoirs. The two main reactions are:

\[
CaCO_3(s) + H^+ \rightarrow Ca^{2+} + HCO_3^-
\]  
\[
CaCO_3(s) + CO_2(aq) + H_2O \rightarrow Ca^{2+} + 2HCO_3^-
\]

(1)
(2)

where the kinetic rate is \( \kappa \) = \( k_1 S_m M_m \) that combines the rate constant \( k_1 \) [mol/m²/s], the mineral specific surface \( S_m \) [m²/g] and the mineral molar mass \( M_m \) [g/mol] (we use \( S_m = 0.06 m^2/g \) and \( M_m = 100 g/mol \) for calcite). The rate constants are \( k_1 = 0.745 \text{ mol/m}^2\text{s} \) and \( k_2 = 8.6 \times 10^{-4} \text{ mol/m}^2\text{s} \) at a nominal temperature \( T = 40^\circ C \). Assuming that the reaction rate is linearly proportional to the concentration of reactants, the rates of change in species concentrations are related as:

\[
\begin{align*}
\frac{d[H^+]}{dt} &= \kappa_1[H^+] = \frac{d[Ca^{2+}]}{dt} + \frac{d[HCO_3^-]}{dt} \\
\kappa_2[H_2CO_3^+] &= \frac{d[H_2CO_3^+]}{dt} = \frac{d[Ca^{2+}]}{dt} = \frac{1}{2} \frac{d[HCO_3^-]}{dt}
\end{align*}
\]

(3)
(4)

where square brackets indicate species concentration and the total carbonic acid \( H_2CO_3^* \) combines aqueous carbon dioxide \( CO_2(aq) \) and carbonic acid \( H_2CO_3 \). Reactions stop when the system reaches equilibrium, and the reaction product \( \Omega \) equals the total equilibrium constant \( K = K_{1eq}K_{2eq} \) where \( K_{1eq} = 10^{1.85} \) and \( K_{2eq} = 10^{-4.5} \) are equilibrium constants for Equations 1 and 2. Note that mineral precipitation is not considered in this study.

**Governing parameters – simulation domain**

The time scales for advection \( t_{adv} \) and diffusion \( t_{diff} \) within a channel length \( L_{ch} \), and the chemical reaction time \( t_{rtn} \) can be combined to form two dimensionless ratios:

\[
\text{Damköhler number} Da = \frac{q_{adv}}{t_{rtn}} = k L_{ch}
\]
\[
\text{Pecllet number} Pe = \frac{t_{diff}}{t_{adv}} = \frac{v_{ave} L_{ch}}{D}
\]

where \( v_{ave} \) [m/s] is the average pore velocity and \( D \) [m²/s] is the molecular diffusion coefficient. The simulation approach is designed for advection-dominant situations where advective transport is much faster than dissolution rate \( (Da \ll 1) \); such conditions prevail in the reservoir during CO₂ injection \( (Pe \gg 1) \).

**Network construction**

The 2D square network consists of tubes that intersect at nodes where incoming species mix thoroughly. Tube diameters \( d \) [m] are log-normally distributed with mean value \( d_0 \) and variance \( var \). All tubes have identical length \( L_{ch} \) [m]. The limitation in network size \( N \times M \) is partially overcome by assuming periodic boundary conditions transverse to the flow direction. Flow is driven by the pressure difference between at inlet \( P_{in} \) and outlet \( P_{out} \) nodes (Fig. 1). The 2D network characteristics and simulation parameters are summarized in Table 1.

