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Spatial variability: drained and undrained deviatoric load response

H.-K. KIM* and J. C. SANTAMARINA†

Geotechnical properties vary in space. Geostatistical
parameters such as the mean, the standard deviation and
the correlation length are characteristic for each sedi-
ment and formation history. The effects of spatial varia-
bility on the drained and undrained shear response of
soils are investigated using numerical parametric studies
where multiple realisations are tested for selected geosta-
tistical parameters. Results show that the mean un-
drained shear strength decreases as spatial variability
and correlation length increase. Spatial variability
prompts strain localisation along neighbouring weak
zones under both drained and undrained loading. Hetero-
geneous contractive media show internal homogenisation
during drained deviatoric loading, and the drained shear
resistance evolves towards the critical state; media with
higher variability and longer correlation length require
higher strain to attain internal homogenisation. Aniso-
tropy in spatial correlation causes anisotropy in shear
strength. An intermediate drainage condition emerges in
spatially varying media whereby local drainage may
develop during globally undrained shear; local drainage
affects the load–deformation response.

KEYWORDS: failure; numerical modelling & analysis; pore
pressures; shear strength; statistical analysis

Les propriétés géotechniques varient dans l’espace. Les
paramètres de géostatistique, comme par exemple la
moyenne, l’écart type et la longueur de corrélation sont
des caractéristiques propres à l’histoire de chaque sédi-
ment et de chaque formation. On examine les effets de la
variabilité spatiale sur la réponse au cisaillement du sol
drainé et non drainé, sur la base d’études de paramètres
numériques dans lesquels on teste de multiples réalisa-
tions sur le plan de paramètres de géostatistique sélec-
tionnés. Les résultats indiquent que la résistance
moyenne au cisaillement du sol non drainé diminue au
fur et à mesure de l’augmentation de la variabilité
spatiale et de la longueur de corrélation. La variabilité
spatiale engendre la localisation des contraintes le long
de zones de faiblesse avoisinantes, en présence de charges
drainées et non drainées. Les milieux à contraction
hétérogène indiquent qu’une homogénéisation interne en
présence de chargements déviatoriques et de la résistance
au cisaillement des sols drainés évolue vers l’état cri-
tique ; les milieux présentant une variabilité majeure et
une longueur de corrélation supérieure nécessitent une
sollicitation supérieure pour obtenir une homogénéisation
interne. L’anisotropie dans la corrélation spatiale en-
gendre une anisotropie de la longueur de cisaillement. Un
drainage intermédiaire se déclare dans des milieux qui
varient sur le plan spatial, dans le cadre duquel un
drainage local pourra se produire au cours d’un cisaille-
ment dans une sol globalement non drainé ; le drainage
local affecte la réponse charge–déformation.

INTRODUCTION
The spatial variability of soil properties is determined by the
soil formation history, and it is readily observed in in situ
test data (Tang, 1979; Harr, 1987; Kulhawy, 1992; Ravi,
1992; DeGroot & Baecher, 1993; Hegazy et al., 1996;
Lacasse & Nadim, 1996; Phoon & Kulhawy, 1999), petro-
graphic image analysis (Antonellini et al., 1994a), digital
image correlation analyses of triaxial tests
(Rechenmacher et al., 2005; Rechenmacher & Medina-Ceti-
na, 2007), cross-sectional images of impregnated soils (Jang
et al., 1999), X-ray tomography (Antonellini et al., 1994b)
and electrical needle probe profiles (Cho et al., 2004). The
consequences of spatial variability for the quasi-static resis-
tance (Yoshida et al., 1993; Vaid et al., 1995; Hoeg et al.,
2000; Vaid & Sivathayalan, 2000) and the dynamic resis-
tance are extensively documented (Ladd, 1974; Mulilis et
al., 1975; Townsend, 1978; Ishihara, 1993; Popescu et al.,
1997, 2005).

Spatial variability can be captured in statistical parameters
such as the coefficient of variation (COV) and the correlation

length (Vanmarcke, 1977; Phoon & Kulhawy, 1999). The
COV is defined as the ratio between the standard deviation
and the mean value. The correlation length is the distance
where the spatial autocorrelation decays by 1/e, and it
indicates the spatial scale of material heterogeneity. Pub-
lished ranges for the COV and the correlation length for
various soil properties can be found in Harr (1987), DeGroot
(1996), Lacasse & Nadim (1996), Phoon & Kulhawy (1999),
and Jones et al. (2002).

