1. Introduction

Gas hydrate accumulations in marine sediments and the permafrost are a vast potential energy resource (Boswell, 2009; Collett, 2002). In addition, natural gas hydrate dissociation can contribute to climate change (Archer, 2007; Ruppel and Pohlman, 2008), cause ground subsidence and trigger seafloor landslides (Grozic, 2010; Hornbach et al., 2007; Kvalstad et al., 2005).

The mechanical, thermal, and hydraulic properties of gas hydrate-bearing sediments are critical to both the analysis of natural gas hydrate reservoirs and the design of gas extraction strategies. The transmission of heat and fluids control hydrate dissociation and gas migration (Makogon, 1997; Sloan and Koh, 2007). In addition, the mechanical properties of hydrate-bearing sediments can be markedly different before and after dissociation, thus, initially stable systems can become unstable during hydrate dissociation (Kwon et al., 2008; Moridis et al., 2011; Waite et al., 2009).

A number of difficulties limit the accurate characterization and direct measurement of the physical properties of hydrate-bearing sediments. Pressure cores are expensive, and mechanical sampling disturbances are inherent to all coring techniques (Dai and Santamarina, 2014; Hvoslev, 1949). In-situ measurements only assess a small area around the well-logging tool, which is disturbed by the insertion of the device itself. Laboratory hydrate formation is challenging in all sediments (Spangenberg et al., 2005; Waite and Spangenberg, 2013), particularly in fine-grained sediments (Lei and Santamarina, 2018). Furthermore, hydrate tends to form as a segregated mass in fine-grained sediments and the length-scale of natural hydrate lenses and veins exceeds the centimeter-scale of laboratory devices (Collett et al., 2008; Lee et al., 2013; Yamamoto et al., 2012; Yun et al., 2011). Studies of physical properties of hydrate-bearing fine-grained sediments are thus limited to geophysical logs, e.g. (Cook et al., 2008; Tréhu et al., 2004), some pressure core based measurements (Yun et al., 2011), and numerical simulations that explore segregated hydrate geometries but neglect the effect of hydrate formation on surrounding sediments (Ghosh et al., 2010).

Most hydrate accumulations involve fine-grained sediments (Boswell and Collett, 2011). Therefore, there is a need for an enhanced...
understanding of the physical properties of hydrate-bearing fine-grained sediments. This study uses numerical simulations to estimate the conductivity, stiffness and strength of sediments with segregated hydrate lenses. In particular, we take into consideration the effects of grain-displace hydrate formation and cryogenic suction on the properties of the surrounding hydrate-free sediments, and explore different hydrate morphologies observed in natural fine-grained sediments. The final section discusses the dominant effect of fines on the sediment response, assesses the applicability of effective media models and theoretical bounds, and summarizes lessons learned from this study into a procedure to estimate the physical properties of fine-grained hydrate-bearing sediments.

2. Segregated hydrate in fine-grained sediments

Hydrate nucleates on mineral grain surfaces or at gas-water interfaces and eventually fills pores in coarse-grained sediments (Waite et al., 2009). However, field evidence shows that hydrate displaces grains in fine-grained sediments and forms segregated lenses, veins and nodules (Dai et al., 2012).

Pore-invasive versus grain-displace hydrate formation reflects the balance between particle-level forces. Fig. 1 shows a particle-level free body diagram of sediment particles, the hydrate mass and pore water, where the hydrate-water interface is at the verge of invading pores. The hydrate mass is non-wetting (Lei et al., 2019), feels a pressure \( P_h \) where the hydrate-water interface is at the verge of invading pores. The body diagram of sediment particles, the hydrate mass and pore water, clearly exceeds the core diameter. Overall, the complex hydrate interface is not smooth; in fact, the shape of the hydrate mass is quite irregular and jagged. Laboratory investigations show that hydrate can form in gas-driven fractures where it inherits the fracture morphology, including rough edges and uneven propagation fronts (Fig. 4).

2.1. Hydrate morphology: observations from previous work

Fig. 2 presents a collection of X-ray projections and CT slices of fine-grained sediments recovered using pressure coring technology. Fig. 3 shows photographic images of recovered fine-grained sediments after rapid depressurization. The hydrate mass is segregated in all cases, varies from sub-millimeter to multi-centimeter thicknesses, and the length scale clearly exceeds the core diameter. Overall, the complex hydrate morphologies observed in Figs. 2 and 3 combine elemental configurations such as parallel and intersecting lenses. The hydrate-sediment interface is not smooth; in fact, the shape of the hydrate mass is quite irregular and jagged. Laboratory investigations show that hydrate can form in gas-driven fractures where it inherits the fracture morphology, including rough edges and uneven propagation fronts (Fig. 4).

2.2. Hydrate volume fraction

The degree of hydrate saturation in pore-filling coarse-grained sediments \( S_h = V_h / V_t \), relates the volume of hydrate \( V_h \) to the overall volume of voids \( V_v \). However, the ratio \( F_h = V_h / V_t \) between the segregated hydrate volume \( V_h \) and the total sediment volume \( V_t \) is a more convenient and intuitive definition for particle-displace hydrate accumulations in fine-grained sediments (Note: the value \( F_h \) applies to coarse-grained sediments as well). Clearly, both definitions are related through the global porosity \( F_h = S_h / S_w \). Some of the images in Figs. 2 and 3 correspond to near-seafloor accumulations and exhibit very high hydrate volume fractions in excess of \( F_h > 40\% \). Low effective stress and high sediment compressibility favor thicker lenses.

