Geometry-coupled reactive fluid transport at the fracture scale: application to CO₂ geologic storage

S. KIM¹ AND J. C. SANTAMARINA²

¹Department of Civil and Environmental Engineering, Western New England University, Springfield, MA, USA; ²Division of Physical Science and Engineering, KAUST, Thuwal, Saudi Arabia

ABSTRACT

Water acidification follows CO₂ injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO₂ geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with the Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration, and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damkohler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and $Da > 10^{-1}$). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number $Pe > 10^{-1}$). When the reaction rate is low as in anorthite reservoirs ($Da < 10^{-1}$), reactant species are more readily transported toward the outlet. At a given Peclet number, a lower Damkohler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say $l/d > 30$, the system response resembles the solution for 1D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

Key words: CO₂ geologic storage, mineral dissolution, Navier-Stokes law, reactive fluid transport, rock fracture

INTRODUCTION

Carbon dioxide (CO₂) injection into geological formations, either for enhanced oil recovery or for CO₂ geological storage, triggers a complex cascade of interconnected events that may include CO₂ advection (Saripalli & McGrail 2002; Nordbotten et al. 2005; Ennis-King & Paterson 2007), buoyancy (Bachu & Adams 2003; Bieniński et al. 2008; Okwen et al. 2010), convection of CO₂-dissolved water (Weir et al. 1996; Riaz et al. 2006; Hassanzadeh et al. 2007; Kneafsey & Pruess 2010), mutual diffusion and dissolution between CO₂ and the water phase and salt precipitation (Gaus et al. 2005; Berne et al. 2010; Espinoza & Santamarina 2010; Li et al. 2011), viscous fingering of CO₂ (Homsy 1987; Fenghour et al. 1998; Cinar et al. 2009), and capillary trapping of the CO₂ phase by the water-saturated porous formation (Juanes et al. 2006; Kopp et al. 2009; Saadatpoor et al. 2009; Kim 2012). Furthermore, water acidification follows CO₂ dissolution and triggers reactions with minerals in the formation as well as with the cement around wells (Li et al. 2008; Solomon et al. 2008; Szymczak & Ladd 2009; Espinoza et al. 2011).

Reactive fluid transport generates positive feedbacks through hydro-chemo-mechanical couplings that may lead to emergent phenomena such as the formation of dissolution wormholes (Gollier et al. 2002; Berrezueta et al. 2013; Elkhoury et al. 2013; Hao et al. 2013; Mangane et al. 2013) and shear fractures in compression (Shin et al. 2008; Shin & Santamarina 2009). The mineral dissolution rate is scale dependent, and pseudo-kinetic issues must be considered when upscaling geochemical equilibrium...

This study develops a geometry-coupled numerical model to study reactive fluid transport at the fracture scale, including the ensuing interactions between reactions, transport, and pore enlargement. Note that previous coupled models have explored hydro-chemical conditions but have not captured geometric changes, e.g. Li et al. 2012; Smith et al. 2013; Hao et al. 2012; Binning & Celia (2008); pore enlargement is a precursor for fully coupled hydro-chemo-mechanical (2008) and Binning & Celia (2008); pore enlargement is addressed the geological formation (Flukiger & Bernard 2008). Studies of reactive fluid transport in the context of CO2 injection have advanced our understanding of the flow of CO2 dissolved water or brine to sequentially form aqueous carbon dioxide (Bachu et al. 1994). Then, we analyze two representative minerals: calcite CaCO3 (fast dissolution) and anorthite CaAl2Si2O8 (slow dissolution). Dissolution rates in the presence of CO2-dissolved water are analyzed next.

KINETIC RATES

CO2 dissolution in water

Injected carbon dioxide CO2 dissolves in the formation water or brine to sequentially form aqueous carbon dioxide CO2(aq) and carbonic acid H2CO3, which eventually dissociates into bicarbonate ions HCO3− and hydrogen ions H+ (see details in the Appendix A). Assuming that the reaction rate is linearly proportional to the concentration of reactants (Eqs A.1 to A.3 in Appendix A), the following kinetic laws are obtained:

\[
\frac{d[CO_2(g)]}{dr} = -k_g[CO_2(g)] + k_{aq}[CO_2(aq)]
\]

(1)

\[
\frac{d[CO_2(aq)]}{dr} = k_g[CO_2(g)] - k_{aq}[CO_2(aq)]
\]

(2)

\[
\frac{d[H_2CO_3]}{dr} = k_{CO_2}[CO_2(aq)] - k_{H_2CO_3}[H_2CO_3]
\]

(3)

where square brackets around species indicate species concentrations. Rate constants \(k_i\) in Eqs 1–4 are summarized in Table 1.

