Laboratory Strategies for Hydrate Formation in Fine-Grained Sediments

L. Lei and J. C. Santamarina

Abstract
Fine-grained sediments limit hydrate nucleation, shift the phase boundary, and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain-scale gas-storage within porous diatoms, ice-to-hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long-term guest molecule transport. Tomographic images and thermal pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine-grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo-pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice-to-hydrate transformation goes through a liquid stage at premelt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time-dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate, and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine-grained sediments within the relatively short time scale available for laboratory experiments.

1. Introduction
The accumulation of methane in hydrate-bearing sediments exceeds 20,000 trillion m3 (Boswell, 2009). Hydrate-bearing coarse-grained sediments are preferred for potential gas production due to their relatively high saturation, high permeability, nondisplacive pore habit, and low volume contraction upon dissociation (Moridis et al., 2009; Yamamoto & Dallimore, 2008). Consequently, laboratory studies have focused on hydrate formation in coarse-grained sediments and have used various formation strategies to overcome the low methane solubility in water: advection of gas saturated water, partial water saturated sediments pressurized with gas, pulverized-ice seeding, and pulverized-hydrate premixing with cooled sediments (Ebinuma et al., 2005; Katsuki et al., 2006; Waite et al., 2009; Zhong & Rogers, 2000). Alternatively, some studies have used more soluble guest molecules, from stoichiometric tetrahydrofuran (THF) solutions (Lee et al., 2007) and cyclopentane (Aman et al., 2011, 2013), to carbon dioxide (Katsuki et al., 2006; Tohidi et al., 2001; Zatepina & Buffett, 2001).

The accumulation of methane hydrates in fine-grained sediments exceeds the accumulation in sands by an order of magnitude (Boswell & Collett, 2011). Yet there are no published studies of hydrate formation in fine-grained sediments that utilize gas as guest molecules; consequently, hydrate-bearing fine-grained sediments remain less understood and characterized than sandy reservoirs.

The small pore size found in fine-grained sediments and the associated capillarity and water-mineral interactions hinder nucleation and shift the gas hydrate phase boundary to higher pressures and lower temperatures (Handa & Stupin, 1992; Park et al., 2016; Seshadri et al., 2001; Uchida et al., 2001). Hydrate growth is displacive in fine-grained sediments, and the hydrate mass is found in segregated nodules, lenses, and veins (Clennell et al., 1999; Dai et al., 2012), as confirmed by borehole electrical resistivity measurements (Cook et al., 2008), photographs of recovered cores from a variety of drill sites, and X-ray CT images of pressure...
cores (Ghosh et al., 2010; Lee et al., 2013; Rees et al., 2011). Lens extension/persistence and the maximum nodule size remain unknown as observations are limited by core-size. Yet common features have emerged from images reported in the last decade (Collett et al., 2008; Lee et al., 2013; Yamamoto et al., 2012; Yun et al., 2011): (1) Individual lenses have jagged sediment-hydrate interfaces; (2) lenses are often in groups, mostly parallel to each other, but with frequent intersections at small angles; (3) lens-groups intersect at large angles; (4) lens thickness ranges from ~1 to 100 mm, and lens spacing from ~10 mm to 1 m; and (5) nodules recovered inside cores are small (50-mm core diameter) and have smooth, curved surfaces.

Fine-grained sediments have inherently low permeability, which hinders gas transport to the gas-limited hydrate formation front. This study explores various methods to form hydrates in fine-grained sediments within the relatively short laboratory time scale. The experimental design, formation strategies, and salient observations are described here; for additional details, see Lei (2017).

2. Experimental Study: Devices and Materials
2.1. Sediments and Fluids

The tests involved six different sediments specifically selected to emulate various natural formations and range from silts to high plasticity clays and diatoms that are internally porous. Table 1 summarizes their key index properties. The fluids are deionized water, CO$_2$ gas (99.99% purity), and a stoichiometric THF solution.

