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A broad diversityof biological organisms and systems interact with soil in ways that facilitate their growth
and survival. These interactions are made possible by strategies that enable organisms to accomplish
functions that can be analogous to those required in geotechnical engineering systems. Examples include
anchorage in soft andweak ground, penetration into hard and stiff subsurface materials andmovement in
loose sand. Since the biological strategies have been ‘vetted’ by the process of natural selection, and the
functions they accomplish are governed by the same physical laws in both the natural and engineered
environments, they represent a unique source of principles and design ideas for addressing geotechnical
challenges. Prior to implementation as engineering solutions, however, the differences in spatial and
temporal scales and material properties between the biological environment and engineered system must
be addressed. Current bio-inspired geotechnics research is addressing topics such as soil excavation and
penetration, soil–structure interface shearing, load transfer between foundation and anchorage elements
and soils, and mass and thermal transport, having gained inspiration from organisms such as worms,
clams, ants, termites, fish, snakes and plant roots. This work highlights the potential benefits to both
geotechnical engineering through new or improved solutions and biology through understanding of
mechanisms as a result of cross-disciplinary interactions and collaborations.
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INTRODUCTION
Advances in engineering that allow humans to harvest
renewable wind and thermal energy, facilitate exploration
of remote areas and increase the sustainability of construc-
tion materials and processes, along with emerging issues
such as growing population densities in urban centres
and climate change, continually challenge geotechnical
engineers to develop more efficient, sustainable and multi-
functional solutions. Recent research has advanced solutions
that seek to address these challenges. For example, thermo-
active foundations provide structural support and thermal
regulation of the internal temperature of buildings (e.g.
Brandl, 2006; Amatya et al., 2012; Murphy et al., 2015) and
bio-cementation techniques such as microbially induced
calcite precipitation provide ground improvement alterna-
tives that reduce the use of materials with a high carbon
dioxide footprint, such as cement (e.g. DeJong et al., 2006;
Whiffin et al., 2007). However, there are numerous other
challenges that have not been resolved. Site characterisation
under existing structures such as dams and buildings or
even on extra-terrestrial bodies is often unfeasible; soil–
structure interfaces often represent weak links in the
mechanical stability of engineered systems, such as landfill
liners and capping systems; and new foundation solutions
for offshore wind turbines in deep water that are
economical yet stable under complex loading conditions
are needed.

The biological strategies that living organisms have
evolved to accomplish certain functions represent a rich
source of principles and design ideas for translation to
human-made systems (Dudley & Gans, 1991; Vogel, 1998;
Autumn et al., 2002; Irschick & Higham, 2016). A broad
diversity of organisms, including many plants, mammals,
reptiles, birds, fish, insects, molluscs, microbes and fungi,
interact with soil in various ways that facilitate their growth,
survival and reproduction. These interactions include
penetration of hard and stiff materials, anchorage in soft
soils, movement in loose granular materials and control
of mass and thermal transport in granular materials. Since
these tasks are governed by the same physical laws in both
the natural and engineered environments, bio-inspiration

can stimulate the generation of innovative alternative
solutions to address geotechnical challenges.
In the last decade, bio-inspiration has led to advances in

topics such as soil penetration and excavation, soil–structure
interfaces, load transfer and anchorage and mass and heat
transport. For example, research on the excavation behaviour
of ants has shown that they use only a fraction of a per cent
of the energy that human technologies require to excavate
the same amount of soil (from 104 to 105 J/m3 for ants as
opposed to 107 to 108 J/m3 for tunnel-boring machines
(Soga, 2011)). Similarly, tree root systems can be tens to
hundreds of times more efficient in transferring load per unit
volume or mass material used than conventional shallow
and deep foundations (Burrall et al., 2020). These and other
similar examples illustrate the advancements that
bio-inspired design can bring to geotechnical engineering.
The goals of this paper are to provide a synthesis of the
potential benefits, challenges and needs for the bio-inspired
geotechnics field, to summarise design methods and
relevant concepts from the broader bio-inspired design field
and to provide a review of ongoing research in bio-inspired
geotechnics.