3. Surrounding sediment: compaction and stress changes

Displace hydrate formation alters the state of stress and compresses the surrounding hydrate-free sediment. In this section, we use analytical solutions to examine the induced volumetric strains and stress changes on the surrounding hydrate-free sediment as a function of the hydrate volume fraction \( F_h \) and boundary conditions. We identify five end-member conditions to allow for tractable solutions and scale-analyses. Field situations will often involve more complex conditions that require case-specific analyses.

3.1. Formation from initial excess dissolved methane (closed system)

The solubility of CH\(_4\) in water rises with increasing pressure and decreasing temperature (Henry’s law approximation). The presence of hydrates favors further hydrate formation and there is a decrease in gas concentration in water after hydrate formation (Henry et al., 1999; Lu et al., 2006; Waite et al., 2009). The difference between the gas concentration before hydrate formation \( C^b \) and after hydrate formation \( C^d \)
can be used to compute the hydrate volume fraction that can form in a sediment with an initial porosity $n_0$:

$$F_h = \frac{V_h}{V_i} \approx \frac{C^h - C^a}{C^a} n_0 \quad (2)$$

where $C^H = 8.79 \text{ mol/cm}^3 (\text{CH}_4\cdot6\text{H}_2\text{O})$ is the concentration of methane in hydrate, and superscripts $b$ and $a$ refer to before and after hydrate formation. The gas concentration $C^b$ can be higher in the nano pores of high specific surface sediments than in bulk fluids (for example, 50% higher in 10 nm pores). Before hydrate formation, the concentration of CH$_4$ in water can reach $C^b \sim 0.08$-to-0.20 mol/kg (for PT conditions $P < 25 \text{ MPa}$ and $T < 15 \degree \text{C}$). The concentration of gas in water after hydrate formation is approximately half of the gas concentration in water in the absence of hydrate (Duan and Mao, 2006; Duan and Sun, 2003). Order of magnitude analyses for sediments at a water pressure of 20 MPa show that the volume fraction of segregated hydrate that forms from dissolved gas ranges between $F_h = 0.6\%$ for low specific surface kaolinites at 50 mbsf and 4\degree C, to more than $F_h = 1.7\%$ for a montmorillonitic layer at 250 mbsf and 9\degree C (Jang and Santamarina, 2016b).

Displacive hydrate compresses the sediment when formation takes place under zero-lateral strain boundary conditions. The volumetric strain in the surrounding sediment is (1D configuration):

$$e_{vol} = \frac{\Delta L}{L} = \frac{e^h - e^a}{(1 + e^a)} = F_h \quad (3)$$

Sediment compaction under isotropic or zero-lateral strain conditions follows Terzaghi’s consolidation model. The change in void ratio $e^b$-$e^a$ from the initial void ratio $e^b$ before hydrate formation under effective stress $\sigma^b$, to void ratio $e^a$ after hydrate formation reflects the associated change in effective stress,

$$e^b - e^a = C_c \log \left( \frac{\sigma^a}{\sigma^b} \right) \quad (4)$$

where $\sigma^a$ is the effective stress in the sediment after hydrate formation and $C_c$ is the compression index of hydrate free sediments. Equations (3) and (4) combine to anticipate the change in stress in the hydrate-free sediment that surrounds the hydrate mass:

$$\log \left( \frac{\sigma^a}{\sigma^b} \right) = F_h \left( \frac{1 + e^a}{C_c} \right) \quad (5)$$

For example, a hydrate saturation of $F_h = 5\%$ will cause a 40% increase in stress in the fine-grained sediments from the Ulleung basin, $\sigma^a/\sigma^b = 1.4$ ($C_c = 1.19$, and in situ void ratio $e_o = 2.2$ - Lee et al., 2011), and a 60% increase in the Hydrate Ridge formation, $\sigma^a/\sigma^b = 1.6$ ($C_c = 0.568$, $e_o = 1.35$ - Tan et al., 2006).

### 3.2. Water-limited hydrate formation (water and mineral mass conservation)

The previous analysis assumed no external gas supply. Next, consider gas supply via gas-driven fractures. Gas invasion forms gas-filled fractures in fine-grained sediments when the capillary pressure difference between the gas and pore water exceeds the effective stress (Shin and Santamarina, 2011; Sun and Santamarina, 2019). After gas invasion, hydrate formation extracts water from the surrounding sediment and causes sediment compaction similar to cryogenic suction (Fig. 5). Equations (3) and (4) predict the ensuing changes in effective stress and void ratio.