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Minerology</th>
<th>Mean particle size D_{50} [μm]</th>
<th>Specific surface S_s [m$^2/$g]</th>
<th>Liquid limit LL [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica flour</td>
<td>SiO$_2$</td>
<td>20</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Al$_2$Si$_2$O$_5$(OH)$_4$</td>
<td>0.4b</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>Diatom</td>
<td>92% SiO$_2$</td>
<td>10c</td>
<td>89</td>
<td>121</td>
</tr>
<tr>
<td>Diatom</td>
<td>Al$_2$H$_2$Na$_2$O$_7$Si$_4$</td>
<td>0.07d</td>
<td>565</td>
<td>276</td>
</tr>
<tr>
<td>Hydrophobic silica</td>
<td>SiO$_2$ coated with chlorosilanes</td>
<td>~0.04d</td>
<td>32d</td>
<td>Does not apply</td>
</tr>
</tbody>
</table>

![Figure 1](https://example.com/fig1.png)

Figure 1. Reactor and pressure-temperature control system. The auxiliary chamber (1) facilitates gas and water control. The X-ray transparent reactor (2) includes an internal preloaded spring to apply a nominal effective stress (3). Instrumentation includes pressure transducers (P) and thermocouples (T).
Figure 1 presents a pressure-and-flow control system designed to inject gas and/or gas-saturated water to both the top and bottom of three specimen chambers which are connected in parallel. The thin-walled (3.5 mm) aluminum chambers (Ø = 40 mm, H = 140 mm) can sustain fluid pressures up to 30 MPa. The segregated hydrate morphology in fine-grained sediments implies hydrate growth against the effective confining stress; thus, these chambers house a precompressed spring to maintain a nominal effective vertical stress on the specimen under zero-lateral strain conditions, that is, stress anisotropy $k_0 \sim 0.6–0.7$ (Figure 1; see Table 1 for stress history). X-ray projections show homogeneous specimens in all cases. Thermocouples and pressure transducers monitor the temperature and fluid pressure inside each chamber.

2.3. X-ray Tomography

We use X-ray computed tomography to observe the hydrate formation process. Key considerations include the balance between X-ray source strength, material X-ray transparency, ease of operation, and specimen size effect. The micro focus CT scanner built for this study has a 130-kV source and a 1,024 × 1,024 element flat panel detector. The attainable imaging resolution for the 40-mm chamber is a 40-μm voxel size.

The typical scan time exceeds 30 min; we insulate the chamber with X-ray transparent foam to reduce heat absorption from the environment. An accurate base-mount attaches the aluminum chamber to the rotary stage and allows for successive scans at the same position to facilitate the comparison of tomograms gathered at different stages of the imposed P-T history.

The voxel intensity in 3-D X-ray tomograms corresponds to the local attenuation coefficient. There are six different materials involved in these tests: the aluminum chamber, the water saturated sediment, segregated water, segregated hydrate, liquid CO$_2$, and gases. Any air dissolved in the water is excluded from hydrate formation and forms bubbles. The histograms of voxel intensities for hydrate, water, and liquid CO$_2$ overlap quite extensively, and it is difficult to differentiate between these materials at small scales. Previous CT studies have used xenon hydrate or a potassium iodide solution to separate the hydrate phase from the pore fluid (Jin et al., 2008; Ta et al., 2015). However, the segregated hydrate mass is readily identified in this study, by taking into consideration the following process-dependent observations (Figures 2 and 7): (1) evolution of tomographic images along with measured P-T conditions relative to phase stability boundaries; (2) water is either within the sediment pores and is imaged as an average sediment absorption or it reacts to form the hydrate mass; (3) water segregates after hydrate dissociation as the sediment skeleton compacts due to cryogenic suction; (4) hydrate can resist shear and adopt complex geometries, while immiscible fluids interact through curved Laplacian interfaces; (5) gravity segregates liquid CO$_2$ and water from gas; and (6) features thicker than ~2 pixels along the sediment-gas interface with an attenuation similar to hydrate are assumed to be hydrate shells. Most lens-like structures imaged/identified in this study are hydrate-filled.

