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Abstract

Spatial variability in soils gives rise to various phenomena that do not take place
in homogeneous media. We report in this document emergent phenomena related
to variability in stiffness, strength, conduction and diffusion. Stiffness variability
triggers stress focusing along stiffer percolating zones, and alters elastic wave
propagation causing ray bending, mode conversion, diffraction healing, and coda.
The heterogeneous distribution of strength promotes localized shear failure along
interconnected weaknesses. Excess pore water pressure generation and dissipation
are highly sensitive to the variability in stiffness and hydraulic conductivity. The
effective hydraulic conductivity decreases with increasing variability in k-fields.
Spatial correlation plays a secondary role in the absence of high-k percolating
paths or low-k transverse seams. Most analytical closed-form solutions for
effective stiffness, strength, conduction or diffusion are based on volume fractions
and fail to capture the spatial distribution and correlation that are inherent in
natural sediments.
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Introduction

Spatial heterogeneity is an inherent characteristic in soils. Spatial variability can



be described using statistical parameters such as the mean µ, the coefficient of
variation COV, and the correlation length (Vanmarke 1977; Asaoka and A-Grivas
1982; DeGroot and Baecher 1993; Lacasse and Nadim 1996; Phoon and Kulhawy
1999).

The role of spatial variability in geotechnical engineering problems have been
explored in previous studies, including: deformation (Baecher and Ingra 1981;
Zeitoun and Baker 1992; Paice et al. 1996), strength (Popescu et al. 1996; Griffiths
and Fenton 2001), conduction (Renard and de Marsily 1997; Wen and Gómez-
Hernández 1996), and diffusion (Schiffman and Gibson 1964; Nishimura et al.
2002).

Spatial heterogeneity brings about new phenomena that do not take place in
homogeneous media. In this study, we explore the effects of spatial variability in
soils, and place emphasis on the identification of emergent phenomena. The
methodology is based on numerical simulations (ABAQUS and MatLab). The
matrix decomposition technique is used to realize multidimensional correlated
random fields that exhibit preselected values of the mean, standard deviation and
correlation length of the soil parameters of interest (details in El-Kadi and
Williams, 2000). The complete Monte-Carlo simulations and results can be found
in Kim (2005) and Narsilio (2006).

Stiffness in Spatially Varying Media

A heterogeneous medium with spatially varying stiffness is subjected to zero-
lateral strain loading (Figure 1a). Spatial heterogeneity is applied on the small-
strain shear modulus, within the framework of the modified Duncan-Chang model,
assuming G0=α(σ’)β (Duncan and Chang 1970). The relative correlation length is
10% of the domain size. Figure 1b shows that the vertical load transfer
concentrates along the percolating stiffer parts of the medium (lighter-colored
regions in Figure 1a). Stress focusing leads to lower global effective stiffness and
smaller horizontal K0 load transfer with higher variability.

(a) G0 distribution and boundary conditions (b) σv’ distribution

Figure 1. Initial heterogeneity in stiffness and corresponding vertical stress
distribution under zero-lateral strain loading. Lighter colors indicate higher values.



Elastic Wave Propagation in Spatially Varying Media

Elastic wave propagation is simulated through media with different types of
variability: a homogeneous medium (Figure 2a), a vertically heterogeneous
medium (Figure 2b), an uncorrelated heterogeneous medium (Figure 2c), and a
correlated heterogeneous medium (Figure 2d). The arithmetic mean shear wave
velocity is the same in all cases µ[Vs]. A vertical impulse-type excitation is applied
at the middle of the left boundary. Snapshots of the particle motion fields are
shown at selected times T=0.25T0, 0.50T0, 0.75T0 and T0, where T0 is the side-to-
side shear wave travel time for the homogeneous medium with the velocity µ[Vs],
i.e. T0=L/µ[Vs].  

Stress-induced vertical stiffness heterogeneity is inherent in soils. Vertical
heterogeneity produces ray bending according to Fermat’s minimum travel time
principle (Figure 2b). When the wavelength approaches the scale of the correlation
length, wave signatures are complex, reflect ballistic-type propagation, experience
low-pass filtering, and signatures have long codas (Figures 2c and 2d).

(a)

(b)

(c)

(d)

T=0.25To T=0.50To T=0.75To T=1.00To
Distribution

Figure 2. Elastic propagation though heterogeneous elastic media. (a)
Homogeneous medium, (b) vertically varying medium, (c) uncorrelated random
medium, (d) correlated random medium. Lighter colors indicate higher values.

Strength in spatially varying media

The undrained deviatoric load response is studied using strain-controlled
deviatoric loading simulations without local or global drainage. The medium has



spatially varying undrained shear strength captured by spatially varying void ratio
e0 in a modified Cam-clay model (Roscoe and Burland 1968; Figure 3a). The shear
strain distribution after 5% nominal axial strain exhibits clear strain localization
along the interconnected weak elements (Figure 3b).

(a) e0 distribution and boundary conditions (b) shear strain distribution

Figure 3. Initial heterogeneity in void ratio and corresponding shear strain
distribution under undrained deviatoric loading. Lighter colors indicate higher
values.
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Figure 4. Internal shear strain γ evolution and corresponding excess pore pressure
∆uex development in a heterogeneous medium subjected to undrained deviatoric
loading. Lighter colors indicate higher shear strain, pore pressure or void ratio.
Uniformly distributed initial void ratio range e0 = 0.8 to 1.0. The correlation length
is 10% of the mesh size. Note: ecs = 0.92 for σ0’ = 100 kPa. The dotted lines are for
homogeneous media at the indicated void ratios.