**Numerical simulation – algorithm**

**General formulation**

Nodal pressures and tube velocities

Nodal fluid pressures are computed by establishing fluid mass balance at all nodes, and solving the system of equations (details in Jang et al.):

\[
\sum q_i = 0
\]

where flow rate \( q \) [m³/s] along each tube satisfies Poiseuille’s law as a function of the tube diameter \( d \) [m], length \( L_{ch} \) [m], and the fluid viscosity \( \mu \) [Pa-s]:

\[
q = \frac{\Delta P \pi d^4}{128 \mu L_{ch}}
\]
The computed pressure difference $\Delta P$ [Pa] between two adjacent nodes is then used to compute the tube flow velocity $v$ [m/s]:

$$v = \frac{4q}{\pi d^2} = \frac{\Delta P d^2}{32 \mu L_{ch}} \quad (9)$$

**Evolution of species concentration**

Mineral dissolution in a given tube lowers the concentration of reactant species and increases the concentration of produced species at the next node; this continues until the saturation concentration is reached and dissolution stops. Conditions for precipitation do not arise in this small-scale simulation (constant temperature, low pressure changes, homogeneous substrate chemistry). The concentration $c_{i+1,j+1}$ for reactant species $H^+$ and $H_2CO_3^+$ at location $x_{i+1} = x_i + \Delta x$ and time $t_{j+1} = t_j + \Delta t$ in a tube in direction $x$ is determined by the chemical reaction rate $\kappa$, the residence time of species inside a tube $L_{ch}/v$, and the concentration of reactant species $c_{i,j}$ at location $x_i$ and time $t_j$. For clarity, let's consider a 1D tube aligned in $x$; then:

$$[H^+]_{i+1,j+1} = [H^+]_{i,j} - \kappa_1 \cdot [H^+]_{i,j} \cdot \left(1 - \frac{\Omega_{i,j}}{K_{eq}} \right) \frac{L_{ch}}{v_{i,j}} \quad (10)$$

$$[H_2CO_3^+]_{i+1,j+1} = [H_2CO_3^+]_{i,j} - \kappa_2 \cdot [H_2CO_3^+]_{i,j} \cdot \left(1 - \frac{\Omega_{i,j}}{K_{eq}} \right) \frac{L_{ch}}{v_{i,j}} \quad (11)$$

where the ionic concentration product $\Omega_{i,j}$ and the velocity $v_{i,j}$ correspond to location $x_i$ and time $t_j$. The concentration of produced species $Ca^{2+}$ and $HCO_3^-$ are determined from the consumption of reactant species and the stoichiometric ratio between reactant and produced species. For a 1D tube aligned in $x$:

$$[Ca^{2+}]_{i+1,j+1} = [Ca^{2+}]_{i,j} + \kappa_1 [H^+]_{i,j} + \kappa_2 [H_2CO_3^+]_{i,j} - \left(1 - \frac{\Omega_{i,j}}{K_{eq}} \right) \frac{L_{ch}}{v_{i,j}} \quad (12)$$

$$[HCO_3^-]_{i+1,j+1} = [HCO_3^-]_{i,j} + \kappa_1 [H^+]_{i,j} + 2\kappa_2 [H_2CO_3^+]_{i,j} - \left(1 - \frac{\Omega_{i,j}}{K_{eq}} \right) \frac{L_{ch}}{v_{i,j}} \quad (13)$$

### Table 1. Network model characteristics and simulation parameters

<table>
<thead>
<tr>
<th>Entity</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network size (N×M)</td>
<td>50×50</td>
</tr>
<tr>
<td>Mineralogy</td>
<td>Calcite</td>
</tr>
<tr>
<td>Mean of tube diameters, $\bar{d}$</td>
<td>20 µm</td>
</tr>
<tr>
<td>Distribution of tube diameters</td>
<td>Log-normal distribution</td>
</tr>
<tr>
<td>Coefficient of Variation, COV</td>
<td>0.4, 1 and 1.5</td>
</tr>
<tr>
<td>Tube length, $L_{ch}$</td>
<td>200 µm</td>
</tr>
<tr>
<td>Hydraulic gradient $h$, applied at the model</td>
<td>10, 100 and 1000</td>
</tr>
<tr>
<td>Flushed pore volume during one cycle</td>
<td>$10^{-5} V_p$ (one network pore volume; $\beta = 10$)</td>
</tr>
<tr>
<td>Number of cycle (repetition)</td>
<td>100</td>
</tr>
<tr>
<td>Total flushed network pore volume</td>
<td>$1000 V_p$</td>
</tr>
</tbody>
</table>
These equations presume that advective transport prevails over diffusive transport \((Pe > 1)\) and are valid for advection-dominant regimes.