Figure 2. Feature identification—examples. (1) Striped and porous hydrate. (2) Segregated water after hydrate dissociation. (3) Gravity segregated gas and liquid CO$_2$.
3. Laboratory Study: Hydrate Formation Strategies

We designed different experimental strategies to overcome some of the inherent limitations with gas hydrate formation in fine-grained sediments discussed above and to explore underlying processes. Table 2 describes the 22 experiments conducted in this study. Figure 3 presents selected P-T trajectories (a detailed analysis of P-T responses is presented in the following section).

3.1. Strategy Based on THF Hydrate

Tetrahydrofuran is fully miscible with water. Therefore, hydrate formation can proceed without diffusion or advection limitations. This allows for relatively fast hydrate growth after nucleation, which is convenient for short-term laboratory studies. In nature, fast hydrate growth takes place immediately after hydrate nucleation because the methane solubility in water decreases as soon as the hydrate phase appears, and the pore fluid effectively becomes a supersaturated solution (Jang & Santamarina, 2016). THF hydrate conveniently forms at ~4 °C under atmospheric pressure, so no pressure vessel is needed; this facilitates heat flux control. We tested THF hydrate formation in the four selected sediments (tests 1 to 5, Table 2, at ~2 °C). The initial mass ratio between stoichiometric THF solution and dry sediment is slightly above the liquid limit in all tests (Table 1). Similarities and differences between CH₄ and THF hydrates are reviewed in Lee et al. (2007), while properties of THF hydrate bearing sediments are described by Yun et al. (2007).

3.2. Strategy Based on Diatoms

This series of experiments explores the storage of high-pressure CO₂ gas in the intraparticle space of dry diatoms (tests 6–8). After gas compression, we filled the specimen with water and allowed hydrate to form by consuming the readily available gas within diatoms, next to each sediment pore. Consequently, hydrate formation is not limited by the long diffusion time required for the transport of guest molecules from the
specimen boundary. This strategy is agreeable with the presence of hydrates in fine-grained diatomaceous marine sediments (Clennell et al., 1999; Yun et al., 2011).

3.3. Strategy Based on Ice-to-Hydrate Transformation

Ice coexists with CH₄ hydrate under permafrost conditions, where ice-to-hydrate transformation takes place in response to P-T conditions associated with climate change and burial (Dai et al., 2011). Ice-to-hydrate transformation has been used to facilitate gas hydrate formation by reducing the nucleation barrier; we adapted this strategy to grow hydrate lenses at predefined locations within fine-grained sediments. We start with either (1) frozen unsaturated sediments (saturation below the level required for free gas percolation) or (2) with premade ice lenses buried in cold dry specimens to ensure a percolating gas phase across the specimen. Then we increase the CO₂ gas pressure into the hydrate stability field at -15 °C, 2 MPa. Finally, we favor ice-to-hydrate transformation by gradually increasing the temperature toward the ice melting point (ΔT = +0.5 °C steps every 2 hr) under constant gas pressure, inside the hydrate stability field (tests 9 to 14, Table 2).

3.4. Strategy Based on Forced Gas Injection

Methane seeps imply the presence of free gas pathways within the sediment, either in the form of gas-filled pipes in sands or gas-driven fractures in silty and clayey sediments (Chen et al., 2016; Gardner et al., 2009; Graves et al., 2017; Schwalenberg et al., 2017). Hydrate formation along and around these conduits
depends on the rate of gas transfer and water supply to the hydrate formation front. We inject CO₂ into water-saturated sediments to cause gas-driven fractures (see tests 15 and 19 in Figure 3 for typical P-T trajectories—tests 15 to 18 are under 50-kPa vertical effective stress within the spring loaded cell in Figure 1b). We also inject gas into slurries to create consecutive bubbles similar to near-surface seafloor conditions (tests 19 and 20—P-T trajectories in Figure 3).