---

**Fig. 2.** Natural specimens with segregated hydrate in fine-grained sediments. (a, d, e, f, g, h) X-ray projections: bright areas correspond to the low-density hydrate mass. (b) 3D CT scan rendition of the segregated hydrate, where the sediment is made transparent. (c) Slice of a 3D CT scan – segregated hydrate lenses appear as dark lines. Sources: a,b,c (Lee et al., 2011); d (Collett et al., 2008); e (Tes et al., 2011); f (Boswell et al., 2007); g (Zhang et al., 2014); h (Yamamoton et al., 2012).
3.3. Near-surface vertical lenses

The state of stress near the seafloor is typically in a “\(k_0\)-condition”, hence, the vertical effective stress is the major principal stress \(\sigma'_z = \sigma'_1\) and the horizontal effective stress is \(\sigma'_{\text{hor}} = k_0 \sigma'_z\), where \(k_0 \approx 1 - \sin \phi\) and \(\phi\) is the sediment friction angle (Mayne and Kulhawy, 1982; Shin and Santamarina, 2009). The increase in horizontal stress due to hydrate formation depends on the lens length-to-spacing ratio \(L/s\). For long and

Fig. 3. Natural specimens with segregated hydrate in fine-grained sediments, photographed immediately after recovery and fast depressurization. Sources: (a, b, e, f) image courtesy of NGHP 01; (c) Park et al., 2008; (d) Zhang et al., 2014; (g, l) courtesy of Oleg Khivstov; (h, j, k, l) courtesy of GEOMAR.

Fig. 4. Slice of a micro-CT tomogram showing segregated hydrate growth within a gas-driven fracture in a clayey sediment (Laboratory study documented in Lei and Santamarina, 2018).
parallel lenses, the zero lateral strain condition applies and the stress ratio and associated void ratio changes evolve as predicted by Equations (2) and (4).

For high separation, the maximum increase in horizontal effective stress against the lens relates to the stress ratio at passive failure. Therefore, the maximum anticipated increase in the horizontal effective stress against a vertical lens is

$$\frac{\sigma_{\text{max}}^b}{\sigma_{\text{ini}}^b} = \frac{k_p}{k_o} = \frac{1 + \sin \phi}{(1 - \sin \phi)^2}$$

where superscripts $b$ and $a$ refer to before and after hydrate formation. For typical fine-grained marine sediments with $\phi = 15°$-to-$25°$, the horizontal effective stress after hydrate formation could be 2 to 4 times higher than before hydrate formation. As a first-order approximation, let's consider Terzaghi's consolidation model here as well $\sigma^b - \sigma^a = C_c \log (\sigma^a/\sigma^b)$, where $\sigma^a/\sigma^b$ is obtained from Equation (6). Then, we can anticipate a decrease in void ratio $\epsilon^b - \epsilon^a = 0.36$-to-$0.72$ for the Ulleung Basin sediments, and $\epsilon^b - \epsilon^a = 0.17$-to-$0.34$ for Hydrate Ridge sediments (compressibility values $C_c$ from Lee et al., 2011 and Tan et al., 2006).

3.4. Near-surface horizontal lenses

Lenses will grow along horizontal layers when stratigraphy rather than stress controls hydrate formation, such as observed at the Sea of Okhotsk (Shoji et al., 2005) and Hydrate Ridge (Bohrmann et al., 2002). The burial depth $H$ determines the normal vertical effective stress on the lens; from the theory of elasticity (plain strain condition – Gdoutos, 2006)

$$\frac{\sigma_{\text{ini}}^a - \sigma_{\text{ini}}^b}{\sigma_{\text{ini}}^b} = \frac{G}{1 - \nu} \frac{t_h}{L}$$

Associated void ratio changes relate to the vertical strain increment (drained condition)

$$\epsilon_{\text{vertical}} = \frac{\Delta \epsilon}{1 + \epsilon^a} = \frac{(\sigma_{\text{ini}}^a - \sigma_{\text{ini}}^b)_{\text{vert}}}{E} = \frac{G}{1 - \nu} \frac{t_h}{2G(1 + \nu)} \frac{1}{L} = \frac{t_h}{L} \frac{1}{2(1 - \nu)}$$

where the elastic parameters of the virgin hydrate free sediments are Poisson’s ratio $\nu$ and the shear modulus $G$. Note that the shear modulus is a function of the effective stress in sediments. Whereas previous cases assumed 1D-conditions, here we analyze a short isolated lens; in this case, Equation (8) predicts that the change in effective stress is a function of the hydrate lens geometry.

3.6. Concluding remarks on surrounding sediments

In conclusion, deformation and fluid-flow boundary conditions determine the stress and void ratio changes in the sediment that surrounds segregated hydrate masses. In all cases, void ratio and effective stress changes are proportional to the hydrate volume fraction $F_h$.

4. Surrounding sediment: properties after lens formation

The sediment void ratio and effective stress after hydrate formation help us estimate the physical properties of the hydrate-free sediment that surrounds hydrate lenses, including stiffness, strength and conductivities (thermal, hydraulic and electrical). Table 1 lists a selection of robust physics-based correlations between the properties of the surrounding sediment after hydrate formation and the sediment properties before hydrate formation, collected from published works. These correlations rely on information such as the effective stress and/or porosity obtained from the previous analyses. Stiffness and strength increase with effective stress. Thermal, hydraulic and electrical conductivities respond to changes in the volume fraction of water, i.e., void ratio $\epsilon$ or porosity $n$.

The stiffness, strength, and thermal conductivity are higher after hydrate formation. On the other hand, the sediment hydraulic conductivity decreases during compaction. The evolution of the electrical conductivity is complex and combines: reduction in porosity, early increase in fluid electrical conductivity due to ion-exclusion, and time-dependent excess ion diffusion into the far field.