We can numerically examine the evolution of species concentrations with these kinetic rate laws. For instance, the solution of differential Eqs 1–4 (using fourth-order Runge–Kutta method) shows that the concentration of hydrogen ions in water [H+] converges to \(10^{-3.28}\) mol l\(^{-1}\) and the acidity level drops to pH \(\approx 3.28\) at steady state (under a partial pressure of P\(_{CO_2}\) = 10 MPa and temperature \(T = 40^\circ\)C).

Mineral dissipations

Geological formations typically considered for CO2 storage are sandstones and carbonates (Bachu et al. 1994). Then, we analyze two representative minerals: calcite CaCO3 (fast dissolution) and anorthite CaAl2Si2O8 (slow dissolution). Dissolution rates in the presence of CO2-dissolved water are analyzed next.

Calcite Dissolution

Three concurrent chemical reactions take place when calcite is in contact with CO2-acidified water, each with its own rate constant \(k_i\) and equilibrium constant \(K_{eq}\) (Plummer et al. 1978):

\[
CaCO_3(s) + H^+ \rightarrow Ca^{2+} + HCO_3^-; \quad \log K_{eq} = 1.85
\]

(5)

\[
CaCO_3(s) + CO_2(aq) + H_2O \rightarrow Ca^{2+} + 2HCO_3^-; \quad \log K_{eq} = -4.50
\]

(6)

\[
CaCO_3(s) + CO_2(aq) \rightarrow Ca^{2+} + CO_3^{2-}; \quad \log K_{eq} = -8.48
\]

(7)

The first reaction consumes one mole of H+ and produces one mole of Ca\(^{2+}\) and one mole of HCO3− (Eq. 5). The second reaction consumes one mole of CO2(aq) in exchange for one mole of Ca\(^{2+}\) and two moles of HCO3− (Eq. 6). The last reaction (Eq. 7) has much smaller rate and equilibrium constants, and it is ignored in the numerical simulation (note: Rate constants are listed in Table 1). The overall dissolution rate \(R_d\) is estimated as follows (transition state theory—Lasaga 1984; Li et al. 2008):

\[
R_d = (k_1[H^+] + k_2[CO_2(aq)] \left(1 - \frac{\Omega}{K_{tot}}\right)
\]

(8)

where \(\Omega = \frac{[Ca^{2+}]^2[HCO_3^-]}{[H^+][CO_2(aq)]}\).

Note that \(\Omega\) at equilibrium is equal to the overall equilibrium constant; \(\log K_{tot} = 1.85-4.50 = -2.65\) (refer to Eqs 5 and 6; Table 1).

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 329–341
Anorthite Dissolution

We adopt the model by Li et al. (2006) to represent the dissolution of anorthite. The reaction consumes eight moles of \(H^+ \) to produce one mole of \(Ca^{2+} \), two moles of \(Al^{3+} \), and two moles of \(H_2SiO_4 \):

\[
CaAl_2Si_2O_8(s) + 8H^+ \rightarrow Ca^{2+} + 2Al^{3+} + 2H_2SiO_4 \quad (9)
\]

Again, the overall dissolution rate is described as a function of rate constants, concentrations of reactant species, and saturation:

\[
R_d = (k_{H^+} [H^+]^{1.5} + k_{H_2O} + k_{OH} [OH^-]^{0.33}) \left(1 - \frac{\Omega}{K_{eq}} \right),
\]

where: \(\Omega = \frac{[Ca^{2+}][Al^{3+}]^2[H_2SiO_4]^2}{[H^+]} \) (10)

Rate constants and equilibrium constant are compiled in Table 1. We disregard the term \(k_{OH}[OH^-]^{0.33} \) during the numerical simulation because both the rate constant and the concentration of hydroxide \([OH^-]\) are negligible.

Figure 1 compares the overall ‘local’ mineral dissolution rate \(R_d \) for a fixed concentration of the total carbonic acid \(H_2CO_3^* \) at \([H_2CO_3^*] = 1 \text{ mol} \text{l}^{-1} \). Results show that the concentration of hydrogen ions \([H^+]\) controls the reaction rate of calcite when pH ≤ 4 (thereafter, the high concentration of total carbonic acid \([H_2CO_3^*]\) takes control), and the reaction rate of anorthite when pH ≤ 6. The reaction rate of calcite is several orders of magnitude higher than that of anorthite when 2 < pH < 7 (Fig. 1).

NUMERICAL SIMULATION OF REACTIVE FLUID FLOW

The coupling between hydro-chemical phenomena during the transport of reactive CO2-acidified water through a pore or fracture in a mineral system is investigated next. We start by identifying the governing dimensionless ratios.

Table 1 Parameters used in simulations.