3.5. Strategy Based on Long Duration Diffusion of Reactants

In natural systems, diffusion is the prevailing gas transport process in saturated fine-grained sediments away from active gas conduits and coarse-grained layers. Water-saturated specimens in tests 21 and 22 are surrounded by CO₂ at 3 MPa and 12 °C for a maturation period of 20 and 10 days, respectively. Then, we lower the temperature in the hydrate stability field to 2 °C. The anticipated CO₂ diffusion length during the maturation period \(L = \sqrt{D \cdot T} \) is in the order of several centimeters in both tests (note: The diffusion coefficient is lower in bulk water because of tortuosity and physiochemical interactions with mineral surfaces; Clennell et al., 2000); the gravimetric water content in tests 21 and 22 exceeds ~90%, so we adopt the value of diffusion for bulk water as a first-order approximation.

4. Results and Observations

The different strategies outlined above were conceived to facilitate the supply of guest molecules to the hydrate formation front, to overcome the nucleation barrier, and to explore long-term diffusion-controlled gas hydrate formation in sediments. The most striking observation from this study is the inherent difficulty in emulating hydrate formation in fine-grained sediments within the relatively short time scales in laboratory settings. However, all tests contributed relevant information and provided new insights. This section reports common features and salient observations gathered in this study.

4.1. Pressure and Temperature Effects

4.1.1. P-T Trajectories: Observations

Figure 3 presents a selection of pressure-temperature trajectories recorded in the study. Temperature-time signatures all exhibit a common sequence of characteristic features: induction time, supercooling, or overpressuring prior to phase transformation, exothermic/endothermic transients during phase transformation (Figure 3: test 4. See Dai et al., 2014). P-T trajectories follow phase boundaries when phase transitions are involved, including water-ice, liquid-gas CO₂, and the hydrate phase boundary (Figure 3: all cases). P-T trajectories frequently diverge from the known phase boundaries (Figure 3: test 11 for the L-G transition). While physicochemical effects may be involved, apparent phase boundary shifts often reflect the spatial mismatch between the position of the thermocouples and the location where transformations take place. To avoid biases, thermocouples (accuracy: ±0.1 K, response time: <1 s in sediment, <5 s in gas) and pressure transducers (accuracy: ±0.25% BSL, response time: <1 ms) are carefully calibrated before each test.

4.1.2. Thermal Spikes

Hydrate formation is exothermic. Thermal spikes are readily seen in the P-T trajectories (Figure 3: tests 7, 19, and 21). The thermal spike from THF hydrate formation lasts about 30 min when hydrate formed in silica flour but continues for several hours when hydrate formed in kaolinite and bentonite (Figure 3: test 4). The duration and intensity of thermal spikes relate to the rate of formation, the rate of heat transfer owing to thermal conduction, and the total amount of hydrate that formed. Thermal spikes are lower and shorter in CO₂ hydrate formation in comparison to stoichiometric THF hydrate formation tests because of slow CO₂ supply.

4.1.3. Temperature Depression

The temperature depression during phase transformation is more pronounced in smaller pores, that is, finer grained sediments and more pronounced effects of water-mineral interactions. Thus, high-curvature hydrates form last but dissociate first (Anderson et al., 2003; Rempel, 2011a). The P-T trajectory for test 19 in Figure 3 displays the typical response when the transformation is affected by pore confinement effects: The P-T trajectory follows the shifted phase boundary as the temperature decreases toward 2 °C. During thermal stimulation, the P-T trajectory follows the same shifted boundary first and gradually converges toward the bulk hydrate phase boundary as the temperature increases to >6 °C.