5. Numerical Simulations – Results

We used COMSOL, a commercially available multi-physics simulator, to study Laplacian fields and Abaqus for mechanical properties including stiffness and strength. In both cases, we optimized mesh resolution and confirmed numerical models against available analytical solutions. Table 2 lists the parameters used in the numerical simulations. Values before and after hydrate formation are consistent with the

Fig. 5. Cryogenic suction during ice formation in a kaolinite paste specimen as the freezing front advances from the top. (a) Vertical slice of a micro-CT tomogram. (b) The CT number measured along the vertical line highlighted in the tomographic slice (Note: the CT number correlates with density). From top to bottom: ice dominant “frozen” zone, kaolinite compacted by cryogenic suction, and kaolinite at the initial condition (after Viggiani et al., 2015).
Table 1
Change in the physical properties of hydrate-free sediments due to changes in effective stress and/or porosity after displacive hydrate formation - Physics-based correlations extracted from previous studies.

<table>
<thead>
<tr>
<th>Property</th>
<th>Based on</th>
<th>Property(^{(\text{after})}/\text{Property}(^{(\text{before})}))</th>
<th>Constitutive parameters (References)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear stiffness</td>
<td>Hertz</td>
<td>[ G = A \left( \frac{\sigma^0}{\sigma_a} \right)^b ]</td>
<td>[ \beta = 0.25-0.45 ] (Cha et al., 2014)</td>
</tr>
<tr>
<td>Shear strength</td>
<td>Coulomb</td>
<td>[ \tau = c + \tan \phi ]</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>Geometric mean</td>
<td>[ K_t = \left( \frac{K_a \cdot K_b}{S_{s 2}} \right)^{1/n} ]</td>
<td>[ K_{w}/K_t = 3-5 ] for clay (Horai and Simmons, 1969; Waite et al., 2009)</td>
</tr>
<tr>
<td>Hydraulical conductivity</td>
<td>Kozeny-Carman</td>
<td>[ K_h = \left( \frac{K_a \cdot K_b}{S_{s 2}} \right)^{1/n} ]</td>
<td>[ \chi = 4-6 ] (Ren and Santamarina, 2018)</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>Archie</td>
<td>[ K_e = p \cdot \eta \cdot K_f ]</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Porosity \( n = V_v/V_s \); void ratio \( e = V_v/V_s \). Then: \( e = e/(1 + e) \).
- Expressions assume that same constitutive parameters apply to the sediment before and after hydrate formation – Example: \( \lambda, \beta, \tan \phi, \chi, \psi, \varsigma \), and specific surface \( S_s \).
- The pore fluid electrical conductivity \( K_f \) increases due to ion exclusion during hydrate formation. However, we assume that ionic diffusion brings the pore fluid conductivity back to its original values in the long term, and \( K_\beta \) cancels in the final expression for the electrical conductivity ratio.

sediment compaction process and the hydrate volume fraction, as discussed above, and reflect physical correlations summarized in Table 1.

5.1. Conduction phenomena

Let’s consider conduction phenomena so that flow \( q \) is a linear function of the gradient in the potential \( \Psi \) along the \( x_i \) direction,

\[
q_i = K_i(x) A \frac{\partial \Psi}{\partial x_i} \tag{9}
\]

where \( K \) is the conductivity and \( A \) is the cross sectional area (Note: the same analysis applies to thermal, hydraulic and electrical conduction).

Heat transfer studies in COMSOL modelled the medium with \( \sim 60,000 \) triangular 2D-elements (mesh size varies with lens configuration). The thermal conductivity is 2.6 Wm\(^{-1}\)K\(^{-1}\) for the water-saturated hydrate-free sediment, and 0.57 Wm\(^{-1}\)K\(^{-1}\) for the segregated hydrate mass (Note: the hydrate thermal conductivity \( K_T \) is similar to that of water, and four times smaller than the thermal conductivity of ice (Rosenbaum et al., 2007; Warzinski et al., 2008)).

Fig. 6 demonstrates the influence of a segregated hydrate lens on the temperature field: thermal conduction is significantly lower across the hydrate mass than in the surrounding sediment, therefore, temperature contour lines are closer to each other within the hydrate mass.

Fig. 7 compiles numerical simulation results for the effective thermal conductivity \( K_T \) as a function of lens orientation \( \theta \) and hydrate volume fraction \( F_h \). A single lens confers anisotropy to thermal conductivity, and the effective thermal conductivity \( K_T \) of the hydrate-bearing sediment tracks the analytical solution for anisotropy in layered media,

\[
K_T = \left[ \cos \theta \sin \theta \left[ K_0 \cos^2 \theta + K_{90} \sin^2 \theta \right] \right] + (K_{90} - K_0) \sin^2 \theta \tag{10}
\]

where \( K_0 \) and \( K_{90} \) are the effective thermal conductivities of hydrate-bearing sediments when the lens is perpendicular \( \theta \) = 0° and parallel \( \theta \) = 90° to the thermal gradient. We simulated other segregated hydrate morphologies, such as two intersecting lenses that form a cross-shaped hydrate mass (refer to Figs. 2 and 3); in this case, the effective thermal conductivity of the hydrate-bearing sediment was not sensitive to orientation. These results correspond to elemental configurations that can be assembled to simulate hydrate morphologies in Figs. 2 and 3.