THE ROLE OF BIO-INSPIRATION IN ADDRESSING
GEOTECHNICAL CHALLENGES
Bio-inspired design consists of abstracting and adapting a

biological solution to solve an engineering problem. This is
possible in part because the biological world contains a
diversity in designs, materials and mechanical systems of
varying complexity to solve particular problems (Vogel,
2013). However, the differences between the spatial and
temporal scales relevant to biological processes and geo-
technical engineering applications can be significant and
must be addressed (DeJong et al., 2017; Frost et al., 2017).
Specifically, living organisms (i.e. animals and plants) are
typically much smaller and live at shallower depths (i.e. at
lower overburden stresses) than many geotechnical systems.
Thus, bio-inspiration requires careful evaluation of the
upscaling potential before biological strategies can be
implemented to develop geotechnical solutions. Fig. 1(a)
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illustrates a process for bio-inspired design, along with
examples of research in three areas of ongoing research.
This process for bio-inspired design consists of: (a) under-
standing the biological principles; (b) identifying a biological
strategy; (c) formulating an hypothesis regarding the under-
lying processes of the biological strategy; (d ) testing the
hypothesis; (e) evaluating the upscaling potential of the
biological strategy; and ( f ) evaluating the systems-level
performance.
The first example outlined in Fig. 1(b) is for a bio-inspired

solution for geotechnical engineering interfaces that mobilise
directionally dependent interfacial friction. These surfaces are
inspired by the belly scales of snakes and could benefit
applications such as foundations for wind turbines. An initial
hypothesis is developed based on the understanding of load
transfer mechanisms at soil–structure interfaces along with
quantification of the morphology of the scales of different
snake species, which revealed their asymmetric sawtooth shape
(Martinez et al., 2019). Frictional directionality is hypoth-
esised to be due to passive resistances generated as the soil is
sheared against the sharp edge of the bio-inspired scales (i.e.
cranial direction), which are absent when the soil is sheared
along the scales (i.e. caudal direction). The performance of
these surfaces has been tested through laboratory experiments

and their implementation towards deep foundations has been
evaluated through centrifuge modelling (O’Hara & Martinez,
2020; Martinez & O’Hara, 2021). In the future, piles with
snakeskin-inspired surfaces could be deployed to decrease the
soil resistance during installation and increase the skin friction
during tensile pullout loading. Figs 1(c) and 1(d) present how
the same approach has been applied towards the development
of self-burrowing probes for site characterisation and sensor
deployment in locations with limited access through numerical
modelling, cavity expansion analyses and field prototypes
(Chen et al., 2020, 2021; Tao et al., 2020), as well as towards
the development of root-inspired anchorage systems for
retaining structures through laboratory and field testing
(Mallett et al., 2018; Burrall et al., 2020).

BACKGROUND, CONSIDERATIONS AND
CHALLENGES FOR BIO-INSPIRED GEOTECHNICS
Biological strategies can be viewed as successful solutions

for accomplishing tasks that are analogous to those
required in engineered systems. However, there are important
differences between the natural and engineered environments
in terms of spatial and temporal scales and materials. In
addition, biological strategies are often complex due to their
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multi-functionality and adaptability, posing challenges for
scientists and engineers to define them unambiguously. This
section provides a synthesis of concepts, considerations and
challenges for research in bio-inspired geotechnics.

Biology, evolution and bio-inspiration
Evolution is the process through which gene expressions

adapt over consecutive generations to increase species
performance in the surrounding environment (Turcotte &
Levine, 2016). The individuals that possess behavioural,
physiological or morphological traits that give them an
advantage to survive will be favoured by natural selection
(Endler, 1986). The variations that increase the likelihood to
survive and reproduce will prevail, while variations that make
individuals less likely to survive will disappear. The dis-
ciplines of evolutionary biology, biomechanics and ecology
are concerned with understanding biological mechanisms
and materials, form–function relationships and interactions
between organisms and their environment. These mechan-
isms, materials, relationships and interactions constitute the
basis of the biological strategies that are important for
engineering and technology development because they
represent the only known alternatives to human technology
(Vogel, 1998).

Bio-inspired and bio-mimetic design have been used in
fields such as manufacturing, nanoengineering and comput-
ing for several decades (e.g. Ueda et al., 2001; Alting et al.,
2003; Kar, 2016). Herein, bio-inspiration is defined as a
broad term referring to the application of biological
strategies to solve engineering problems, while bio-mimetics
or bio-mimicry typically refers to direct translation of
biological shapes and configurations to engineering pro-
blems. It is noted that bio-inspired geotechnics differs from
the growing sub-field of bio-mediated geotechnics, which
directly uses living organisms or biological processes to
improve engineering properties, such as the use of bacteria to
produce bio-cementation, the use of bio-films to reduce
permeability and the use of vegetation to stabilise slopes and
reduce soil erosion by means of mechanical reinforcement
(e.g. Danjon et al., 2008; DeJong et al., 2013).