Conventional probabilistic approaches assume a represen-
tative equivalent volume of size much greater than the
correlation length to obtain estimates of the effective shear
strength (Ang & Tang, 1975; Harr, 1987). Effective mixture
models for non-linear materials are summarised in Zaoui
(2002). However, these approaches fail to anticipate emer-
gent phenomena such as the localised deformation observed
in heterogeneous materials under deviatoric loading (Nübel
& Karcher, 1998; Griffiths et al., 2002; Hicks & Samy,
2002; Cho et al., 2004; Andrade & Borja, 2006).

The goal of this study is to gain new understanding of the
effects of spatial variability on the load–deformation re-
sponse of contractive and dilative soils subjected to drained
and undrained loading. The focus is not on the effect that
the selected distribution has on the ensuing material proper-
ties or on the tail of the distribution, which would be
important for risk analyses. Instead, emphasis is placed on
identifying potential emergent phenomena that may control
the global response. The complete study is documented in
Kim (2005).
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NUMERICAL METHOD AND MATERIAL MODEL
The research is implemented using the finite element

program ABAQUS (HKS, 2006). The simulated test in all
cases is a strain-controlled plane-strain biaxial compression
condition. The square mesh consists of 100 3 100 four-node
plane-strain elements to minimise geometric effects caused
by correlated random variability.

A simple constitutive model is sought for this study, which
can capture the stress-dependent soil strength, pre-failure
plastic strain, and pore water pressure development. Therefore
the Modified Cam-Clay material model is selected herein
(Roscoe & Burland, 1968). The five model parameters are:
the consolidation parameters (slope of the normal consolida-
tion line º, slope of the swelling-recompression line, k, and
specific volume V1); the drained strength parameter (stress
ratio at critical state M); and the initial elastic parameter
(Poisson’s ratio � or elastic shear modulus G). Constitutive
model parameters and boundary conditions are summarised
in Table 1; the selected values correspond to a silty clay.

Random variability is imposed on the initial void ratio e0

at � 90 ¼ 100 kPa; variability in e0 corresponds to variance in
strength. Experimental results suggest that the void ratio

probability density function approaches the log-normal dis-
tribution (Jang, 1997; Yang, 2005), or exponential-type
distribution skewed towards the looser elements (Shahinpoor,
1981; Bhatia & Soliman, 1990; Nübel & Karcher, 1998). To
avoid extreme values in e0, a bounded uniform distribution
is selected that satisfies preselected values of the mean and
the standard deviation, and generate multiple realisations of
the two-dimensional correlated scalar random e0 fields using
the matrix decomposition technique. The procedure is out-
lined below (for details see Fenton, 1994; El-Kadi & Wil-
liams, 2000; Vio et al., 2001):

(a) Generate the covariance matrix A for the given
standard deviation �, correlation length L for an
exponential autocorrelation function, and the distance
dij between points i and j:

Aij ¼ � 2e�
1
L

dij

�� ��
(1)

(b) Apply the Choleski decomposition to obtain the matrix
C:

A ¼ CCT (2)

Table 1. Numerical study: model, material parameters and parametric study

Boundary conditions (all cases)

Strain-controlled vertical z-compression
Constant confinement: �0 ¼ 100 kPa
Plane strain in y-direction: �y ¼ 0
No friction against boundaries: �xz ¼ 0 at boundaries
Element type: four-node, pore-pressure-coupled, plane-strain element
Mesh: 100 3 100 elements

x

z

D

Modified Cam-Clay model parameters

Slope of the normal consolidation line, º 0.174
Slope of the swelling-recompression line, k 0.026
Specific volume, V1 2.824 (e1 ¼ 1.824)
Stress ratio at critical state, M 1.0 (�9 ¼ 258)
Poisson’s ratio at 1 kPa, �1kPa 0.3
Preconsolidation pressure parameter, a0

a0 ¼ 1
2

exp
e1 � e0 � kln Pinit

º� k

� �

where Pinit is initial confining pressure.