<table>
<thead>
<tr>
<th>CO2 kinetic</th>
<th>Rate constant of (CO_2(g) \rightarrow CO_2(aq))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_g)</td>
<td>(5 \times 10^{-3} \text{ sec}^{-1}) (1)</td>
</tr>
<tr>
<td>(k_{eq})</td>
<td>(k_g / K_{eq})</td>
</tr>
<tr>
<td>(k_{CO_2})</td>
<td>(0.135 \text{ sec}^{-1}) (2)</td>
</tr>
<tr>
<td>(k_{HCO_3})</td>
<td>(72.982 \text{ sec}^{-1}) (2)</td>
</tr>
<tr>
<td>(k_{H_2CO_3})</td>
<td>(10^{2.6} \text{ sec}^{-1}) (3)</td>
</tr>
<tr>
<td>(k_{H_4SiO_4})</td>
<td>(4.1 \times 10^{10} \text{ sec}^{-1}) (3)</td>
</tr>
<tr>
<td>(k_H)</td>
<td>(10^{-1.64} \text{ (2) })</td>
</tr>
</tbody>
</table>

Calcite fracture plane:

\([H^+]_{\text{calcite}} \) \(10^{-6} \text{ to } 10^{-9} \text{ mol l}^{-1} \)

\([H_2CO_3^*]_{\text{calcite}} \) \(10^{-2} \text{ to } 10^{-1} \text{ mol l}^{-1} \)

\([Ca^{2+}]_{\text{calcite}} \) \(1.36 \times 10^{-3} \text{ mol l}^{-1} \) (4)

\([HCO_3^-]_{\text{calcite}} \) \(6.68 \times 10^{-4} \text{ mol l}^{-1} \) (4)

\([OH^-]_{\text{calcite}} \) \(1.50 \times 10^{-11} \text{ mol l}^{-1} \) (4)

\([Cl^-]_{\text{calcite}} \) \(2.72 \times 10^{-3} \text{ mol l}^{-1} \) (4)

Anorthite fracture plane:

\([H^+]_{\text{anorthite}} \) \(1.0 \times 10^{-8} \text{ mol l}^{-1} \) (5)

\([H_2CO_3^*]_{\text{anorthite}} \) \(1.0 \times 10^{-9} \text{ mol l}^{-1} \) (5)

\([Ca^{2+}]_{\text{anorthite}} \) \(1.59 \times 10^{-3} \text{ mol l}^{-1} \) (5)

\([HCO_3^-]_{\text{anorthite}} \) \(4.47 \times 10^{-4} \text{ mol l}^{-1} \) (5)

\([OH^-]_{\text{anorthite}} \) \(1.0 \times 10^{-9} \text{ mol l}^{-1} \) (5)

\([Cl^-]_{\text{anorthite}} \) \(2.72 \times 10^{-3} \text{ mol l}^{-1} \) (5)

\(k_1 \) \(0.745 \text{ mol m}^{-2} \text{ sec}^{-1} \) (7)

\(k_2 \) \(8.6 \times 10^{-4} \text{ mol m}^{-2} \text{ sec}^{-1} \) (7)

\(k_{tot} \) \(10^{-2.65} \) (7)

\(v_0 \) \(10^{-1} \text{ cm sec}^{-1} \)

\(n_1 \) \(10^{-3} \text{ Pa s} \)

\(n_2 \) \(1100 \text{ kg m}^{-3} \)

\(S \) \(0.06 \text{ m}^2 \text{ g}^{-1} \)

\(M \) \(100 \text{ g mol}^{-1} \)

\(\nu \) \(277 \text{ g mol}^{-1} \)

\(V_m \) \(3.7 \times 10^{-3} \text{ mol l}^{-1} \)

\(10.1 \times 10^{-3} \text{ mol l}^{-1} \)

\(D \) \(2.0 \times 10^{-5} \text{ m}^2 \text{ sec}^{-1} \)

Rate constants are computed for temperature \(T = 40^\circ \text{C} \). References are from: (1) Sposito (1994), (2) Stumm et al. (1996), (3) Zhang (2008); species concentrations are examples computed for: (4) pH = 3.18, (5) pH = 8 and \(K_{\text{tot}} = 10^{-2.65} \), (6) pH = 8 and \(K_{\text{tot}} = 10^{-11.7} \), (7) Renard et al. (2005); Wigand et al. (2008); Alige et al. (2009), (8) Li et al. (2006), (9) Gaus et al. (2005).
Dimensionless ratios

Consider a reactive fluid advecting with velocity \(v \) [m sec\(^{-1}\)] through a rock fracture driven by a pressure difference between inlet and outlet boundaries at a distance \(l \) [m] from each other. Reactant species are transported toward the mineral surface by molecular diffusion so that the fracture aperture \(d \) [m] and the diffusion coefficient \(D \) [m\(^2\) sec\(^{-1}\)] determine the characteristic time for transverse diffusion. Mineral dissolution at the fracture surface produces species that are carried away by both advection (downstream) and diffusion (in all directions).