In general, the effect of sediment compaction around the hydrate lens can be equally or more important to the effective thermal conductivity of the medium than the orientation of the lens (refer to \( K_T^b \) and \( K_T^b \) in Fig. 7 and Table 2). The change in thermal conductivity \( \Delta K_T = K_T^b - K_T^b \) is 0.2 Wm\(^{-1}\)K\(^{-1}\), while the effect of lens orientation is \( \Delta K_T = K_{90} - K_0 \) is 0.17 Wm\(^{-1}\)K\(^{-1}\) (thick lens - Fig. 7). This result highlights the effect of displacive hydrate formation and the ensuing

Table 2
Parameters used in analyses and numerical simulations. Values for sediments correspond to conditions after hydrate formation (Refer to Table 1). Sources: (1) Huang and Fan, 2005, (2) Cortes et al., 2009, (3) Waite et al., 2009, (4) Helgerud et al., 2009, (5) Durham et al., 2003.

<table>
<thead>
<tr>
<th>Property</th>
<th>Hydrate</th>
<th>Water-saturated sediment before hydrate formation</th>
<th>Water-saturated sediment after hydrate formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment Change (hydrate volume fraction ( F_h = 5% ) → ( \sigma^0/\sigma_a = 1.5 ))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void ratio</td>
<td>n/a</td>
<td>0.76</td>
<td>0.67</td>
</tr>
<tr>
<td>Stress [kPa]</td>
<td>n/a</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity ( K_T ) [W m(^{-1}) K(^{-1})]</td>
<td>0.57 (1)</td>
<td>2.6 (2)</td>
<td></td>
</tr>
<tr>
<td>Heat Capacity ( C_p ) [J kg(^{-1}) K(^{-1})]</td>
<td>2031 (3)</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>Density ( \rho ) [kg m(^{-3})]</td>
<td>937</td>
<td>1937</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear Modulus ( G ) [MPa]</td>
<td>3700 (4)</td>
<td>65</td>
<td>89</td>
</tr>
<tr>
<td>Elastic Modulus ( E ) [MPa]</td>
<td>9600 (4)</td>
<td>157 (drained)(^*)</td>
<td>214 (drained)(^*)</td>
</tr>
<tr>
<td>Bulk Modulus ( B ) [MPa]</td>
<td>8400 (4)</td>
<td>87 (drained)(^*)</td>
<td>119 (drained)(^*)</td>
</tr>
<tr>
<td>Poisson’s Ratio ( v )</td>
<td>0.31 (4)</td>
<td>0.3 (large strain)</td>
<td>0.3 (large strain)</td>
</tr>
<tr>
<td>Yield, failure criterion</td>
<td>Elasto-plastic</td>
<td>Cam Clay (^{q = M p'})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( \sigma^\text{v} = 25 \text{ MPa} ) (^{5})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^*\) From \( G \) assuming drained conditions and small-strain Poisson’s ratio of \( \nu = 0.2 \).
\(^b\) Cam-clay parameters: compression index \( C_c = 0.5 \), void ratio at 1 kPa \( e_{1kPa} = 2.0 \), swelling index \( C_s = 0.05 \); failure stress ratio \( M_f = 0.98 \).
\(^c\) Calculated by heat capacities of clay mineral \( C_{p_m} = 894.4 \text{ J kg}^{-1} \text{ K}^{-1} \) and water \( C_{p_w} = 4218.1 \text{ J kg}^{-1} \text{ K}^{-1} \) and their weight fractions \( C_p = C_{p_m}(1/(1 + w)) + C_{p_w}(w/(1 + w)) \), where \( w \) is the water content.
changes in physical properties of the surrounding hydrate-free sediments (see Table 1).

The same numerical algorithm applies to other forms of conduction (Equation (9)). However, the hydraulic and electrical conductivities are much smaller for the hydrate mass than for the sediments; therefore, segregated hydrate lenses can cause pronounced reductions in hydraulic and DC electrical conductivities, as well as marked conductivity anisotropy in sediments.

5.2. Mechanical properties

Mechanical properties reflect internal equilibrium and deformation compatibility within the sediment mass in the presence of segregated hydrate lenses. We explore the two asymptotic conditions necessary for constitutive models and numerical simulations, i.e., small-strain stiffness and strength, using 2D numerical simulations (Abaqus, plane strain; 4-node bilinear CPE4; ~3300 elements in stiffness simulations and ~8000 in strength studies).

**Small-strain Stiffness.** The effective Young’s modulus \( E = \Delta \sigma_z / \Delta \varepsilon_z \) relates a change in axial stress \( \Delta \sigma_z \) to the resultant axial strain \( \Delta \varepsilon_z \). For the purposes of small-strain response, the elastic hydrate mass is assumed to be “bonded” to the elastic soil mass so that there is no interface slippage. The stiffness of each component corresponds to the value inferred from shear wave velocity (Table 2). Fig. 8 presents the influence of an elliptical hydrate lens on the drained Young’s modulus of hydrate-bearing sediment, for two volume fractions and lenses at different orientations \( \theta \). The Young’s modulus is highest when lenses are aligned with the loading z-direction, i.e., \( \theta = 90^\circ \), and increases with...
hydrate saturation. Both simulations use the same sediment properties, therefore, the gap between the two trends is due to the hydrate mass only (differences in sediment stiffness associated with cryogenic suction would increase the separation between the two trends). The hydrate-sediment mechanical interaction is relevant at high lens inclinations only, and the stiffness anisotropy follows a $\sin^2 \theta$ trend (Fig. 8 - For comparison, thermal conductivity is not affected by interfacial mechanics, and its anisotropy follows $\sin^6 \theta$ trend - Equation (10), Fig. 7).