Random variable (all cases): initial void ratio e0

Cases reported in this paper:

Drainage
condition

Topic e0 distribution and range Relative correlation length, L/D Figure

Undrained Binary mixtures Binary 0.90 and 1.00 �0 1, 2
Undrained Contractive and dilative media Uniform 0.80–1.00 0.1 3
Undrained Dilative medium Uniform 0.70–0.80 0.1 4
Undrained Strain localisation Uniform 0.80–1.00 �0, 0.1 5

Local drainage Uniform 0.65–0.75 0.1
0.80–1.00 6

Undrained Anisotropic heterogeneity Uniform 0.80–1.00 LH/LV ¼ 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 7
Undrained Variability Uniform 0.87–0.93 0.16 8

0.85–0.95
0.83–0.97
0.80–0.10

Undrained Correlation length Uniform 0.80–1.00 �0, 0.02, 0.04, 0.10, 0.16 9
Drained Contractive medium Uniform 0.80–1.00 0.1 10, 11, 12
Drained Variability and correlation length Uniform 0.80–0.90 �0, 0.1 13

0.85–0.95
0.90–1.00

Drained Dilative medium Uniform 0.70–0.80 0.1 14, 15, 16
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(c) Calculate the Gaussian scalar random field X(.):

X lð Þ ¼ C� lð Þ þ T lð Þ (3)

where l is the location vector, T(.) is the trend and �(.)
is the uncorrelated Gaussian random field of zero mean
and unit variance.

(d ) Finally, transform the generated Gaussian random field
to the uniform distribution random field (Grigoriu 1984;
Yamazaki & Shinozuka, 1988):

R lð Þ ¼ F�1
R FX X lð Þ½ �
� �

(4)

where FX (.) is the Gaussian probability distribution
function, and FR(.) denotes a marginal probability
distribution function for the non-Gaussian scalar ran-
dom field R(.).

There are two length scales in these realisations, the speci-
men size D and the internal scale of heterogeneity L: both
scales are combined into the relative correlation length L/D.

Once a realisation is generated at � 90 ¼ 100 kPa confining
stress, the deviatoric load is imposed in strain-controlled
mode. The free horizontal displacement for top and bottom
nodes simulates frictionless boundary conditions. Drainage
conditions depend on the rate of pore pressure generation
associated with the imposed strain rate, and the rate of pore
pressure diffusion, which is related to (drainage length)2/
(consolidation coefficient). As there are two length scales D
and L, three different drainage conditions are modelled:

(a) locally and globally undrained (called ‘undrained’
herein)

(b) locally drained yet globally undrained
(c) locally and globally drained (called ‘drained’ herein).

The data gathered for all realisations are analysed using
ensemble statistics to determine the effects of spatial varia-
bility on soil strength. Table 1 summarises the parameters and
conditions assumed in all the simulations shown in this paper.

UNDRAINED RESPONSE
This section describes the results of numerical simulations

conducted to investigate the undrained stress–strain response
of spatially varying media subjected to deviatoric loading.

Uncorrelated binary mixture
The case of random binary mixtures made of strong and

weak materials is studied first. The initial void ratios at
100 kPa confinement are e0 ¼ 0.9 for the strong elements
(corresponding undrained strength qpeak ¼ 114 kPa) and
e0 ¼ 1.0 for the weak elements (qpeak ¼ 63 kPa). The volume
fraction of the weak material is varied from Vweak ¼ 0%
(homogeneous specimen made of strong material only) to
Vweak ¼ 100% (homogeneous specimen made of weak mate-
rial only). Each mixture is randomly generated as follows: a
random number R from 0 to 1 is associated to each cell;
cells with R < Vweak are assigned e0 ¼ 1.0; the remaining
cells are assigned e0 ¼ 0.9. The study involves 20 realisa-
tions of each mixture.

Figure 1 shows the resulting stress–strain curves for Vweak

¼ 10% and 50%. Results are presented in terms of the mean
invariant quantities at the boundaries,

p9 ¼ 1

3
� 9x þ � 9y þ � 9z
� �

q ¼ 1ffiffiffi
2

p � 9x � � 9y
� �2 þ � 9x � � 9zð Þ2 þ � 9y � � 9z

� �2
h i1=2

(5)

where � 9x, � 9y and � 9z are the mean principal effective
stresses applied normal to boundaries. The response for four
homogeneous cases at e0 ¼ 0.90, 0.91, 0.95 and 1.00 are
superimposed on the figure for comparison. Note that homo-
geneous media with initial void ratios e0 ¼ 0.91 and 0.95
exhibit higher shear strength than the Vweak ¼ 10% and 50%
heterogeneous media with the same arithmetic mean void
ratios �[e0] ¼ 0.91 and 0.95. Shear strain distributions and
the associated stress–strain curves in Fig. 1 show the
development of strain localisation and some post-peak soft-
ening behaviour in mixtures with Vweak ¼ 10% (see also
Andrade & Borja, 2006).