**Initial conditions**

Figure 1 summarizes initial and boundary conditions. A free flux condition is assumed at outlet nodes \(i = M\) in order to simulate an infinite boundary \(c_{M-1,j} = c_{M,j} = 0\). Nodes in the first column of the network \((i = 1)\) define the inlet where \(\text{CO}_2\)-dissolved water is injected; these nodes have fixed concentrations of reactant species. The saturation concentration of total carbonic acid \([\text{H}_2\text{CO}_3^+]\) is determined using semi-empirical expressions.\(^5\)\(^,\)\(^3\)\(^4\) Concentrations of hydrogen \([H^+]\), hydroxide \([OH^-]\), and bicarbonate \([\text{HCO}_3^-]\) at the inlet are obtained for a carbonate system in thermodynamic equilibrium \(H_2\text{CO}_3^+ \leftrightarrow H^+ + \text{HCO}_3^-\) at \(T = 40 ^\circ\)C and \(P = 10\) MPa. Concentrations of other species, such as \(\text{Ca}^{2+}\) and \(\text{Cl}^-\) at the inlet boundary are determined to satisfy electro-neutrality.

Chemical conditions must be initiated within the network to avoid numerical instabilities. We assume initially negligible transport of species on transverse tubes because transverse tube velocities are typically much lower than longitudinal tube velocities; once reactive flow is initiated both transverse and longitudinal transport components are taken into account. Disregarding changes in tube diameters during the early transient stage of advection, the initial 'pseudo-steady state' concentration field of reactant species along 1D longitudinal tubes can be estimated by numerically solving the differential equation for reactive fluid transport:\(^3\)\(^5\)

\[
\frac{dc}{dt} - \nu \frac{dc}{dx} - \kappa c = 0
\]

This equation is expressed in finite difference form (central approximation):

\[
- \frac{\nu}{2\Delta x} c_{i+1} - \kappa c_i + \frac{\nu}{2\Delta x} c_{i-1} = 0
\]

where \(c_i\) [mol/m\(^3\)] denotes species concentration at location \(x_i\), and the spatial interval \(\Delta x\) is taken as the distance between adjacent nodes \(\Delta x = L_{ch}\). Note that the velocity \(\nu\) selected to initialize the algorithm in Eqn (15) is the average value along the longitudinal direction; thereafter, the formal 2D algorithm is applied. In matrix form,

\[
A \cdot \mathbf{c} = \mathbf{B}
\]

The matrix \(A\) contains the coefficients in Equation 15 \((-\nu/2\Delta x, -\kappa\) and \(\nu/2\Delta x\). The vector \(B\) captures boundary conditions, i.e., fixed concentration \(c_{\text{inlet}}\) at the inlet node \(i = 1\) and free flux at the outlet node \(i = M\). For example, the matrix \(A\) and vector \(B\) for \(M = 6\) nodes are:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{\nu}{2\Delta x} & -\kappa & \frac{\nu}{2\Delta x} & 0 & 0 & 0 \\
0 & \frac{\nu}{2\Delta x} & -\kappa & \frac{\nu}{2\Delta x} & 0 & 0 \\
0 & 0 & \frac{\nu}{2\Delta x} & -\kappa & \frac{\nu}{2\Delta x} & 0 \\
0 & 0 & 0 & -\frac{\nu}{2\Delta x} & -\kappa & \frac{\nu}{2\Delta x} \\
0 & 0 & 0 & 0 & -\frac{\nu}{2\Delta x} & -\kappa
\end{bmatrix}
\]

The sought initial pseudo-steady state concentration \(\mathbf{c}\) of reactant species \(H^+\) and \(\text{H}_2\text{CO}_3^+\) at all nodes is obtained by solving the system of equations to recover the vector \(\mathbf{c} = A^{-1} \cdot \mathbf{B}\). The initial pseudo-steady state concentration for other species, such as \(\text{Ca}^{2+}\), \(\text{HCO}_3^-\), \(OH^-\), and \(\text{Cl}^-\), are determined to satisfy both mass balance and electro-neutrality at each node.