Three dimensionless ratios capture the interplay between governing processes. The Damköhler number \(Da \) is the ratio between the advection time and the chemical reaction time (Fredd & Fogler 1998).

\[
Da = \frac{t_{\text{advection}}}{t_{\text{reaction}}} = \frac{k \tau}{v}
\]

(11)

where the kinetic rate \(k \) [1/sec] = \(k_rS_mC_m \) is a function of the rate constant for mineral dissolution \(k_r \) [mol m\(^{-2}\) sec\(^{-1}\)], the mineral specific surface \(S_m \) [m\(^2\) g\(^{-1}\)], and the mineral molar mass \(M_m \) [g mol\(^{-1}\)]. The Peclet number compares the time for either transverse \(Pe^\perp \) or longitudinal \(Pe^\parallel \) diffusion to the time for longitudinal advection (Golfer et al. 2002):

\[
Pe^\perp = \frac{t_{\text{diffusion}}}{t_{\text{advection}}} = \frac{d^2v}{4D} \quad \text{and} \quad Pe^\parallel = \frac{t_{\text{diffusion}}}{t_{\text{advection}}} = \frac{\nu v}{D}
\]

(12)

Simulation method—environment

Consider the plane across a rock fracture with length \(l \), much longer than the aperture \(d \), that is, \(l \gg d \), subjected to reactive fluid transport by the forced advection of CO\(_2\)-acidified water. The problem is simulated using the moving mesh function in COMSOL to reproduce the fracture enlargement due to chemical reaction (COMSOL 2008). Figure 2 summarizes the simulation scheme. Flow satisfies the Navier-Stokes law (Equation A in Fig. 2); species experience both advective and diffusive transport (Equation B in Fig. 2). Mineral dissolution occurs at the interface between the fluid and the fracture walls with dissolution rate \(R_d \) as predicted by Eq. 8 (calcite) or Eq. 10 (anorthite). In the fracture, species undergo homogeneous reactions as predicted by Eqs 1–4. The moving mesh function adjusts the mesh outward according to the volume of dissolved mineral \(V_d (v, v^{-1})V_m \) [m sec\(^{-1}\)], where \((v, v^{-1}) \) denotes the stoichiometric ratio of dissolved mineral to reactant species and \(V_m \) [m\(^3\) mol\(^{-1}\)] is the molar volume of the mineral (Equation C in Fig. 2).

Equations A, B, and C in Fig. 2 are fully coupled within the finite-element formation (linear system solver: Direct (PARDISO)—COMSOL 2008). The model consists of 1,608 triangular elements with maximum resolution around the inlet. A constant fluid injection velocity \(v_0 \) is imposed at the inlet of the fracture plane (Fig. 2). Note that Reynolds number \(Re = \rho v_0 \sigma / \eta \) needs to be checked to ensure that laminar flow conditions apply (values remain within \(10^{-2} \leq Re \leq 10^4 \) in this study). The nonporous rock blocks that define the fracture are fixed in the far field, that is, zero-strain boundaries, and the fracture planes move out in accordance with mineral dissolution. Species concentrations at the inlet remain constant and correspond to CO\(_2\) and H\(_2\)O in thermodynamic equilibrium. The initial concentration of all species in the fracture plane corresponds to the system in thermodynamic equilibrium and satisfies electro-neutrality at pH = 8. Numerical computations continue until the total simulation time equals 10

Fig. 1. Reaction rate log(kd/[mol m\(^{-2}\) sec\(^{-1}\)]) for the dissolution of calcite CaCO\(_3\) and anorthite CaAl\(_2\)Si\(_2\)O\(_8\) at a temperature \(T = 40^\circ C \) and for fixed concentration of total dissolved carbon dioxide \([H_2CO_3]\) = 1 mol L\(^{-1}\). For comparison, the reaction rate is also plotted for kaolinite Al\(_2\)Si\(_2\)O\(_5\)(OH)\(_4\) as a representative clay mineral of low reactivity; in this case, \(k_d = k_{H}[H^+]^{0.4} + k_{OH}[OH^-]^{0.3} \), where \(k_{H} = 2.79 \times 10^{-11} \) mol m\(^{-2}\) sec\(^{-1}\) and \(k_{OH} = 3.51 \times 10^{-16} \) mol m\(^{-2}\) sec\(^{-1}\) at \(T = 40^\circ C \) (Li et al. 2006).
times the advection time \(10^{-l}/v_0\) and involve more than 1000 time steps. All parameters used for numerical simulations are summarized in Table 1.