Figure 2 shows the one-sigma ranges for the peak shear
strength values. Several mixture model predictions are
shown as well. It can be observed that the mean undrained
shear strength of random mixtures is lower than (a) the
arithmetic mean of the shear strength �[qpeak] and (b) the
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shear strength of homogeneous media with the same arith-
metic mean void ratio �[e0]. Indeed, the mean strength is
well predicted by the harmonic mean �H[qpeak] of the local
undrained strength values (line ‘c’). This observation sug-
gests the propagation of failure along neighbouring ‘weak
zones’ in the specimen.

Correlated random fields: localisation of shear strain
A sequence of simulations is conducted using two-dimen-

sional correlated scalar random fields of initial void ratio e0

(uniform distribution). The load–deformation response and
associated shear strain fields reveal the following sequence
of events when these plane-strain realisations are subjected
to undrained deviatoric loading (see Fig. 3 for a contractive
specimen and Fig. 4 for a dilative specimen).

(a) Multiple shear strain localisations are apparent before
the peak stress.

(b) More focused shear strain localisations develop along
weak elements near the peak stress.

(c) Shear localises in a few bands after the peak.

(Related experimental plane-strain data can be found in
Vardoulakis et al., 1978; Han & Vardoulakis, 1991; Finno et
al., 1997; Alshibli et al., 2003; Rechenmacher, 2006). These
observations may vary for other boundary conditions (e.g.
Desrues et al., 1996; Desrues, 1998; Lade & Wang 2001).

The interpretation of measured quantities becomes more
difficult in spatially varying media. Fig. 4 shows the load–
deformation response where q is computed in terms of
boundary values (q@b) and as an average for the whole
specimen (q@all). Whereas q@all appears to be the expected
response, q@b is the response measured in laboratory experi-
ments (see complementary experimental and numerical re-
sults in Rechenmacher & Medina-Cetina 2007).

Figure 5 presents the void ratio distribution inside the
localised shear zones in the strongest and the weakest
realisations, out of 40 realisations tested for two different
correlation lengths (L/D ¼ 0.1 and �0) and the same initial
void ratio distribution (e0 ¼ 0.8 to 1.0, uniform distribution).
The overwhelming presence of weak elements in shear zones
seen in Fig. 5 confirms the role of weak elements in strain
localisation. The cumulative void ratio distribution for ele-
ments in shear zones is closer to the whole medium void
ratio distribution for realisations that exhibit higher global
strength. It is important to emphasise that localisation phe-
nomena identified in this study are the direct consequence of
spatial variability rather than strain-softening local response.
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The initial void ratio fields and the corresponding shear
strain fields in each case are shown as well. The zones
where shear strains localise cannot be anticipated from a
cursory observation of the initial void ratio field when the
correlation length is short. Narrower shear strain zones
develop in media with short correlation length L/D.

Local drainage effects
The pore pressure generated in spatially varying media

subjected to undrained loading is not necessarily homoge-
neous (Popescu et al., 1997, 2005). Can local drainage in a
globally undrained specimen affect the stress–strain re-
sponse? Fig. 6 shows four stress–strain curves for correlated
random media subjected to globally undrained deviatoric
loading, with and without local drainage. The ‘locally
drained yet globally undrained’ condition is imposed by
shearing very slowly while keeping no-drainage global
boundaries; the excess pore pressure development throughout
the specimen is homogeneous. Results in Fig. 6 and similar
ones obtained as part of this study suggest that local
drainage allows strength gain in weak zones whereas dilation
and strength loss takes place in stronger zones. The global
consequences of this trade-off include minor changes in
strain localisation and shear strength.

Anisotropy in spatial correlation
Anisotropy in spatial correlation may favour failure (e.g.