Challenges and considerations for bio-inspired geotechnics
Biological strategies are limited and constrained based on

the ancestry of an organism and the reliance on certain

biomaterials. Animals and plants need to simultaneously
survive, grow, attract mates and depart from ancestral forms
to develop new strategies (Vogel, 1998; Fish & Beneski,
2014). For this reason, biological strategies are multifunc-
tional, redundant, robust and efficient; however, they are not
optimised for a single specific function and they work under
a principle of ‘just enough’ (Lauder, 1982, 1996; Fish &
Beneski, 2014; Irschick & Higham, 2016).Their translation
to the engineering domain must thus be accomplished with
careful considerations of the differences in demands and
conditions between the biological and engineered systems.
As noted earlier, one of the most important challenges in

implementing bio-inspired solutions towards engineering
is the differences in relevant spatial and temporal scales
between the biological and engineering domains. For
instance, geotechnical systems, such as foundations, tunnels
and anchors, can reach sizes of metres to tens of metres in
diameter and hundreds of metres to kilometres in length,
while living organisms are typically smaller than 10 cm in
diameter and shorter than several metres in length (except for
some large trees). Another difference is the magnitude of
applied stresses and forces. Specifically, most geotechnical
structures are installed at depths between 5 and 50 m below
the ground surface and are subjected to stresses in the kPa
to MPa range, whereas most living organisms inhabit
depths from a few cm (e.g. worms, ants) to a few metres
(e.g. tree roots) where the stresses range from the Pa to kPa
range.
It is well established that the forces that control the

behaviour of soils depend on the particle size as well as the
depth (e.g. Santamarina, 2001; Santamarina et al., 2001). As
such, biological strategies that depend on certain types of
forces can be limited to specific particle sizes and depths. To
illustrate this, Fig. 2(a) shows the effect of particle size on
different forces that can be experienced by spherical particles.
When the particles are subjected to an effective stress of
1 MPa (equivalent depth of about 100 m of saturated soil),
the skeletal forces govern the interactions for particles with a
diameter greater than about 0·3 μm (0·0003 mm); however,
at an effective stress of 1 kPa (equivalent depth of about
10 cm of saturated soil), capillary and drag forces can prevail
over skeletal forces for particles with a diameter smaller than
about 200 μm (0·2 mm) and 4 μm (0·004 mm), respectively.
Biological strategies can also be closely tied to the scale at
which they are used by the organisms. Allometry analyses, or
the study of how processes change with body size, can be
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performed to further understand these dependencies. A
relevant example is the results by Quillin (2000) (Fig. 2(b))
relating to earthworm axial and radial burrowing pressures,
which are shown to decrease as the body size is increased.
These results suggest that the biological strategies that
earthworms employ to apply burrowing forces become less
efficient as they are upscaled.
Another important challenge in implementation of

bio-inspired solutions is the difference in mechanical prop-
erties between biological and engineered materials (Table 1).
Biological materials are typically more flexible, less stiff and
weaker, and more anisotropic than engineering materials and
they tend to be weaker in compression than in tension
(Fratzl, 2007; Vogel, 2013). Some biological materials have
received significant attention because they have properties
that rival those of engineered materials. For instance, silk has
been shown to have an ultimate tensile strength that is similar
to steel and its toughness is much greater (Table 1). However,
even these materials have important differences in properties
in comparison to engineered materials. Specifically, the
Young’s modulus of silk is one to two orders of magnitude
smaller than that of steel (Gosline et al., 1986; Altman et al.,
2003).