4.1.4. Premelting in Ice-to-Hydrate Transformation

The ice-to-hydrate transformation occurs at temperatures 1.5 to 1.7 °C lower than the ice melting point (tests 10 to 14). Two concurrent effects explain this observation:
1. The latent heat for CO₂ hydrate formation-dissociation is ~60 kJ/mol (Anderson, 2003), while the latent heat for water-ice transformation is 6.05 kJ/mol; therefore, the ice-to-CO₂-hydrate transformation is an exothermic process (~25 kJ per mole of hydrate).

2. Premelting commences at the ice crystal surface when $T = -33 \, ^\circ C$; in fact, the ice crystal surface structure does not fully resemble the interior structure even at extremely low temperatures (Li & Somorjai, 2007).

Therefore, the transformation from ice-to-hydrate occurs on the premelted ice surface, and the generated heat melts more ice to release free water for further hydrate formation. This positive feedback loop sustains ice-to-hydrate transformation before the anticipated $-0.22 \, ^\circ C$ for ice-water melting under 3-MPa pressure (see a parallel analysis for CH₄-CO₂ replacement in Jung et al., 2010).

4.2. Hydrate Morphology: Characteristics

4.2.1. Small Hydrate Crystals in Diatomaceous Earth

Temperature and pressure trajectories and related mass analyses indicate that hydrate formed in all diatomaceous earth specimens (tests 6 to 8). Yet there are no clear signs of segregated CO₂ hydrate in any of the CT images. These results suggest that small hydrate crystals do form in pores but do not merge into the large segregated hydrate mass that could be distinguished in CT images with 40-μm resolution (note: intrapores are quite large, and amorphous silica has relatively weak interaction with water; hence, hydrate may crystallize within diatoms). Long time scales in nature may allow for Ostwald-ripening resulting in the segregated hydrate structure observed in the diatomaceous sediments found in the Ulleung Basin (Yun et al., 2011).

4.2.2. THF Hydrate Morphology

Guest molecules are readily available in the stoichiometric THF solution. Consequently, thermal boundary conditions, sediment properties, and the evolving stress field control the morphology of the hydrate mass as it forms and segregates, similar to ice lens formation (Azmacht et al., 2012; Miller, 1972; O'Neill & Miller, 1985; Rempel, 2011b; Taber, 1930; Viggiani et al., 2015). Displacive hydrate formation pulls water from the
compressible sediment, that is, cryogenic suction; the denser sediment that surrounds the segregated hydrate mass exhibits a higher CT number or X-ray attenuation (Figure 4). Indeed, coarser and stiffer sediments develop fewer hydrate lenses as the particle-displacive trend diminishes (silt and diatoms; Figure 4). In kaolinite and bentonite specimens, closely spaced lenses grow toward the center first; the remaining central region is more compact and develops more sporadic lenses. Finally, note that slow heat dissipation favors the formation of larger and more localized hydrate lenses (Figure 4: Compare test 2 cooled in a water bath versus test 3 cooled in air). While the stoichiometric THF solution is used in both tests, a liquid phase remains in the small pores of fine-grained sediments after hydrate lens formation (tests 4 and 5). All THF could form pore-filling hydrate in test 1 (we do not have direct evidence). Early tests with water-saturated fine-grained sediments under similar boundary conditions produced ice lens morphologies similar but not identical to segregated THF hydrate morphologies. We infer that differences in supercooling and in the initial sediment fabrics that formed in water as compared to the THF solution affect the evolution of lenses.