Validation

There is no analytical solution for reactive fluid transport in a two-dimensional pore. Instead, we compare the analytical solution for one-dimensional geometry with 1D numerical results obtained using the formulation described above. The governing equation for the one-dimensional transport of a reactive fluid is:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \nu \frac{\partial c}{\partial x} - \kappa c
\]

For a single reactant species at an initial concentration \(c(x,0) = 0\) for \(x > 0\) and boundary conditions \(c(0,t) = c_0\) and \(c(\infty,t) = 0\) for \(t \geq 0\), the solution for the variation of the species concentration in space and time is (Boudreau 1997) as follows:

\[
\frac{c}{c_0} = \frac{1}{2} \exp(\beta_2) \left[\exp(-\beta_1) \text{erfc} \left(\frac{2\beta_1 + \tau}{2\sqrt{\tau}} \right) + \exp(\beta_1) \text{erfc} \left(\frac{2\beta_1 + \tau}{2\sqrt{\tau}} \right) \right]
\]

where \(\beta^2 = \left(\frac{\nu^2}{4D^2} + \frac{\kappa}{D} \right)\), \(\beta_1 = \beta x\), \(\beta_2 = \frac{\nu x}{2D}\), and \(\tau = \frac{\nu^2 + 4\kappa D t}{D}\).

Figure 3 shows that the 1D numerically computed concentrations are in agreement with the analytical results with minor derivations near the outlet. Two outlet boundary conditions are simulated to compare the finite-length numerical system with the infinite-length analytical solution: (i) free flux and (ii) fixed outlet concentration \(c(l, t) = 0\). Numerical results bound the theoretical solution

![Diagram of numerical simulation scheme and governing equations](image-url)
Fig. 3. Code validation: Comparison between numerical simulation results and values predicted using the closed-form solution for 1D reactive solute transport problem. Assumptions: homogeneous reaction of single species \(c_A \) for reaction \(C_A \rightarrow C_B \), where \(k_{AB} = 0.1 \text{ sec}^{-1} \). The insert in pane-b shows the discrepancy between the closed-form solution for the infinitely long tube and the numerical solution for a finite tube with two boundary conditions: free flux and fixed initial concentration at the outlet. Fixed inlet concentration of \(c_A (c_A|_{t=0} = 1 \text{ mol l}^{-1} \), initial concentration of \(c_A (c_A|_{x > 0} = 0 \), fixed inlet velocity \(v_0 = 0.01 \text{ cm sec}^{-1} \), diffusion coefficient \(D = \frac{2 \times 10^{-9}}{\text{m}^2 \text{ sec}^{-1}} \).

Fig. 4. Reactive fluid transport along a fracture in calcite. Concentration of reactants \([H^+]| \) and \([\text{H}_2\text{CO}_3^*] \), and produced species \([\text{Ca}^{2+}] \) and \([\text{HCO}_3^-] \). Dimensionless numbers are as follows: (A) \(Da = 10^2 \) and \(Pe \| = 10^3 \) and (B) \(Da \approx 10^1 \) and \(Pe \| \approx 10^1 \). Concentration results are shown at dimensionless times: (A) \(t = 5 \times (l/v_0) \) and (B) \(t = 1000 \times (l/v_0) \). Species concentrations are in \([\text{mol m}^{-3}] \). All parameters are summarized in Table 1.
RESULTS AND DISCUSSION

Numerical simulation results for the 2D fracture case relevant to CO₂ geological storage are presented herein in terms of species concentrations in space and time, the enlargement of the rock fracture, and the morphing of the fracture geometry. Results are obtained for different regimes represented by dimensionless numbers Da and Pe_\perp.

Species concentration

For both mineralogies, a higher advection velocity (lower Da) yields higher concentrations of residual reactant species at the outlet due to the lower residence time. Thus, inlet species concentrations will influence deeper into the reservoir in anorthite. In particular:

(1) High $Da (> 10^{-1})$ and Low Pe_\perp—Calcite. Mineral dissolution couples with advection and diffusion to generate a concentration gradient across and along the pore/fracture aperture (for comparison, see Li et al. 2006). Figure 4 shows a snapshot of instantaneous concentrations for all relevant species along a fracture in calcite. Slow transverse diffusion and homogenization across the aperture develops at low advection velocity (low Pe_\perp) and leads to the large consumption of reactant species near the inlet (Fig. 4A). Clearly, H⁺ is readily consumed, the system reaches chemical equilibrium, and H₂CO₃* passes through the rest of the fracture plane unconsumed in this calcite-dominant environment. The residual H₂CO₃* at the outlet may react with other minerals and induce additional mineral dissolution in successive flow channels.

(2) High $Da (> 10^{-1})$ and high Pe_\perp—Calcite. When the advection velocity is high, diffusion fails to homogenize the concentration field across the fracture (high
and mineral dissolution is more uniform along the fracture length (Fig. 4B).

(3) Low Da (< 10^{-1})—Anorthite. The longitudinal drop in reactant species is much lower in the less reactive anorthite for the same advection regimes (Fig. 5). The low reaction rate of H^+ with anorthite allows more than two-thirds of H^+ to reach the outlet unconsumed.