The bulk modulus $B = \Delta \sigma_o / \Delta \varepsilon_{vol}$ is the ratio between a change in isotropic stress $\Delta \sigma_o$ and the induced volumetric strain $\Delta \varepsilon_{vol}$. Deformation compatibility and stress equilibrium affect the internal stress field and the effective bulk stiffness of the hydrate-bearing sediment; consequently, the bulk modulus depends on the hydrate morphology and volume fraction. Numerical simulations confirm the effect of morphology for the same hydrate volume fraction $F_h = 4.7\%$ (3D, non-slip interface): a single elliptical lens (as in Fig. 6), and two intersecting flat hydrate layers that form a cross at the center of the specimen. Studies of hydrate morphology are conducted for the same type of interface to explore the independent contributions of morphology and interface. The numerically computed bulk moduli are $B = 182$ MPa for the elliptical lens, and $B = 269$ MPa for the cross-shaped lens (For reference: Hashin-Shtrikman bounds are $B_{up} = 271$ MPa and $B_{low} = 130$ MPa; the parallel and series configurations predict $B_{par} = 509$ MPa and $B_{ser} = 125$ MPa).

**Strength.** We investigate the drained strength of hydrate bearing sediments assuming an elasto-plastic hydrate behavior and "modified cam-clay" response for the surrounding sediment (cryogenically compacted to 450 kPa; parameters in Table 2 – Note: the failure conditions in Cam-Clay satisfy the frictional Mohr-Coulomb criterion, while volumetric and shear strains are physically linked through the yield surface). Simulations include two interface conditions between the hydrate mass and the surrounding sediment. The first interface is a non-slip condition and applies to rough and jagged lens morphology (Figs. 2 and 3); in this case, elements that form the hydrate lens share the same nodes as soil elements. The second interface is a “low friction" condition that is particularly relevant to smooth interfaces and dissociation studies; its simulation involves a thin Mohr-Coulomb layer with friction angle $\phi = 5°$.

Images in Fig. 9 show the strain field superimposed on distorted specimens with an elliptical hydrate lens (Note: simulations run on a 2.5:1 specimen slenderness). Fig. 9 summarizes the effect of interfacial conditions and lens orientation on strength mobilization at two vertical strain levels $\varepsilon_z = 5\%$ and $\varepsilon_z = 10\%$, before strain localization causes numerical instability. Results show:

- Non-slip interface: the presence of the hydrate mass has a minor effect on the mobilized specimen strength (both at $\varepsilon_z = 5\%$ and $\varepsilon_z = 10\%$). The lens rotates clockwise during deviatoric loading and
the upper part of the specimen deforms to the right. As rotation takes place, the vertical load shifts away from the centerline and causes a second moment effect. Second moment effects due to high deformation at $\varepsilon_z = 10\%$ cause a decrease in the “measured” strength for intermediate lens orientations.

- Low-friction interface: A lens with a low-friction interface weakens the specimen regardless of orientation. Large strains develop in the sediment near the lens tips and the specimen strength is severely diminished when the lens orientation favors slippage along the hydrate-sediment interface when the angle $\theta$ is $\approx 30°$. Two distinct deformed shapes evolve at $\varepsilon_z = 10\%$: the upper half slips along the lens and moves to the left of the specimen for $\theta \leq 45°$; however, the lens clockwise rotation prevails at $\theta \geq 60°$ and the specimen deforms to the right (Note: for a sediment friction $\phi = 25°$, failure takes place at an angle $45° + \phi/2 = 57.5°$). Large specimen deformations at $\varepsilon_z = 10\%$ cause second moment effects and lead to strength minima for lens orientations around $\theta \approx 30°$ and $\theta \approx 70°$.

- The effect of sediment strengthening due to cryogenic compaction is more pronounced on the specimen strength (shown on the left of Fig. 9) than the effect of the segregated hydrate mass, at least for these low hydrate saturations and for the assumed boundary conditions during hydrate formation.

More complex hydrate mass morphologies aggravate the need for numerical simulations to infer the physical properties of sediments with segregated hydrate lenses. Consider the case of two-intersecting hydrate lenses shown in Fig. 10:

- Bonded-interface: the steep lens experiences high stress as the soil wedge “hangs” from the stiffer hydrate mass (Fig. 10 – left).
- Low-friction interface: The upper sediment wedge slides along the steep lens, rests on the transverse lens and subjects it to high shear (Fig. 10 – right).

Once again, interface conditions and lens orientation affect the sediment-hydrate interaction. Also note pronounced differences in the sediment deformation in both cases.

6. Discussion

This section expands the scope of fine-grained sediments to fines-controlled sediments, assesses the applicability of effective media models and theoretical bounds, and suggests a reliable procedure for the estimation of the physical properties of fine-grained hydrate-bearing sediments.

6.1. Fines controlled?

There is evidence of segregated hydrate lenses in a wide range of sediments, besides homogeneous clays. In fact, fines can control both the mechanical and hydraulic properties of sediments even at relatively small mass fractions. For example, less than $10\%$ of low-plasticity kaolinite is enough to control the hydraulic conductivity of sand, and by the time the kaolinite mass fraction reaches $\sim 30\%$, the fines determine both mechanical and fluid flow properties (Park and Santamarina, 2017). These critical fines fractions are even lower for higher plasticity fines. Therefore, the fines fraction and the type of fines play a critical role on hydrate formation and ensuing properties.