The development of excess pore water pressure is associated to the level of shear
strain (Figure 4). The equivalent undrained shear strength decreases as the
variability in e0 increases (not shown here – details and complete results can be
found in Kim 2005).

Diffusion in Spatially Varying Media

Diffusion is the time-dependent spatial evolution of a parameter towards its
steady state condition. In particular, consolidation is the diffusion of excess pore
pressure ue, and it depends on the hydraulic conductivity k and the skeletal
compressibility mv of soils as captured in the diffusion coefficient, i.e., the
coefficient of consolidation Cv=k/(γw·mv) where γw is the unit weight of water. The
variation in Cv with depth must be accounted for to properly explain the observed
field response in many case histories (Abbot 1960; Nishimura et al. 2002). Most
situations require numerical analysis (Papanicolaou and Diplas 1998; Schiffman
and Gibson 1964; Yang et al. 2004).
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Figure 5. Excess pore pressure charts for bi-layer systems. Notice that α=0 or α=1
corresponds to the homogeneous case. Isochrones at: (a) T=0, (b) T=0.03125, (c)
T=0.125, (d) T=0.25, (e) T=0.50, (f) T=1.0, and (g) T=2.0.

2
2

2

1

21

1

H

tC
T

C

C

zz

z v

v

v ⋅
==

+
= βα



In this study, the continuous diffusion problem is written in discrete form and
processed using the construct of matrices and vectors under the finite difference
Crank-Nicholson scheme. Figure 5 shows the normalized excess pore water
pressure ue/u0 profiles with depth at selected dimensionless times for various
geometric α and diffusion β ratios, for a constant initial excess pore pressure with
depth u0, and double drainage conditions. The dissipation in the higher Cv layer
(the top layer) takes place much faster as β increases, yet, the total dissipation is
controlled by lower Cv and thickness ratio α. The gradient at the interface is
∂u/∂z≠0; therefore, water flow takes place across the interface for all α and β
values, indicating interaction between layers (e.g. water-rich layer development;
see Kokusho 1999).

Conduction in Spatially Varying Media

The presence of fluids affects all aspects of soil behavior, including chemical,
mechanical, and biological processes. The general form of Laplace’s equation is
obtained by combining Darcy’s law in the three directions x, y and z (with
hydraulic conductivities kx, ky and kz), Bernoulli’s energy equation, and the change
in volume in soils as a function of the degree of saturation S and void ratio e
(Richards 1931),
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where h is the total head. It follows from this equation that fluid flow is affected by
the spatial variability of the hydraulic conductivity (Renard and de Marsily 1997;
Wen and Gómez-Hernández 1996).

Numerical simulations of spatial variability of hydraulic conductivity are
performed using finite element modeling and a Matlab code is written for this
purpose. Cases in 2D are captured using the Garlekin method to solve the Laplace
equation with prescribed total head and flow boundary conditions (Dirichlet and
Neumann boundary conditions). The code is validated against closed-form
solutions for simple geometries. Once the Laplacian is solved, the equivalent
hydraulic conductivity is computed by invoking Darcy’s law to represent a non-
homogeneous medium by means of a homogeneous medium that allows equal
flow through (Bøe 1994; Cardwell and Parsons 1945; Warren and Price 1961). If
qel is the flow through each element on a given equipotential line (e.g., either inlet
or outlet surfaces), A is the area of that surface and ∆h/L is the imposed hydraulic
gradient, then the equivalent hydraulic conductivity keq is computed as:

∫⋅∆
=

A
eqeq dAq

Ah

L
k

Multiple realizations of correlated random hydraulic conductivity 2D fields are
generated with a correlation length equal to 20% of the mesh size. Figure 6 shows
typical results for the spatial distribution of total head and flow lines (the complete
study is documented in Narsilio, 2006). The variation of the computed equivalent k
versus COV in log-normal distributions of hydraulic conductivity for both
correlated and uncorrelated random fields is shown in Figure 7. Contrary to one’s
a-priori intuition, these results show that increased variability in k (for the same
mean value µ[k]) lead to lower equivalent conductivity. Moreover, there is a
tendency to higher equivalent hydraulic conductivity for uncorrelated fields than in



correlated k-fields. These results indicate that (in the absence of high-k percolating
paths), the effect of low-k regions prevails over high-k zones, i.e., more of a series
rather than a parallel system. Thus, variability brings about tortuosity and a
harmonic mean averaging along flow paths.

Figure 6. Spatial variability in hydraulic conductivity – Correlated and
uncorrelated random k-fields and associated total head and flow lines.



Figure 7. Equivalent hydraulic conductivity as a function of variability in k. The
correlation length is 20% of the mesh size.

Conclusions

Spatial variability affects the stiffness, strength, diffusion, and conduction
properties of soils, and causes new emergent phenomena that are not present in
homogeneous continuous media. Results from a comprehensive study (partially
presented here) show:

• Load transfer in zero-lateral strain loading concentrates along stiffer zones,
leading to “stress-focusing” and lower K0 horizontal load transfer.

• Spatial variability in elastic modulus alters elastic wave propagation
yielding ray bending, mode conversion, diffraction healing, and coda.

• The local evolution of excess pore pressure during locally and globally
undrained deviatoric loading correlates with the strain localization that
develops along interconnected weakness.

• The dissipation of excess pore water pressure is intimately related to the
layers Cv, thickness, and spatial arrangement. Water flow across the
interface between layers induces interaction between the layers.

• The equivalent hydraulic conductivity decreases with increasing variability
for the same mean value µ[k].

• Correlated random k-fields exhibit lower equivalent hydraulic conductivity
than uncorrelated k-fields in spite of identical statistics in global hydraulic
conductivity.
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