**Complementary computations**

**Tube enlargement**

The change in mineral concentration \(\Delta c_{i,j}^m\) [mol/m\(^3\)] in the pore fluid of a tube at locations \(x_i\) and \(x_{i+1}\), from time \(t_i\) to \(t_{i+1}\), is computed from the consumption of reactant species \(H^+\) and \(\text{H}_2\text{CO}_3^+\) and their stoichiometric ratios (1:1 for both reactant species). For a 1D tube aligned in \(x\):

\[
\Delta c_{i,j}^m = \left( \kappa_1 [H^+]_{i,j} + \kappa_2 [\text{H}_2\text{CO}_3^+]_{i,j} \right) \left( 1 - \frac{\Omega_{i,j}}{K_{eq}} \right) \frac{L_{ch}}{v_{i,j}}
\]

The increase in tube diameter \(\Delta d_{i,j}\) [m] for a tube between nodes \(x_i\) and \(x_{i+1}\) is proportional to flow rate \(q_{i,j}\), the change in mineral concentration \(\Delta c_{i,j}^m\), the mineral molar volume \(V_m = 3.7 \times 10^{-5}\) m\(^3\)/mol (for calcite) and the elapsed time \(\Delta t\) [s]. For a 1D tube aligned in \(x\):

\[
\Delta d_{i,j} = \frac{2V_m \Delta t}{\pi L_{ch}} \frac{q_{i,j}}{d_{i,j}} \Delta c_{i,j}^m
\]
The rate of mineral dissolution is much slower than the rate of advection in most problems of reactive fluid transport related to CO₂ geologic storage (Da ≪ 1). Thus, the enlargement of tube diameters, for one replaced network pore volume \( V_p \) is minute and thus we select the time interval \( \Delta t \) for one iteration step to be several times \( \beta \) the overall advection time \( L_{\text{total}}/v_{\text{ave}} \) across the network:

\[
\Delta t = \beta \frac{L_{\text{total}}}{v_{\text{ave}}} \tag{20}
\]

Selected \( \beta \)-value is listed in Table 1.

**Updated nodal concentrations**

The new nodal concentration \( c_{i+1,j+1}^{\text{new}} \) for a node located at \( x_{i+1,j} \) at time \( t_{j+1} \), is computed assuming instantaneous mixing at the node:

\[
c_{i+1,j+1}^{\text{new}} = \frac{\sum_k q_{k,j} \cdot c_{k,i+1,j+1}}{\sum_k q_{k,i}} \tag{21}
\]

**Algorithm**

One cycle in the network simulation corresponds to the time interval \( \Delta t \), and involves the following steps: (i) estimate the evolution of species concentration at the end of every tube based on species concentrations, velocity, and kinetic rates - Eqns 10 to 13, (ii) update concentration of species at all nodes - Eqn (21), (iii) compute the enlargement of tube diameter \( \Delta d \) for every tube - Eqns (18) to (20), and (iv) update nodal pressures, tube velocities and flow rates taking into consideration changes in tube diameters - Eqns (7) to (9). We repeat this cycle until the total flushed volume reaches 1000 pore volumes \( 1000 \cdot V_p \) (Table 1).

**Selected parameters**

Reservoir pressure gradients and pore characteristics are selected to match conditions relevant to CO₂ storage reservoirs.