Hicks & Onisiphorou, 2005). Numerical simulations are
conducted by varying the ratio of the horizontal to the
vertical correlation length in random fields. In all cases, the
specimen initial void ratio follows a uniform distribution in
the e0 ¼ 0.8 to 1.0 range, and the longest of the two
correlation lengths is kept constant at L/D ¼ 0.1 to prevent
numerical bias. Twenty realisations are tested for each con-
dition. The mean trend and one-sigma ranges of the un-
drained strength are plotted against the anisotropy in
correlation length Æ ¼ LH/LV in Fig. 7. The lowest undrained
strength is found for mixtures with correlation length aniso-

tropy LH/LV � 2. A detailed analysis of numerical results
shows that the trend in Fig. 7 reflects difficulties in shearing
across ‘vertical columns’ when LH/LV � 1 or across ‘hori-
zontal layers’ when LH/LV � 1. Note that the plane strain
axial compression AC loading of a soil mass with anisotropy
Æ corresponds to lateral compression LC loading of a soil
mass with anisotropy 1/Æ for the equivalent boundary condi-
tions. Therefore the results in Fig. 7 provide insight into the
effects of variability in LC loading.

Variation in initial void ratio distribution
The effect of the initial void ratio variability COV[e0] is

studied for realisations with the same correlation length
(L/D ¼ 0.16) and the same mean void ratio �[e0] ¼ 0.9 by
varying the range in initial void ratio values. The mean
values and two-sigma ranges in undrained shear strength
obtained from 20 realisations for each COV[e0] are shown in
Fig. 8. The mean undrained shear strength decreases with
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the increase in COV[e0] for a constant relative correlation
length L/D. Griffiths et al. (2002) and Fenton & Griffiths
(2003) report similar results with correlated random c–�
soil models.

While the harmonic mean of the local shear strength
values is a good predictor of the global strength in uncorre-
lated binary mixtures (Fig. 2), the harmonic mean signifi-
cantly overestimates the strength in correlated fields where
interconnected weak zones facilitate shear localisation.

The assumed distribution affects the resultant undrained
shear strength as well. For example, a Gaussian distribution
of e0 promotes higher mean undrained shear strength than
the uniform distribution of e0 with the same mean, variance
and correlation length (Kim, 2005).

Correlation length effects L/D
The role of correlation length in the undrained shear

strength is explored by varying the relative correlation length
between L/D ¼ 0.16 and �0, while keeping �[e0] ¼ 0.9 and
COV[e0] ¼ 0.06 constant for a uniform e0 distribution in the
range e0 ¼ 0.9 to 1.0. Fig. 9 shows the mean value and one-
sigma ranges for the undrained shear strength against the
relative correlation length L/D. The trend shows that longer
correlation lengths lead to weaker media and higher variance
among different realisations in the ensemble (see also
Griffiths et al., 2006). When the correlation length is
infinitely longer than the specimen size L/D �1, each
realisation is a homogeneous medium, and the ensemble
mean of the undrained shear strength for all realisations is
the arithmetic mean of the initial qpeak distribution: in this
case, �[qpeak] ¼ 114 kPa for L/D ! 1.

DRAINED RESPONSE
The study of the stress–strain response of correlated

random media subjected to drained deviatoric loading fol-
lows a similar methodology: numerical runs in ABAQUS
using the Modified Cam-Clay model (parameters in Table
1), and multiple realisations of correlated random fields in
terms of the initial void ratio e0.

Contractive media: strain-driven homogenisation
Multiple realisations of two-dimensional correlated scalar

random fields are generated for an initial void ratio that
follows a uniform distribution with a mean value
�[e0] ¼ 0.9, coefficient of variation COV[e0] ¼ 0.06, and

relative correlation length L/D ¼ 0.10. The lateral confine-
ment throughout the test is equal to the initial isotropic
confinement � 90 ¼ 100 kPa; the corresponding critical-state
void ratio is ecs ¼ 0.77.

Figure 10 presents the stress–strain curve and the shear
strain field at various deformation levels for one realisation
of a correlated random field. The weaker zones deform first
and experience volumetric contraction, leading to an increase
in shear strength, eventually approaching the load deforma-
tion of the homogeneous specimen with mean void ratio at
intermediate strain levels. This local strain-hardening reduces
the spatial contrast in strength distribution and hinders shear
strain localisation. Gradually, the whole medium becomes
homogenised, and the strength evolves towards the plane-
strain critical-state strength of the homogeneous medium
with e0 ¼ 0.9. The b-value, where b ¼ (� 92 � � 93)=(� 91 � � 93),
increases from b � 0.29 at �z ¼ 0.01 to b � 0.45 at
�z ¼ 0.1.