The fluid acidity evolves as the numerical simulation proceeds. During the early stages of acidified fluid flow along the rock fracture, the pH drops near the inlet and remains at the initial pH~8 toward the outlet. The entire pore space acidifies and the area near the outlet converges to an asymptotic value pH~5 as advection continues and the system becomes saturated in terms of mineral dissolution (Fig. 6).

Variations in reactant species concentrations along the fracture length are plotted in Fig. 7A at different normalized times t/(l/v_0). The evolution of unconsumed reactants at the outlet is specifically explored in Fig. 7B for different Pe^⊥ values. Results show the evolution toward ‘steady-state’ reactive fluid flow.

Enlargement

The rock fracture aperture increases as the reactive fluid passes through the fracture plane (Figs 4 and 5). The effect of advective velocity and reactivity is explored in Figs 8 and 9. Results show that pore enlargement decreases along the flow path as reactants become consumed (primarily next to the fluid–rock interface) and

![Graph of pH evolution](image-url)

Fig. 6. Evolution of pH in time and space—anorthite. Values of pH along the length of fracture plane at selected normalized times t/(l/v_0). Note: Da = 6 \times 10^{-3} and Pe^⊥ = 3 \times 10^{-3}. The pH distribution reaches quasi-steady state when t/(l/v_0) > 1.

<table>
<thead>
<tr>
<th>Center line</th>
<th>Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite CaCO\textsubscript{3}</td>
<td>Anorthite CaAl\textsubscript{2}Si\textsubscript{2}O\textsubscript{8}</td>
</tr>
</tbody>
</table>

![Graphs of reactant species concentration](image-url)

Fig. 7. Variation of reactant species concentration: (A) along the centerline for different normalized times (Da = 10 for calcite and Da = 6 \times 10^{-3} for anorthite) and (B) at the outlet for different transverse Peclet numbers Pe^⊥. All parameters are summarized in Table 1.

aqueous species concentration approaches equilibrium. In all the cases, the normalized enlargement $\Delta d/d$ in anorthite is three orders of magnitude smaller than that of calcite at comparable times and flow regimes (Fig. 8—note: Steady-state conditions were reached with less than 2 pore volumes of flow through in all these cases).

Figure 9 compiles the observed evolving morphology in terms of dimensionless numbers, Da and Pe^L. At a given Pe^L, a lower Da causes the flow channel to experience a more uniform enlargement of the aperture along the fracture.

Fig. 8. Normalized aperture enlargement $\Delta d/d_0$ due to mineral dissolution along the fracture wall at the moment of quasi-steady-state concentration conditions for different Da and Pe^L values and for a fracture slenderness $l/d = 10$. (A) Calcite. (B) Anorthite. Note: Orders of enlargement are different between the results for the two minerals. In all the cases shown, steady-state conditions were reached with <2 pore volumes of flow through (refer to Fig. 10).

Time to reach quasi-steady-state condition

The time to reach quasi-steady-state concentration at the outlet t_{qc} is determined when species concentrations at the outlet c reach 95% of the equilibrium values c_∞ at $t = \infty$ (refer to Fig. 7B). Figure 10A,B indicates that the time to reach quasi-steady state t_{qc} for a fracture $l/d = 10$ is related to the advection time l/v_0 through Da and Pe^L numbers.

The dimensionless time $t/(l/v_0)$ equals the number of pore volumes that have traversed the fracture. At $Pe \ll 1$, homogenization is diffusion-controlled and can be reached without
flow, hence \(t/(l/v_0) \to 0 \). Near \(Pe \approx 1 \) (depends on \(Da \)), counter-flow diffusion delays the time to reach quasi-steady state, and the largest number of pore volumes is required to steady state: \(t/(l/v_0) \) approaches \(\approx 2 \) (Fig. 10A,B). Finally, mineral dissolution and channel enlargement combine to extend the time to quasi-steady-state conditions beyond the advection time when \(Pe \gg 1 \), and the number of pore volumes required exceeds \(t/(l/v_0) = 1 \).

Initial fracture slenderness

Finally, let us examine the effect of fracture slenderness by varying the length-to-aperture ratio \(l/d \); we keep \(Da \) constant by changing the initial aperture \(d \). When the ratio \(l/d \) is large \(l/d \geq 30 \), transverse diffusive transport homogenizes species concentrations across the fracture, and centerline concentrations resemble the one-dimensional theoretical solution for the same advection velocity (Fig. 11). For the same length \(l \), a wider aperture \(d \) slows the transverse diffusive transport of reactant species to the mineral surface \((t_{diff} = d^2/D) \), and higher reactant concentrations remain along the centerline (Fig. 11). Therefore, scaling must take into consideration both the fracture length and its slenderness (see also Li et al. 2008).