Bio-inspired design
Abstraction is commonly employed in bio-inspired design

to reframe the biological strategies in more general terms to
aid in the translation towards engineering applications (e.g.
Helms et al., 2009; Yen et al., 2011). Biological strategies can
be cast in terms of forms, behaviours or principles (Mak &
Shu, 2004) (Fig. 3). In this context, forms refer to physical
structures directly mimicking an organism, behaviours are
analogies that reference the process without explicit trans-
lation of the physical shapes and principles describe at a
more abstract level the underlying processes. More abstract
levels of bio-inspiration are typically associated with more
generalised solutions, which facilitate the translation to
the spatial and temporal scales relevant to the engineering
application (Mak & Shu, 2004; DeJong et al., 2017). Fig. 3
provides examples of possible strategies inspired by
snakeskin for soil–structure interfaces that mobilise direc-
tionally dependent friction and by earthworm burrowing for
a self-burrowing probe. For the snakeskin-inspired surfaces,
a direct translation would consist of replication of the
shape and size of the scales, whereas a more abstract
translation would consist of modifying the surface profile
for passive resistances to be mobilised in the cranial direction
(Martinez et al., 2020). For the self-burrowing probe, a
direct translation would be mimicry of the earthworm
shape and the sequence of motions involved in peristaltic
locomotion and a more abstract translation would consist
of using open-mode discontinuities or fractures to decrease
the penetration resistance (Dorgan et al., 2007; Shin &
Santamarina, 2011).
Solution- and problem-driven design processes can be used

to describe the types of bio-inspired design approaches that
have been developed. The solution-driven design process
starts with the biological solution abstraction (Fig. 4(a)) in
which a biological strategy is identified. The strategy’s
principle is then extracted and the solution is reframed in
more generalised terms to facilitate its translation to the
engineering domain, as shown in Fig. 3. A search is then
performed to identify an engineering problem that can be
solved with this solution. Finally, the engineering problem is
defined in general terms and the solution is applied towards
that problem (Helms et al., 2009; Goel et al., 2014). In
contrast, the problem-driven design process begins with an
engineering problem, which must first be abstracted through
reformulation and reframing to facilitate identification of
biology–engineering analogies (Fig. 4(b)). Next, biological
adaptations that provide a potential solution for the reframed
problem are identified and evaluated. The last step is
mapping and transfer, in which the underlying principle is
extracted and applied to the engineering domain. Fu et al.
(2014) and Fayemi et al. (2017) review bio-inspiration
methods and tools for abstraction. DeJong et al. (2017)
provide discussion and a specific example of bio-inspired
design applied to geotechnical engineering.

Table 1. Mechanical properties of biological and engineered
materials

Material Ultimate tensile
strength: MPa

Young’s
modulus: GPa

Collagen*,† 50–70 0·2–21·5
Cellulose‡ 120 7·5–11
Chitin‡ 3 45
Resilin§ 3 0·002
Elastin§ 2 0·001
Bone§,∥ 88–132 14·6–25·5
Shell¶ 140–170 60–70
Exoskeleton**,†† 13–30 0·5–0·7
Wood‡‡ 2–100 0·5–25·0
Keratin§§,∥∥ 39–127 0·5–4·3
Silk¶¶ 500–972 5–13
Steel 300–630 200·0
Aluminium 110 69·0
Concrete 2–5 14·0–41·0
Kevlar 3600 130
Soil 0–1 0·1–1·0
High-density polyethylene

(HDPE)
35–58 0·5–1·5

Polyvinyl chloride (PVC) 52 1·5–3·0

*van der Rijt et al. (2006); †Wenger et al. (2007); ‡Wainright et al.
(1982); §Gosline et al. (1999); ∥Pal (2014); ¶Jackson et al. (1988);
**Joffe et al. (1975); ††Meyers et al. (2008); ‡‡Wegst & Ashby (2004);
§§Tombolato et al. (2010); ∥∥Farran et al. (2009); ¶¶Altman et al.,
2003.
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Tools for discovering biological strategies
Biologists employ a variety of systems and tools to extract

general principles from complex biological processes. For
example, biological systems such as the musculoskeletal
systems responsible for locomotion in animals are produced
by non-linear and dynamically coupled interactions between
the organism and its environment (Full & Koditschek, 1999;
Alexander, 2002; Biewener, 2003). In this case, allometry and
similarity theory are used to evaluate the effect of size on
processes or properties (Fig. 3(b)) (McMahon, 1973;
Gunther, 1975; Ennos, 1993; Quillin, 2000; Che & Dorgan,
2010). Descriptions of animal and plant morphology are
facilitated by imaging technology such as X-ray computed
tomography (CT), magnetic resonance imaging and laser
and white light scanning (Huising & Gomes Pereira, 1998;
Dean et al., 2007; Wroe et al., 2008; Gignac & Kley, 2014;
Bot & Irschick, 2019). For example, X-ray CT scans have
revealed the skeleton shape of sand lance fishes, along with
the kinematics they use to penetrate sandy soils rapidly to
hide from predators (Bizarro et al., 2016) (Fig. 5(a)).
Finite-element method (FEM) modelling, computational
fluid dynamics (CFD), discrete-element method (DEM)
modelling and resistive force theory (RFT) have also been
employed to understand the underlying mechanisms behind
morphological optimisation and the interactions between
organisms and fluids and granular materials (Rayfield, 2007;
Maladen et al., 2011; Li et al., 2013; Askari & Kamrin, 2016;
Davies et al., 2017). For example, DEM has been used to
investigate the effect of void ratio and dilatancy in granular
media and the body shape and kinematics in sandfish lizard
locomotion (Fig. 5(b)) (Maladen et al., 2011).