**Distribution of Tube Diameters**

The mean tube diameter \( \bar{d}_0 \) corresponds to typical reservoir permeabilities \( k_{\text{perm}} \) [mD] according to the following empirical expression. (Note: this expression is based on results presented in Bachu and Bennion. 36)

\[
k_{\text{perm}} \frac{1 \text{mD}}{1 \mu \text{m}} = 0.37 \left( \frac{\bar{d}_0}{1 \mu \text{m}} \right)^{2.05} \tag{22}
\]

We select a value \( \bar{d}_0 = 20 \mu \text{m} \) for a reservoir permeability of \( k_{\text{perm}}=172 \text{ mD} \) which is in the range for porous carbonate rocks. 20,37 Note that further analyses and results are presented in dimensionless form. Pore diameters are log-normally distributed with a coefficient of variation \( \text{COV}=0.4 \) for most sediments; 38 we also test \( \text{COV} = 1.0 \) and 1.5 to better reflect fractured rock conditions. 39

**In situ hydraulic gradient**

The hydraulic gradient is limited by the allowable injection pressure that prevents hydraulic fracture. The hydraulic gradient \( i_h \) is highest near the injection well and diminishes inversely proportional to the distance from the well. In this study, we test three different hydraulic gradients \( i_h = 10, 100 \) and 1000.

**Results**

**Concentration**

The spatial distributions of species concentrations (\( H^+, H_2CO_3^-, Ca^{2+} \) and \( HCO_3^- \)) are recorded during fluid flow (Fig. 2). When the advection time is much longer compared to the reaction time (\( Da > 10^{-4} \)), the concentration of reactant species (i.e., \( H^+, H_2CO_3^-, \) \text{HCO}_3^-) rapidly decreases near the inlet. However, reactant species migrate towards the outlet as the hydraulic gradient increases and \( Da<10^{-4} \). A lower consumption of reactant species accompanies high hydraulic gradients, and lower pH values are observed throughout the porous network (Fig. 3). Electro-neutrality is corroborated everywhere at all times.

**Pore diameter**

Tube diameter enlargement prevails near the inlet when the hydraulic gradient \( i_h \) is low \( i_h=100 \) and the Damköhler number is high \( Da > 10^{-3} \) (Fig. 4(a)). More homogeneous tube enlargement is observed as the advection velocity increases (Fig. 4(b)). Figure 4 shows tube diameter enlargement after 1000 network pore volumes \( 1000 \cdot V_p \) have been flushed. (Note: at \( i_h = 1000 \) and \( Da=10^{-5} \), the corresponding total simulation time is two orders of magnitude longer than the characteristic time for calcite dissolution by hydrogen ions \( H^+ \)). For a given flushed volume, the higher the advection velocity the lower the eroded mass (Fig. 4(c)).
Flow rate
Reactive flow tends to preferentially enlarge tubes with initially high flow velocity as more reactants traverse the pore per unit time. This is shown in Fig. 5 where the normalized change in flow rate $\Delta q/q_{0,max}$ is illustrated after 1000 network pore volumes for different hydraulic gradients; results are presented in terms of normalized increase in flow rate to highlight changes in the pore network and flow regime. The initial pore size distribution evolves towards localized flow and wormhole formation when $Da \leq 10^{-4}$. Conversely, flow remains relatively homogeneous after 1000 $V_p$ when the hydraulic gradient is low and most reactants are consumed near the inlet ($i_h = 10$ and $Da=10^{-3}$ – Fig. 5(a)).

Pressure
The pressure field in the porous medium changes with preferential tube enlargement. High dissolution at the inlet during low advection velocity brings the high inlet pressures further into the medium. As the hydraulic gradient $i_h$ increases, dissolution extends further into the medium and the pressure field remains similar to the pre-dissolution field (Fig. 6).

Figure 2. Distribution of species concentration after 1000 network pore volumes have been flushed through the system: (a) $H^+$, (b) $H_2CO_3^*$, (c) $Ca^{2+}$ and (d) $HCO_3^-$ ($i_h = 1000$, $Da = 1.5 \times 10^{-5}$ and $Pe = 6.8 \times 10^3$).
where the second equality applies to small changes in normalized porosity \( \Delta \phi/\phi_0 \ll 1 \). Thus, changes in porosity are proportional to changes in tube diameter. Equations (23) and (24) link micro-scale changes in pore size to macro-scale changes in permeability.