4.2.3. CO₂ Hydrate Structure: Porosity

In addition to variables explored with THF hydrate, gas transport plays a critical role on the evolving hydrate morphology when hydrate formation is gas limited. Some tomograms show a striped-fibrous hydrate structure (Figure 5) that resembles images reported for hydrate formation in pipe clogging studies (Makogon, 1997) and hair-ice (Hofmann et al., 2015). However, the most salient characteristic observed in young hydrate lenses is their porous structure made of separate crystals/fibers (Figure 2: test 20; Figure 6: test 15 and also observed in tests 6, 9, 11, 12, and 16–22). Striped and porous hydrates are forms of exo-pore growth where hydrates grow outside the pores at a free surface or into a preexisting gas-driven opening.
4.2.4. CO₂ Hydrate Shell
Hydrate forms at the interface between the CO₂ gas and the water-saturated sediment slurry during forced gas injection experiments. The hydrate shell inherits the shape of the gas-driven fractures and maintains cavities open and interconnected even in very soft slurries (Figure 7, test 19). In our experiments, these continuous hydrate layers are approximately 120 microns across or thinner (Subramanian, 2000). The hydrate shells appear continuous and thicken by slow gas diffusion through the solidifying hydrate (note: The gas-filled cavity is the only source of gas molecules). In time, thin hydrate lenses grow into the slurry (Figure 7).

4.3. Additional Effects
4.3.1. Time
We observed long induction times and often recorded weak but long P-T hydrate formation signatures that did not render tomographic evidence of any hydrate mass; these “negative result” experiments are not included in Table 2 (note: 45% of the experiments conducted during the 3-year study produced discernible tomographic images). In other cases, CT scans confirmed that the lens geometry and the internal hydrate structure continued evolving long after the thermal spike had vanished (e.g., tests 20 and 21). Beyond stochastic nucleation, time emerges as a central variable in all cases in this study through concurrent time-dependent processes such as gas transport, sediment compressibility, rate of reaction and heat dissipation, and ripening.

4.3.2. The Influence of Mineral Wettability
Capillary and cryogenic suction compete for water during ice-to-hydrate transformation (tests 9–12; refer to Figure 5). When the mineral surface is strongly hydrophilic, the ice lens size decreases during hydrate formation because the rate of capillary suction exceeds the rate of hydrate formation (Figure 8a; test 12); in fact, thin ice lenses vanish into the sediment before hydrate formation starts. But it is a competition not only among rates but also among magnitudes: If cryogenic suction were stronger than capillary suction, growing hydrate crystals would pull the water back out of the imbibed sediment. Clearly, these observations apply to the ice-seed method used for hydrate bearing sands: Water migrates and forms capillary menisci before hydrate formation, and the resulting pore habit is not pore-filling but cementing.

By contrast, water does not invade fumed hydrophobic silica (Figure 8b; tests 13 and 14); however, the ice/hydrate lens shape becomes more spherical during ice-to-hydrate transformation; clearly, the surface tension in liquid water manifests itself before hydrate formation (Jung & Santamarina, 2012).

4.3.3. Hydrate Dissociation
We used either depressurization or heating to cause hydrate dissociation. Hydrate dissociation by depressurization exhibits a decrease in temperature due to the endothermic transformation (Figure 3: test 11).
Dissociation cooling lowers the temperature below water freezing (tests 7 and 11). Conversely, dissociation by heating leads to pressure increase under isochoric conditions (Figure 3: tests 19 and 21; Kwon et al., 2008). When segregated hydrate dissociates, it leaves behind the blocky sediment structure made of overconsolidated sediments that compacted due to cryogenic suction.

5. Discussion

All the evidence suggests that the initially porous and permeable hydrate mass can sustain gas transport much faster than diffusive transport through solid hydrate. Then, hydrate accumulation continues by extracting water from the sediment and transporting gas through the porous hydrate mass. This exo-pore growth mechanism can be much faster than diffusion-limited growth. The initially porous hydrate structure gradually evolves toward a solid structure with less surface area through Ostwald ripening.

Sudden hydrate formation well inside the stability field produces a clear thermal spike; thereafter, hydrate continues to grow at a slower diffusion-limited rate and without a thermal signature. Note that thermal diffusion is orders of magnitude faster than chemical diffusion in these systems.

Gas in gas-driven fractures is consumed by hydrate formation and fractures gradually clench. The gas-filled cavity is the only source of gas molecules; therefore, the thickening of the hydrate shell at the gas-sediment interface is sustained by gas transport across the hydrate shell itself. Without an additional gas supply, the thin hydrate shells that formed on the walls of small gas driven openings may dissociate and vanish as gas molecules diffuse into the water-saturated sediment.