Expeditions in the Krishna-Godavari Basin offshore India, the Ulleung Basin offshore South Korea, the Nankai Trough offshore Japan, and the Gulf of Mexico have frequently found significant fines contents in sediments labelled as “sands/silts” (Bahk et al., 2013; Flemings et al., 2018; Ito et al., 2015; Winters et al., 2014). Given the controlling role of fines, sediment characterization must emphasize the mass fraction of fines and their plasticity. The revised soil classification system RSCS properly captures the importance of fines on the sediment response (Park and Santamarina, 2017; Jang and Santamarina, 2016a).
6.2. Effective media models – theoretical bounds

Effective media models and theoretical bounds facilitate the estimation of the physical properties of hydrate-bearing sediments, and are valuable alternatives/complements to numerical simulations. Table 3 summarizes salient models and upper-lower bound estimates for the properties of segregated-hydrate bearing fine-grained sediments (details in Lei, 2017). Underlying assumptions focus on the distribution of phases: inclusions such as spheres, needles, disks and penny cracks (Berryman, 1980a, 1980b; Walpole, 1969; Walsh, 1965; Wu, 1966); homogeneous inclusion distribution in self-consistent models (Berryman, 1995; Ghosh et al., 2010). The Hashin-Shtrikman bounds are often preferred over the broader parallel and series bounds (Hashin and Shtrikman, 1962, 1963). However, the presence of segregated hydrate lenses often renders parameters that fall closer to the outer parallel and series bounds (for example, see thermal conductivity data in Cortes et al., 2009); in other words, the narrower Hashin-Shtrikman bounds do not always constrain the physical properties of sediments in the presence of segregated hydrate lenses.

6.3. Suggested procedure to estimate the properties of sediments with segregated hydrate

Analyses in previous sections show that displacive hydrate formation changes the physical properties of the surrounding hydrate-free sediment, and often confers the medium anisotropic behavior. The following steps provide guidelines for the estimation of physical properties (refer to previous sections for details):

- Assess whether the sediment is fines-controlled. If it is fines-controlled, assume various segregated hydrate morphologies and volume fractions.
- Consider boundary conditions during hydrate formation, estimate the stress and void ratio changes associated with hydrate formation.

Table 3
Summary of physical models and bounds for elastic parameters and conductivities – Compiled from previous studies.

<table>
<thead>
<tr>
<th>Kuster and Toksoz (1)</th>
<th>Self-consistent (2) For elastic parameters</th>
<th>Self-consistent (2) For conductivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hashin Shtrikman Bounds</td>
<td>For elastic parameters</td>
<td>Hashin Shtrikman Bounds</td>
</tr>
<tr>
<td>Parallel and Series Bounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulk Modulus $P^{th}$</th>
<th>$[(B_{th} + 4G_{th}/3)/(B_{th} + 4G_{th}/3)]$</th>
<th>$[(B_{th} + 4G_{th}/3)/(B_{th} + 4G_{th}/3)]$</th>
<th>$[(B_{th} + 4G_{th}/3)/(B_{th} + 4G_{th}/3)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Modulus $Q^{th}$</td>
<td>$[(G_{th} + 4G_{th}/3)/(G_{th} + 4G_{th}/3)]$</td>
<td>$[(G_{th} + 4G_{th}/3)/(G_{th} + 4G_{th}/3)]$</td>
<td>$[(G_{th} + 4G_{th}/3)/(G_{th} + 4G_{th}/3)]$</td>
</tr>
<tr>
<td>Conductivities $\zeta_i$</td>
<td>$\frac{1}{(K_i + 3G_i)}$</td>
<td>$\frac{1}{(K_i + 3G_i)}$</td>
<td>$\frac{1}{(K_i + 3G_i)}$</td>
</tr>
</tbody>
</table>

Parameters $\delta = \frac{\theta G + \zeta}{3\theta + \zeta}$, $\zeta = \frac{\theta B + 3\theta}{3\theta + 2\zeta}$.

Note.

- Randomly oriented inclusion shapes: spheres, needles, disks and penny crack.
- Upper and lower bounds: switch components.
- Volume fraction $F$, bulk modulus $B$, shear modulus $G$ and conductivity $K$.
- Subscripts: total medium $T$, constituent with max or min value $m$, and $i$th constituent.
- Shape factors $P$, $Q$ and $Z$ for the Kuster-Toksoz and self-consistent models.


---

**Fig. 10.** Fine-grained sediments with a cross-shaped hydrate lens subjected to 10% vertical strain. (a) Non-slip interface. (b) Low-friction hydrate-sediment interface. The color scale ranges from gray to red with increasing intensity of the shear stress. Cross lenses deform together with the surrounding sediments and experience localized stress close to the lens intersection. Note: same boundary condition as in Fig. 9. The initial condition and all parameters correspond to a sediment subjected to 450 kPa, hydrate saturation $F_h = 4.71\%$. See Table 2 for model parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
and compute the modified properties for the hydrate-free sediment that surrounds the hydrate mass.

- Use numerical simulations or analytical models to compute the properties of the hydrate-bearing sediment. Consider hydrate configurations that are both parallel and normal to the imposed gradients or stresses. Vary hydrate-sediment interfacial conditions to represent field conditions of interest (e.g., rough and weak-frictional).
- Adopt an anisotropic variation with lens orientation \( \theta \) that reflects the morphology of the hydrate mass.