Robotic models have been used in recent years to perform
experimental investigations to discover new biological strat-
egies and generate hypotheses about structure and function.
This approach is typically referred to as ‘robotics-inspired
biology’ and consists of the study of biological systems and
models that reproduce behaviours consistent with empirical
data (Gravish & Lauder, 2018). Examples include investi-
gations on the locomotion on granular media of sandfish

lizards (Maladen et al., 2011), loggerhead hatchlings
(Mazouchova et al., 2010), snakes (e.g. Marvi et al., 2014;
Astley et al., 2015) and mudskipper fish (McInroe et al.,
2016).

ONGOING BIOLOGICAL AND BIO-INSPIRED
INNOVATION RELEVANT TO GEOTECHNICS
Important advances have been made with respect to

understanding the interactions between living organisms
and soils during burial, locomotion and growth. Some
biological strategies have been successfully applied to the
engineering domain, while others are still being investigated.
Table 2 presents several geotechnical engineering appli-
cations where technologies, processes and/or materials have
the potential to be advanced using bio-inspired solutions.
The breadth of the examples listed highlights the extensive
similarities that exist between how geotechnical engineered
systems and biological organisms interact with soils. These
examples also emphasise that understanding the biological
strategies and fundamental geomechanical processes is
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Fig. 5. Tools for discovering biological adaptations: (a) X-ray CT of
sand lance skeleton; sand lance fishes penetrate sandy soils to hide
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(2011))
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necessary to realise these and other bio-inspired solutions.
This section provides examples of interdisciplinary investi-
gations in the applications of soil penetration and excavation,
foundation and anchoring elements, earth moving, energy
regulation, transport of water and slope stabilisation.

Burrowing, excavation and soil penetration
Research in biology has revealed some of the mechanisms

that animals and plants use to penetrate and excavate
different kinds of soils. These adaptations are highly energy
efficient, presumably exponentially more so than current
engineering practices (e.g. Soga, 2011). Thus, their trans-
lation to the geotechnical engineering domain could provide
new advances for infrastructure construction, site character-
isation, tunnelling and excavation.

Marine and earth worms, clams and other animals. The
mechanical work necessary to penetrate soil and extend
a burrow depends on the failure mechanism of the soil,
which varies with soil type, depth (Fig. 6(a); Dorgan, 2015),
soil stiffness and toughness and organism size (Che &
Dorgan, 2010; Dorgan, 2015; Ruiz et al., 2015). In cohesive
soils, burrowing at shallow depths can be achieved through
plastic rearrangement of soil grains and aggregates. At
greater depths, organisms such as worms, clams and plant
roots alternate radial expansion and axial elongation
motions to extend burrows by fracture propagation and
deformation-induced softening (Trueman, 1968; Abdalla
et al., 1969; Greacen & Oh, 1972; Dorgan et al., 2005,
2007). This is typically achieved by applying radial stresses
against the burrow walls, either through expansion of a body
section near the burrow tip or through movement of
mouthparts, which results in effective stress relaxation at
the burrow tip (referred to as an open-mode discontinuity by
Shin & Santamarina (2011)). In non-cohesive soils, burrow-
ing at shallow depths can be enabled by ‘sand fluidisation,’ a
process in which rapid shearing of soil induces a local flow
failure due to soil contraction or generation of excess pore
pressures. This process is used by several worms, shrimps,
crabs and vertebrate organisms, including sandfish lizards
and ocellated skinks (Trueman, 1970; Maladen et al., 2011;