### Porosity-permeability

Enlarged tube diameters mean higher porosity and permeability. The Kozeny-Carman equation suggests a power relationship between relative porosity \( \phi/\phi_0 \) and relative permeability \( k/k_0 \):

\[
\frac{k}{k_0} = \left( \frac{\phi}{\phi_0} \right)^\alpha
\]

where \( \phi_0 \) and \( k_0 \) are selected reference values. Consider a cylindrical tube in a representative elementary volume. A change in pore diameter \( \Delta d \) corresponds to a change in porosity \( \Delta \phi \):

\[
\frac{\Delta d}{d_0} = \left( \frac{1}{\phi_0} \right) \left( \frac{\phi_0}{\phi} - 1 \right) \approx \frac{\Delta \phi}{2 \phi_0}
\]

where the initial condition applies to small changes in normalized porosity \( \Delta \phi/\phi_0 \ll 1 \). Thus, changes in porosity are proportional to changes in tube diameter. Equations (23) and (24) link micro-scale changes in pore size to macro-scale changes in permeability.
When the hydraulic gradient is high \( Da < 10^{-4} \) \((i_h > 100)\), the normalized mean tube diameter \( \bar{d} / \bar{d}_0 \) is linearly related to the normalized flow rate \( q/q_0 \) (Fig. 7(a)). However, when the hydraulic gradient is low \( Da \sim 10^{-3} \) \((i_h = 10)\), the trend \( q/q_0 \) vs. \( \bar{d} / \bar{d}_0 \) deviates from linearity and reaches a plateau, even though the normalized mean tube diameter continues increasing; this apparent paradox is explained by the localized dissolution near the inlet (Figs (4) and (6)). Results in Fig. 7 highlight the inherent bias when network ‘average’ or macro-scale trends are analyzed in reactive fluid flow. While the average evolution of porosity-permeability is affected by the hydraulic gradient, \( Da \) and dissolution pattern in agreement with published studies,\(^{17,20,25}\) these new results show deviations from the power-law relationship when individual pores and local flow rate changes are analyzed.

**Discussion**

**Dissolution pattern**

We use the numerical algorithm described above to explore dissolution patterns in the context of CO\(_2\) injection projects \((Da << 1)\) under advection-dominant conditions \((Pe >> 1)\). The plot in Fig. 8 summarizes all observed dissolution patterns as a function of the Damköhler number \( Da \). The plot shows that water with dissolved CO\(_2\) travelling through a carbonate system causes compact dissolution when \( Da > 10^{-4} \) typically in the far field, but it localizes into a few enlarged flow channels when \( Da < 10^{-4} \) typically near the inlet. These results agree with previous studies that show a transition from compact dissolution to uniform dissolution at around \( 10^{-4} < Da < 10^{-3} \) (injection tests of under-saturated salt solution in a porous medium made of salt grains\(^6\)).

**Initial pore-size variability**

The coefficient of variation in pore size (COV) is larger in fractured rock masses than in sediments.\(^{38,39}\) An additional set of simulations with COV = 1.0 and 1.5 is conducted to examine the role of pore size.
Figure 7. Evolution in flow rate normalized by the original total flow rate $q/q_0$ with respect to: (a) normalized mean tube diameter $d/d_0$, and (b) flushed pore volume for different Damköhler number $Da$ ($COV = 0.4$). Note: Damköhler number is $Da = 1.5 \times 10^{-3}$ for hydraulic gradient $i_h = 10$, $Da = 1.5 \times 10^{-4}$ for $i_h = 100$, and $Da = 1.5 \times 10^{-5}$ for $i_h = 1000$.