The evolution in local void ratio during drained shear
confirms strain-driven homogenisation. Fig. 11 displays the
results for one realisation. The cumulative void ratio distri-
butions at selected strain levels in Fig. 11 reveal the
preferential contraction of looser elements first, and the
evolution of homogenisation towards the critical-state void
ratio. Fig. 12 confirms the evolution towards the critical state
in p9–q–e space for the realisation shown in Fig. 10. For
comparison, the p9–q–e path for the homogeneous specimen
with e0 ¼ 0.9 is shown as well.

The influence of the mean �[e0], the coefficient of varia-
tion COV[e0], and the relative correlation length L/D on the
drained shear response is explored in Fig. 13. Cases b, c and
e are the stress–strain responses for three different mean
initial void ratios �[e0], with the same initial variability and
correlation length L/D ¼ 0.10. The trends for corresponding
homogeneous cases with the same mean initial void ratios
are shown beyond �z ¼ 0.06 in the figure. The stress–strain
curves of the heterogeneous cases converge to those of
homogeneous cases when the global axial strain exceeds
�z � 0.05 for the examples shown in Fig. 13.

Cases c and d show the influence of COV[e0]. Higher
strain is required to attain internal homogenisation in speci-
men with higher initial variability. Finally, realisations a and
b show the effect of relative correlation length L/D in the
specimen with the same initial mean void ratio and varia-
bility. It can be seen that specimens with longer correlation
length require larger strains to attain internal homogenisa-
tion.
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Dilative media
The previous study is repeated for dilative media sub-

jected to drained, plane-strain deviatoric loading. The criti-
cal-state void ratio for this stress path is ecs ¼ 0.77:
therefore the initial void ratio distribution e0 ¼ 0.7 to 0.8
corresponds to a specimen with 70% of its volume on the
dilative side. The stress–strain curve is shown in Fig. 14.
The shear strain concentrates along interconnected internal
weakness, as can be inferred by comparing initial void ratio
fields and the corresponding shear strain fields (see Fig. 14).
Clear shear strain localisation begins to manifest itself just
before the peak of the stress–strain curve when a minimum
b-value is reached: b ¼ 0.27. Cumulative void ratio distribu-
tions gathered at various strain levels are compared in Fig.
15. Drained shear loading causes volume contraction inside
the yield surface, even for dense elements. Thereafter the
void ratio increases in a few elements within the shear zone
as the medium is loaded to failure. The p9–q–e paths for
individual elements (not shown here) exhibit pronounced
differences when the deviatoric load approaches and exceeds
the peak values. Some elements in the shear zone experience
a significant decrease in the effective mean stress, and reach
critical state at low p9 and high ecs values. The global p9–
q–e path for the specimen in Figs 14 and 15 is plotted in
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Fig. 16. For comparison, the p9–q–e path for the homoge-
neous specimen with e0 ¼ 0.75 is included in the figure.
Clearly, strain localisation prevents the specimen from reach-
ing the global critical-state void ratio (see experimental
results in Desrues et al., 1996).

SUMMARY AND CONCLUSIONS
Spatial variability in strength-determining soil parameters

exerts different effects on the drained and undrained load–
deformation responses. In this study, the initial void ratio is
selected as a random variable to capture the spatial varia-

bility in strength. The following conclusions can be drawn
from the numerical results.

(a) The mean global undrained shear strength decreases
with increasing variance in the initial void ratio
distribution. Spatial correlation causes a further de-
crease in undrained strength as compared with un-
correlated specimens with the same mean and variance.

(b) Shear strain localisation is triggered along neighbouring
weak zones during undrained deviatoric loading. As the
correlation length increases, the number of strong
elements inside the shear zone decreases, and more
pronounced shear bands develop.

(c) Anisotropy in the correlation length promotes undrained
shear strength anisotropy.