Let us examine a fracture network subjected to reactive fluid transport. If the length-to-aperture ratio of single fractures is large (i.e. \(l/d \geq 30 \)), species concentration resembles a 1D problem in each fracture. Then, if \(Pe \gg 1 \) and \(Da \ll 1 \), fracture morphology evolves uniformly within each fracture (Fig. 9) and can be modeled with a uniform aperture evolution during reactive transport. Single fracture morphology would evolve with a pyramidal shape outside these conditions. In all the cases, steady-state conditions are reached with <2 pore volumes of flow

Fig. 10. Time to reach quasi-steady-state concentration \(t_{qs} \) at the outlet (95% of \(c/c_\infty \), where the equilibrium value \(c_\infty \) is at \(t = \infty \)). (A) Calcite \((Da = 10^{-1} - 10^2) \) and (B) anorthite \((Da = 6 \times 10^{-5} - 6 \times 10^{-2}) \). Note: The time \(t_{qs} \) is normalized by the advection time \(l/v_0 \) based on the fracture length \(l \) and the initial velocity \(v_0 \); for an alternative interpretation, consider the normalized time \(t_{qs}/l(v_0) \) as the number of pore volumes flushed through the fracture to reach steady state.

Fig. 11. Effect of the length-to-aperture ratio \(l/d \) for the same \(Da \approx 10 \). Variation of the normalized concentration of hydrogen ions \([H^+)/[H^+]_{\text{inlet}} \) at quasi-steady state for fractures in calcite with different slenderness. The theoretical 1D solution is shown for comparison. All parameters are summarized in Table 1.
through each fracture when constant inlet chemistry is involved; clearly, this is not the case in a fracture network. The situation is aggravated when highly reactive minerals are involved, such as in calcite as compared to anorthite, as much larger fracture enlargements will develop, other conditions being the same. In summary, fracture network analyses must consider both the length and slenderness of fractures, in addition to flow conditions captured in \(Pe \) and \(Da \).

CONCLUSIONS

Reactive fluid transport through a rock fracture was simulated taking into consideration kinetic rate laws relevant to CO\(_2\) injection for geological storage and enhanced oil recovery in calcite and anorthite, which affect both reservoirs and wells. The geometry-coupled numerical simulation combines laminar flow, advective and diffusive mass transport of species, mineral dissolution, and pore enlargement. Salient results follow.

Reactive fluid transport in a rock pore or fracture can be described in terms of two dimensionless parameters Damköhler \(Da \) and Peclet \(Pe \) numbers to take into consideration reactivity, advection, and diffusion.

In highly reactive low-advection conditions (\(Da > 10^{-1} \) and low \(Pe < 1 \)—e.g. low advection velocity in calcite), hydrogen ions \(H^+ \) are readily consumed near the inlet, the fluid becomes saturated with reaction products, and \(H_2CO_3 \) traverses the rest of the fracture length unconsumed. When the advection velocity increases and \(Pe > 10^{-1} \), diffusion fails to homogenize the concentration field across the fracture, and mineral dissolution takes place more uniformly along the fracture length.

In low reactivity cases (\(Da < 10^{-1} \)—anorthite), \(H^+ \) is further transported along the fracture. Low reactivity and \(Da \) values lead to a more uniform aperture enlargement along the length of the fracture at a given \(Pe \). Therefore, the evolving morphology of the fracture depends on \(Da \) and \(Pe \).

In general, mineral dissolution couples with pore enlargement to extend the time to reach quasi-steady state. In all the cases tested in this study, steady-state conditions for a single fracture subject to constant inlet conditions are reached with \(< 2 \) pore volumes of flow through.

Reactive fluid transport along a fracture resembles the 1D problem when the length-to-aperture ratio is large, say \(l/d \geq 30 \). For a given length \(l \), an increased fracture aperture \(d \) slows the diffusive transport of reactant species to the mineral fracture surface, and higher reactant concentrations remain along the centerline. Therefore, fracture network analyses must take into consideration both the length and slenderness of individual fractures in addition to flow conditions captured in \(Pe \) and \(Da \).

The numerical approach developed in this study can be extended to 3D fracture networks. Then, this mass-conserving model can be coupled with mechanical equilibrium and deformation compatibility to explore the response of fractured rock in the subsurface.

ACKNOWLEDGEMENTS

Support for this research was provided by the U. S. Department of Energy project DE-FE0001826. Any opinion, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of funding organizations. A. Mezenczova’s comments helped clarify the chemical analyses. F. J. Santamarina edited the original manuscript. This research was conducted while the authors were at Georgia Institute of Technology, Atlanta, USA.