Figure 7. Forced CO₂ gas invasion in kaolinite slurry (test 19 in Table 2). Multiple hydrate lenses form between the two gas bodies. A hydrate shell covers the gas-sediment interface and prevents the slurry from collapsing.
Hydrate growth displaces mineral grains when particle-level forces induced by the growing hydrate mass exceed particle-level forces induced by the acting effective stresses (Clennell et al., 2000). The ratio between the lens thickness t and the separation between lenses L provides a first order estimate of the compressive strain the sediment experiences to make space for a hydrate lens. Invoking Terzaghi’s compressibility relation for sediments, the ratio between lens thickness and separation t/L is

$$\frac{t}{L} = C_c \frac{1}{1 + e_0} \log \left(\frac{\sigma'_0 + U}{\sigma_0} \right)$$ (1)

where e_0 and σ'_0 are the initial void ratio and effective stress and C_c is the sediment compressibility. As per Laplace’s equation, the cryogenic suction U is inversely proportional to the curvature of the interface r (equal to the pore size if the hydrate-mineral contact angle is 180°),

$$U = \frac{2T_s}{r}$$ (2)

where T_s is the surface tension between water and hydrate or

$$U = \frac{2T_sS_s}{e_0}$$ (3)

if pore size is estimated in terms of the specific surface S_s [m$^{-1}$]. Then, we can conclude that lenses will be thicker and closer to each other in compressible, high specific surface sediments subjected to low effective stress. The sequence of tomographic images shown in Figure 4, and all other results in this study corroborate this deduction. As a corollary, small laboratory experiments, that is, small L, limit the range of sediments that can exhibit segregated hydrate.

Cryogenic suction during displacive hydrate formation extracts water from the surrounding sediment. The compacted, stiffer sediments yield faster wave speed, higher mechanical strength, and lower permeability than the original water-saturated sediment. Only partial swelling takes place during hydrate dissociation, and excess water drains out of the remnant compacted and blocky sediment structure. Consequently, gas...
production in fine-grained sediments would cause volumetric contraction at least as high as the segregated hydrate volume.

6. Conclusions
Most hydrate accumulations in nature are found in fine-grained sediments. Hydrate formation in fine-grained sediments is limited by gas transport. We used different strategies to accelerate the supply of guest molecules to the hydrate formation front, to overcome the nucleation barrier, and to explore long-term diffusion controlled gas hydrate formation. This study highlights the inherent challenges in hydrate formation in fine-grained sediments within relatively short laboratory time scales. The main conclusions are as follows:

1. Hydrate formation in fine-grained sediments is inherently displacive and segregated. Hydrate formation extracts water from the sediments, the surrounding medium becomes compacted, and the effective P-T phase boundary migrates during formation. A compacted and blocky sediment structure remains upon hydrate dissociation.

2. Analytical and experimental results show that lenses are thicker and closer to each other in compressible, high specific surface sediments subjected to low effective stress.

3. Gas supply to the hydrate formation front controls the rate of hydrate formation. Exo-pore growth conveys a striped and porous structure to freshly formed hydrate. This open structure is an effective path for gas transport to the hydrate-sediment interface and can sustain hydrate growth much faster than diffusive gas transport.

4. CT scans confirm that the lens geometry and internal hydrate structure continue evolving long after the exothermal thermal spike has vanished. Beyond stochastic nucleation, time is implicit in multiple concurrent time-dependent processes, including gas, water and heat transport, sediment compressibility, and rate of reaction.

5. Ice seeding has been frequently used to expedite hydrate formation in coarse-grained sediments. We attempted this method to grow hydrate lenses at predefined locations. Results show that ice-to-hydrate transformation goes through a liquid stage at premelt temperatures; then, capillarity and cryogenic suction compete, and water gets redistributed faster than hydrate reformation.

References