Sharpe et al., 2015; McInroe et al., 2018). At greater depths
in sands, burrowers use similar behaviours as in cohesive
sediments: they employ a dual-anchor system to apply
normal forces to burrow walls with different regions of the
body (Dorgan, 2018). Rather than causing fractures, these
forces are likely to locally compact the surrounding soil and
induce effective stress relaxation ahead of the tip. In addition,
the radial expansion against the burrow walls increases the
pressure against the organism’s body, which provides an
anchor to generate propulsion to penetrate the soil in the
form of friction and bearing capacity (Trueman, 1968;
Summers & O’Reilly, 1997; Dorgan, 2018). Organisms such
as razor clams and other bivalves also soften the soil through
fluid injection and dynamic expansion and contraction of
their shell to increase local pore pressures (Trueman, 1968;
Winter et al., 2012).
DEM simulations and laboratory experiments relating to

bio-inspired self-burrowing probes for site characterisation
have highlighted key aspects that enable penetration using the
dual-anchor mechanism (Cortes & John, 2018; Huang &
Tao, 2018; Khosravi et al., 2018; Chen et al., 2020, 2021;
Huang & Tao, 2020). Radial expansion of a probe section
develops anchorage forces and relaxes the contact forces
ahead of the probe’s tip, facilitating subsequent penetration
(Fig. 6(b)). Cavity expansion simulations have been used to
assess the upscaling potential of a dual-anchor mechanism in
sandy, silty and clayey soils at different depths (Martinez
et al., 2020). Results indicate that a probe consisting of a
radially expanded anchor and a penetrating tip would require
an anchor with a length of 2·0 to 4·5 times the tip diameter to
generate sufficient anchorage forces, which is on the order of
aspect ratios (length-to-diameter ratio, L/D) of various razor
clam species (Fig. 6(c)). Other research has focused on
developing prototypes for sensor deployment applications.
For instance, Tao et al. (2019) and Huang et al. (2020)
developed robot prototypes capable of burrowing out by
employing an elongation-shortening mechanism inspired by
razor clam locomotion. The authors showed that the robot’s
performance in dry sand depends on the relative density
(Fig. 5(d)), the period of the expansion–contraction cycles
and the soil–robot interface frictional interactions. Ortiz
et al. (2019) developed a marine worm-inspired soft robot
that employs two strategies: bi-directional bending of the

Table 2. Summary of potential advances driven by bio-inspired geotechnics

Applications Technologies, processes and materials Examples of possible sources of bio-inspiration

Soil penetration and
excavation

Sensor deployment, tunnelling and installation of
underground, utilities, foundations and soil
anchors

Earth and marine worm, clam and caecilian
burrowing, fish sand diving, plant root growth

Foundation and
anchoring elements

Improved designs for increased capacity and
reduction in material and energy use

Tree root system architecture, directionally dependent
friction at snakeskin, plant root growth

Ground improvement Improvement and stabilisation of large sites with
energy-efficient technologies

Tree and grass root system architecture, marine worm
sediment digestion

Materials New materials and configurations for improved
mechanical, hydraulic and thermal performance

Silk hierarchical structure, abalone shell composite
structure, denticle stiffness gradient

Slope stabilisation and
erosion mitigation

Protection of natural and engineered slopes and
coastal and fluvial areas

Grass and tree root architecture, oyster beds

Earth moving and
manipulation

Earth-moving machines and processes with
increases in energy efficiency and productivity

Ant, crab and shrimp excavation and earth-moving
processes, earthworm and plant root bioturbation

Renewable energy
generation and
regulation

Harvesting and storage of solar, wind, tidal and
geothermal energy

Thermal transport in insect nests and animal burrows,
plant carbon storage

Transport of water and
contaminants

Design of hydraulic barriers and containment
systems, ground, fluid extraction and injection

Plant evapotranspiration, leaf venations, animal
circulatory systems

Filtration Prevention of fines migration and their detrimental
effects (e.g. piping, suffusion)

Semi-permeable membranes in biological tissue

Locomotion and mobility Exploration of challenging environments (e.g. loose
sand, soft clays, extraterrestrial bodies)

Snake, gecko, insect and fish locomotion
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head to remove and loosen soil and radial expansion of a
body section to provide anchorage (Fig. 6(e)). Use of these
techniques in constant-displacement experiments reduced
the penetration resistance by up to 50% and allowed a
tethered prototype to move horizontally through granular
media.