REFERENCES

APPENDIX A

KINETICS—CO₂ DISSOLUTION IN WATER

Injected carbon dioxide CO₂ dissolves in the formation water or brine to sequentially form aqueous carbon dioxide CO₂(aq) and carbonic acid H₂CO₃, which consequently dissociates into bicarbonate ions HCO₃⁻ and hydrogen ions H⁺ (Stumm et al. 1996; IPCC 2005):

\[
\text{CO}_2(g) \xrightleftharpoons{} k_a \text{CO}_2(aq) \quad K_H = \frac{k_a}{k_a^{-1}} \quad (A.1)
\]

\[
\text{CO}_2(aq) + \text{H}_2\text{O} \xrightleftharpoons{} k_{12} \text{H}_2\text{CO}_3 \quad K = \frac{k_{12}}{k_{12}^{-1}} \quad (A.2)
\]

\[
\text{H}_2\text{CO}_3 \xrightarrow{k_{12} \text{(very fast)}} \text{HCO}_3^- + \text{H}^+ \quad K_{\text{H}_2\text{CO}_3} = \frac{k_{12}}{k_{12}^{-1}} \quad (A.3)
\]

The equilibrium constant \(K \) for each chemical reaction defines the ratio of produced to reactant species concentrations at equilibrium and can be expressed as a ratio of forward to backward kinetic rates. All rate constants estimated at \(T=40^\circ\text{C} \) are summarized in Table 1; details follow.

Equation A1. The rate constant for the dissolution of gaseous carbon dioxide is \(k_{a0} \approx 5 \times 10^{-5} \text{ sec}^{-1} \) at \(T=25^\circ\text{C} \) (Sposito 1994). The rate constant for the reversed reaction can be obtained from \(k_{a0} = k_{a} / K_{\text{H}} \), where \(K_{\text{H}} \) is Henry’s constant.

\[
\text{Equation A.2. The reaction rate constant for hydration is } \dot{k}_{\text{CO}_2} \approx 0.04 \text{ sec}^{-1} \text{ at } 25^\circ\text{C} \text{ with activation energy } E_a = 15 \text{ kcal mol}^{-1} \text{ and for dehydration is } k_{\text{H}_2\text{CO}_3} \approx 20 \text{ sec}^{-1} \text{ at } 25^\circ\text{C} \text{ with } E_a = 16 \text{ kcal mol}^{-1} \text{ (Stumm et al. 1996). The rate constant at a given temperature can be computed using Arrhenius law:}
\]

\[
b(T) = k_{25} \exp \left[\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right] \quad (A.4)
\]

where \(k_{25} \) is the rate constant at \(T=25^\circ\text{C}(\approx 298.15 \text{ K}) \) and \(R \) is the gas constant. Rate constants \(k_{\text{CO}_2} \) and \(k_{\text{H}_2\text{CO}_3} \) are also used to calculate the equilibrium constant \(K \) in Eq. A2.

Equation A3. Carbonic acid dissociation is very fast compared to reactions in Eqs A1 and A2; we selected \(k_{12} \approx 10^7 \text{ sec}^{-1} \) at \(T=40^\circ\text{C} \) (Zhang 2008). The rate constant for the reverse reaction is obtained from \(k_{21} = k_{12} / k_{\text{H}_2\text{CO}_3} \), where the equilibrium constant \(K_{\text{H}_2\text{CO}_3} \) is computed from \(K \) (Stumm et al. 1996):

\[
K_{\text{H}_2\text{CO}_3} = K_1(1+K) \quad (A.5)
\]

where \(K_1 \) denotes the first acidity constant for the reaction in which \(\text{H}_2\text{CO}_3^- \) dissociates to bicarbonate and hydrogen ions (the asterisk denotes the combination of both aqueous carbon dioxide and carbonic acid). The value of the acidity constant is \(K_1 \approx 10^{-6.38} \) under standard conditions.
CONTENTS

211 Phase-field modeling of epitaxial growth of polycrystalline quartz veins in hydrothermal experiments
F. Wendler, A. Okamoto and P. Blum

231 Pore pressure evolution and fluid flow during visco-elastic single-layer buckle folding
A. Eckert, X. Liu and P. Connolly

249 Post-CO2 injection alteration of the pore network and intrinsic permeability tensor for a Permo-Triassic sandstone

264 Klinkenberg gas slippage measurements as a means for shale pore structure characterization
E.A. Letham and R.M. Bustin

279 Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: model development, verification, and illustrative example
S.A. Bea, U.K. Mayer and K.T.B. MacQuarrie

301 Overpressure in the Malay Basin and prediction methods
I. Ahmed Satti, W.I. Wan Yusof and D. Ghosh

314 Modelling the Lost City hydrothermal field: influence of topography and permeability structure
S.S. Titarenko and A.M. McCaig

329 Geometry-coupled reactive fluid transport at the fracture scale: application to CO2 geologic storage
S. Kim and J.C. Santamarina

342 Evidence for SiO2-NaCl complexing in H2O-NaCl solutions at high pressure and temperature
R.C. Newton and C.E. Manning

349 Pyrophyllite formation in the thermal aureole of a hydrothermal system in the Lower Saxony Basin, Germany
P. Will, V. Lüders, K. Wemmer and H.A. Gilg