Figure 8. Dissolution pattern as a function of the Damköhler number $Da$, for 1000 flushed network pore volumes: CO$_2$-dissolved fluid flow through porous media during CO$_2$ geological storage. Note: network simulations were conducted for various hydraulic gradients $i_h = 10$ ($Da = 1.5 \times 10^{-3}$), 20-to-200 ($Da = 3 \times 10^{-4}$), and 1000 ($Da = 1.5 \times 10^{-5}$).

Figure 9. Flow rate and mean tube diameter evolution for different initial coefficient of variations $COV$ in tube diameters. (a) Trends during the first 1000 network pore volumes flushed through the network under a hydraulic gradient $i_h = 1000$ ($Da = 1.5 \times 10^{-5}$). (b) Exponent $\alpha$ in $(q/q_0) = (d/d_0)^{\alpha}$ obtained for all simulations.
variability on the evolution of mean tube diameter and flow rate. Results in Fig. 9(a) show that the normalized flow rate increases faster with higher COV values for a given increase in the normalized mean tube diameter. Hence, the exponent for the Kozeny-Carman equation $\alpha$ (Eqn (23)) increases with pore-size variability. Moreover, the range in the exponent $\alpha$ widens as the coefficient of variation in pore size COV increases (Fig. 9(b)), in other words, a porous medium with higher pore size variability COV will experience higher flow localization and fewer channels will carry most of the flow.

Conclusions

Reactive fluid flow is triggered at the CO$_2$-water interface, where CO$_2$ dissolves into water and travels into the reservoir. Pore network simulation results show:

- In advection-dominant regimes, species concentration, tube enlargement and flow rate can be summarized in terms of the dimensionless Damköhler number $Da$ which is the ratio between advection time along a pore and the reaction time.
- The concentration of reactant species rapidly decreases near the inlet when the pressure gradient is low and Damköhler number exceeds $Da > 10^{-4}$. In this case, tube diameter enlargement prevails near the inlet and advances homogeneously into the formation; hence, the high inlet pressure is gradually transferred further into the formation.
- Reactant species migrate towards the outlet and ramify as the pressure gradient increases and the Damköhler number drops below $Da < 10^{-4}$. Tube enlargement is observed throughout the network at high advection velocities; however, channels with initially high flow rate experience most of the increase in flow rate.
- Calcite storage reservoirs will experience compact dissolution in the far field when $Da > 10^{-4}$ and localized dissolution when $Da < 10^{-4}$ (before drying) as a result of CO$_2$-dissolved reactive fluid flow.
- The Damköhler number couples with initial pore-size variability to distort the relationship between mean tube diameter and flow rate. In particular, the relationship can be significantly different when ‘network average’ values are considered for reservoir analysis, and the exponent of the Kozeny-Carman equation $q/q_0 = (\varphi/\varphi_0)^\alpha$ increases with the coefficient of variation COV in pore size. Therefore, both the Damköhler number and pore-size variability should be considered in field-scale numerical simulators.

Acknowledgements

Support for this research was provided by the US Department of Energy project DE-FE0001826. Any opinion, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of funding organizations. F. J. Santamarina carefully edited this manuscript. This research was conducted while the authors were at Georgia Institute of Technology.

References

Seunghee Kim

Seunghee Kim is an Assistant Professor of Civil and Environmental Engineering at Western New England University. He received a Ph.D. in Civil and Environmental Engineering from the Georgia Institute of Technology, and conducted a postdoctoral study at the Bureau of Economic Geology, the University of Texas at Austin. His current research interests include hydro-chemo-thermo-mechanically coupled processes for energy-related situations such as CO₂ sequestration, underground storage, and geothermal energy.

J. Carlos Santamarina

J. Carlos Santamarina is a Professor of Earth Science and Engineering at the King Abdullah University of Science and Technology (KAUST). His research team explores the scientific foundations of geomaterial behavior and subsurface processes using particle-level and pore-scale experiments, combined with numerical methods and high-resolution process monitoring systems.