Ants. Ants efficiently excavate stable nest structures in
different soil types. For instance, Soga (2011) provided
comparisons of the energy efficiency of the excavation
using tunnel-boring machines (TBMs) with that of ant
tunnelling. TBMs were reported to have efficiencies
between two and four orders of magnitude lower than ant
tunnelling (1·7� 107 to 4·4� 108 J/m3 in rock and sand for
the former and 1·2� 104 to 7·9� 105 J/m3 in sand for the
latter). Field and laboratory studies have shown that ant
excavation habits and performance, and resulting nest
architecture, change with soil type and conditions. X-ray
CT observations on fire ant colonies showed that nest depth

depends on particle size and water content (Monaenkova
et al., 2015). The most stable tunnels were excavated at
intermediate water contents (Fig. 7(a)), implying that the
increasing strength provided by the capillary forces allowed
for creation of more stable tunnels. Yamamoto et al. (2019)
performed two-dimensional and three-dimensional (3D)
experiments on monolayer and multilayer soil deposits.
Changes in particle size and density did not significantly
influence tunnel diameter, but excavation rates and volume of
excavated soil were greater in soils with lower density and
smaller particle sizes. Espinoza & Santamarina (2010)
revealed the role of different interparticle forces on the
excavation ability of ants and the stability of ant tunnels.
Analytical results show that the ant mandible pulling force is
expected to be greater than the combined particle weight and
electrical and capillary forces for particles smaller than fine
gravels (Fig. 7(b)). Fig. 7(c) presents a synthesis of the results,
showing the effect of grain size and degree of saturation on
the tunnel stability and excavation performance of ants.
Antlions and wormlions are also efficient at excavating in
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both coarse- and fine-grained soils. These animals dig
cone-shaped traps to hunt prey; antlions use a spiral
digging strategy whereas wormlions use a central digging
strategy (Tuculescu et al., 1975; Franks et al., 2019).
Research has shown that the angles of the antlion and
wormlion traps are close to the angle of repose and that the
soil within the trap slopes is close to the critical state (Botz
et al., 2003, Büsse et al., 2020). The instability of these slopes,
along with sand throwing by the predators, creates ava-
lanches that make prey slide and fall to the bottom of the
trap.

Plant and tree roots. Soil conditions affect the growth,
establishment and natural selection of plants. Plants, in turn,
influence soil properties such as chemical composition and
internal structure, and can contribute to increased erosion
and landslide resistance. Plant and tree roots grow in many
different conditions, from clays and soils rich in organic
materials (e.g. crops, cypress trees) to sandy substrates (e.g.
palm trees and dune grasses) to rocky terrains (e.g. juniper
trees). The characteristics of the root system, as well as
its interactions with the soil, including the penetration
resistances, root architecture and anchorage capacity, are a
function of the plant species and soil and environmental
conditions (e.g. Grime, 1977; van Noordwijk & De Willigen,
1987; Bengough & Mullins, 1990; Bengough & McKenzie,
1997; Barthélémy & Caraglio, 2007).
Savioli et al. (2014) performed FEM simulations of root

growth in non-cohesive soil. These simulations monitored
the radial effective stresses and volumetric strains while a
root-shaped cavity was expanded (Fig. 8(a)). Radial expan-
sion increased the radial effective stress along the sides of the

root (shown in cooler shades) and decreased the stress at the
root tip (shown in warmer shades). While volumetric strains
were dilative overall, the dilation zone was largest at the root
tip. These results suggest that the relaxation of stresses and
decrease in density at the tip may facilitate soil penetration,
especially in stiff and strong soils, in agreement with Shin &
Santamarina (2011).
The influence of the soil properties and condition on the

growth of a root system has been largely investigated in the
field of plant science (e.g. Bengough &Mullins, 1990; Atwell,
1993). However, the root growth process alters the in situ
state of stresses, fabric and moisture conditions, which in turn
can influence the mechanical behaviour of the soil.
Anselmucci et al. (2021) performed in vivo X-ray CT of
seeds growing in coarse and fine sand of varying density
(Fig. 8(b)). Their X-ray CT data analysed with digital image
correlation (DIC) measured the evolution of the soil strain
field and showed that the sand grains are mainly displaced in
the same direction as root elongation for distances equivalent
to two mean particle diameters.
During growth, plant roots perform oscillatory, semi-