7. Conclusions

The physical properties of hydrate-bearing sediments are critical for the analysis of mechanical stability and settlement, heat and fluid flow evaluations, and the design of gas production strategies. However, the assessment of physical properties is particularly challenging in fine-grained sediments due to (1) inherent difficulties in hydrate formation in the laboratory, and (2) specimen size requirements for a representative volume in fine-grained sediments with segregated gas hydrate. This study has circumvented these limitations by combining conceptual models and numerical simulations, leading to the conclusions below:

- Hydrate formation is grain-displacive when \( \sigma' R < 2 \pi \Gamma_{\text{hw}} \approx 0.2 \text{ to } 0.3 \text{ N/m} \). Therefore, segregated hydrate is to be expected in fine-grained sediments (small \( R \)) and/or shallow formations (low \( \sigma' \)).
- Fines control the sediment mechanical and transport responses even at a relatively small fines fraction. Fines-controlled sediments are prone to segregated hydrate formation. In fact, sediments may exhibit hydrate lenses even when 80–90% of their mass is sand.
- Grain-displacive hydrate growth and cryogenic suction alter the physical properties of the “hydrate-free” sediment that surrounds the segregated hydrate mass. Stress and fluid flow boundary conditions determine the changes in effective stress and void ratio for a given hydrate volume fraction.
- The physical changes in the surrounding hydrate-free sediment can be more important on overall sediment properties than the presence of hydrate itself, as shown for the cases of strength and thermal conductivity. Thus, numerical simulations and effective media models need to consider both the hydrate morphology and the updated properties of the sediments around segregated hydrates.
- The effect of segregated hydrate on effective media properties reflects the hydrate morphology (shape, persistence, thickness, orientation), the physical properties of both the hydrate and sediment, and the interaction between the hydrate mass with the sediment. In the case of mechanical properties, this interaction implies compatibility of deformations and equilibrium (as highlighted by bulk modulus estimations); in the case of transport properties it implies continuity and conservation (heat, mass, and charge).
- Sediments with parallel hydrate lenses exhibit anisotropic conductive and mechanical properties, however anisotropy is less pronounced when lenses form intersecting cross-configurations.
- Laboratory formation and recovered cores show that the interface between the segregated hydrate and the surrounding sediment is rough and jagged. Yet, hydrate-sediment interaction evolves during dissociation and very low frictional resistance is anticipated at the hydrate-sediment interface.

Acknowledgements

Support for this research was provided by the U.S. Department of Energy, the Goizueta Foundation, and the KAUST endowment. Lingli Pan tested numerical simulations. Gabrielle E. Abelskamp edited the manuscript. All the data used in this article are included in the tables and figures.

Notation

- \( A \) Cross sectional area
- \( B \) Bulk modulus (Subscripts: low & up: Hashin-Shtrikman bounds; par & ser: parallel and series)
- \( C_d \) Hydrate-water pressure difference against the grain's cross-sectional area
- \( C_r \) Pull due to hydrate-water interfacial tension \( \Gamma_{\text{hw}} \) around the grain perimeter
- \( C_v \) Gas concentration (Superscripts: \( b \) before and \( a \) after hydrate formation)
- \( C^H \) Concentration of methane in hydrate
- \( e \) Void ratio (Superscripts \( b \) & \( a \) = before and after hydrate formation. Subscript: 0 = in situ)
- \( E \) Young's modulus
- \( F_h \) Hydrate volume fraction
- \( G \) Shear modulus of virgin sediments
- \( H \) Burial depth
- \( k_o \) Lateral earth pressure coefficient (Subscripts: \( a \) at rest, \( p \) = at passive failure)
- \( K \) Conductivity
- \( K_T \) Thermal conductivity (Subscripts: \( \text{hyd} \) = hydrate, \( \text{ice} \) = ice, \( w \) = water. Superscripts: \( b \) = before and \( a \) = after hydrate formation)
- \( K_0 \) Effective thermal conductivity of hydrate-bearing sediment (Subscript: 0 = when the lens is perpendicular and 90 = when the lens is parallel to the thermal gradient)
- \( L \) Hydrate lens length
- \( n \) Global porosity (Subscript 0 = initial)
- \( N \) Skeletal force
- \( P_h \) Pressure in the hydrate mass
- \( q \) Flow rate
- \( R \) Grain radius
- \( R_{\text{pore}} \) Pore throat radius
- \( s \) Spacing between adjacent lenses
- \( S_h \) Hydrate saturation
- \( t_b \) Lens thickness
- \( u_w \) Pressure in water
- \( V \) Volume (Subscripts: \( h \) = hydrate, \( t \) = total sediment volume, \( v \) = voids)
- \( x_i \) ith direction in the coordination
- \( \alpha \) Ratio between pore radius and grain radius
- \( \nu \) Strain (Subscript: \( z \) = axial in \( z \) direction, \( vol \) = volumetric)
- \( \phi \) Sediment friction angle
- \( \Gamma_{\text{hw}} \) Hydrate-water interfacial tension
- \( \nu \) Poisson’s ratio of virgin sediments
- \( \theta \) Lens orientation
- \( \sigma' \) Effective stress (Superscripts: \( b \) = before and \( a \) = after hydrate formation. Subscripts: 0 = isotropic, \( z \) = vertical, \( h_r \) = horizontal, \( n_r \) = normal to lens, 1 = major principal)
- \( \Psi \) Potential

References