(d ) Drained deviatoric loading prompts the local deforma-
tion of weaker zones first. This phenomenon leads to
internal homogenisation during drained shear when the
whole medium is primarily contractive. The strain
required to attain internal homogenisation increases as
the variability or correlation length increase.

(e) When a spatially varying dilative medium is subjected
to drained deviatoric loading, the shear strain concen-
trates along neighbouring weak zones and hinders
homogenisation.

( f ) Spatial variability implies an internal length scale that
may allow for local drainage even when the overall
conditions impose globally undrained shear. Looser
elements gain strength at the expense of strength
reduction in denser elements. These internal mechan-
isms affect the load–deformation response and strain
localisation.

(g) The interpretation of measured boundary values in both
experimental and numerical studies requires careful
scrutiny in the context of spatially varying media.
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NOTATION
A covariance matrix
C Choleski decomposition matrix

COV coefficient of variation
D specimen size

dij distance between points i and j
e0 void ratio (e0 initial, ecs at critical state)

FR( . ) marginal probability distribution function
Fx( . ) Gaussian probability distribution function

G elastic shear modulus
L correlation length
l location vector

L/D relative correlation length
M stress ratio at critical state
p9 mean effective stress
q deviatoric stress (q@all average for the whole specimen;

q@b computed in terms of boundary values; q peak , peak
deviatoric stress; q f shear strength)

R random number from 0-to-1
R( . ) non-Gaussian scalar random field
T ( . ) trend

V1 specific volume
Vweak volume fraction of the weak material
X ( . ) Gaussian scalar random field

�z nominal axial strain
�( . ) uncorrelated Gaussian random field of zero mean and unit

variance
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��� 9 length-averaged normal effective stress applied at
boundaries

k slope of swelling-recompression line
º slope normal consolidation and critical state lines
� Poisson’s ratio (�1kPa Poisson’s ratio at 1kPa effective

confining)
� standard deviation

�[ . ] arithmetic mean
�H [ . ] harmonic mean

REFERENCES
Alshibli, K. A., Batiste, S. N. & Sture, S. (2003). Strain localization

in sand: plane strain versus triaxial compression. J. Geotech.
Geoenviron. Engng ASCE 129, No. 6, 483–494.

Andrade, J. E. & Borja, R. I. (2006). Capturing strain localization
in dense sands with random density. Int. J. Numer. Methods
Engng 67, No. 11, 1531–1564.

Ang, A. H. S. & Tang, W. H. (1975). Probability concept in
engineering planning and design, Vol. 1, pp. 170–218. New
York: John Wiley.

Antonellini, M. A., Aydin, A. & Pollard, D. D. (1994a). Microstruc-
ture of deformation bands in porous sandstones at Arches
National Park, Utah. J. Struct. Geol. 16, No. 7, 941–959.

Antonellini, M. A., Aydin, A., Pollard, D. D. & D’Onfro, P.
(1994b). Petrophysical study of faults in sandstones using petro-
graphic image analysis and X-ray computerized tomography.
Pure Appl. Geophys. 143, Nos 1–3, 181–201.

Bhatia, K. S. & Soliman, A. F. (1990). Frequency distribution of
void ratio of granular materials determined by an image analy-
zer. Soils Found. 30, No. 1, 1–16.

Cho, G. C., Lee, J. S. & Santamarina, J. C. (2004). Spatial
variability in soils: high resolution assessment with electrical
needle probe. J. Geotech. Geoenviron. Engng ASCE 130, No. 8,
843–850.

DeGroot, D. J. (1996). Analyzing spatial variability of in-situ soil
properties. In Uncertainty in the geologic environment (eds
C. D. Shackelford, P. P. Nelson and M. J. S. Roth), pp. 210–
238. Geotechnical Special Publication No. 58, ASCE.

DeGroot, D. J. & Baecher, G. B. (1993). Estimating autocovariance
of in-situ soil properties. J. Geotech. Engng Div. ASCE 119, No.
1, 147–166.

Desrues, J. (1998). Localization patterns in ductile and brittle
geomaterials. In Material instabilities in solids (eds R. Borst
and E. Geissen), pp. 137–158. Malden, MA: Wiley-Interscience.

Desrues, J., Chambon, R., Mokni, M. & Mazerolle, F. (1996). Void
ratio evolution inside shear bands in triaxial sand specimens
studied by computed tomography. Géotechnique 46, No. 3, 529–
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