circular movements called circumnutations (Mullen et al.,
1998). Although the role of circumnutation in plant root
growth is still debated, recent findings by Taylor et al. (2021)
indicate that circumnutation is critical for seedling establish-
ment in rocky soil because they facilitate growth past
obstacles. Del Dottore et al. (2018) hypothesised that these
movements can decrease penetration resistance. The authors
validated this hypothesis experimentally by comparing the
resistances mobilised and work needed for straight, vertical
penetration and penetration performed with circumnutations
by an artificial probe. Results show that circumnutations
decrease penetration resistance and work across a range of
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soil densities (Fig. 8(c)). Prototypes of burrowing robots have
focused on decreasing the penetration resistance to enable
deeper soundings and more efficient operations (e.g. Del
Dottore et al., 2018). Sadeghi et al. (2014) developed a device
inspired by root growth in which new material is added behind
the tip as it advances. This mimics the root growth process,
where cells split and slough as they mature (Fig. 8(d)). This
significantly reduces frictional resistance along the root sides,
leaving only the penetration resistance to overcome, and can
result in a 70% decrease in energy consumption compared to
conventional penetration. Fig. 8(e) presents a series of images
of this root-inspired robot. Naclerio et al. (2018) developed a

soft self-burrowing robot that combines the bio-inspired
principle of plant root growth by way of tip extension with
air-induced fluidisation (Fig. 8(f)). The authors report a
reduction in penetration resistance of 10� relative to vertical
pseudo-static penetration and demonstrate 50 cm deep growth
into real sand in less than 20 s.

Fish. Many fish bury themselves to ambush prey and evade
predators. Some fish, like the sand lance, burrow by diving
head-first into the substrate while undulating their bodies.
Researchers have not observed sand fluidisation to reduce
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penetration resistances. Instead, Bizarro et al. (2016) pro-
posed that the spacing of the scale bands interacts with the
grain size of the substrate to produce reduced frictional forces
between the fish and the sand. In flatfish, body size and
undulation frequency affect burial performance (McKee
et al., 2016). These authors developed a physical model of
a flatfish to isolate the effect of undulation on burial speed.
Their results suggest there is an optimal range of undulation
frequency (5–10 Hz) that allows for the most efficient burial,
suggesting that generation of excess pore water pressures due
to cyclic loading occurs. Pacific sandfish have been hypoth-
esised to use a modified two-phase respiratory pump to force
water into the substrate during burial to liquefy it and
decrease burial resistances (Macdonald et al., 2014).

Directional interface friction
Load transfer across soil–structure interfaces plays an

important role in the capacity and efficiency of many
geotechnical engineering applications. Some applications
benefit from maximising interface shear resistance (e.g.
axially loaded deep foundations, soil nails), whereas others
benefit from minimising shear resistance (e.g. pile driving,
soil sampling). Directionally dependent frictional resistances
are present in the biological strategies employed by different
organisms, such as the leaves of some trees and grasses,
the paws and tongues of certain mammals and birds, and the
skin of several mammals and reptiles. Surfaces that mobilise
different amounts of shear resistance depending on the
direction of loading, referred to as directional friction or
frictional anisotropy, can provide new solutions to geotech-
nical applications in which loads are applied in different
directions during the installation process and service life.

Snakes. Although snakes lack limbs, they move efficiently in
a variety of environments including sand dunes, trees, forest
litter, prairie grasslands and oceans. Their ventral scales are
aligned transversely along their underbelly (Fig. 9(a)) and the
frictional interactions between the scales and the substrate
control the snake’s locomotive performance. Several studies
have shown that snakes rely on directional friction for
locomotion, where the ‘cranial’ friction coefficient is greater
than the ‘caudal’ friction coefficient (Fig. 9(b)). Gray &
Lissmann (1950) measured the friction coefficient between
dead snakes and various textured surfaces, obtaining values of
1·22 in the cranial direction and 0·49 in the caudal direction
for sandpaper. Marvi et al. (2013) also measured friction
coefficients between 40% and 250% greater in the cranial than

caudal direction for three snake species (Fig. 9(c)). In addition
to the asymmetric geometry of the scales, nano-scale features
called denticles within each scale (Fig. 9(d)) contribute to
frictional anisotropy at a smaller scale (e.g. Hazel et al., 1999;
Baum et al., 2014). A comparative study by Rieser et al. (2021)
indicates that the structure of the denticles directly influences
the locomotor performance of snakes, such as sand-inhabiting
sidewinders.
Researchers have investigated the development of

direction-dependent friction resistances at soil–structure
interfaces for applications such as deep foundations, soil
anchors and soil nails and landfill liner systems. Martinez
et al. (2019), Stutz et al. (2019), O’Hara & Martinez (2020)
and Huang & Martinez (2020) performed monotonic and
cyclic interface shear tests between sand and surfaces inspired
by 3D scans of snakeskin, showing that shearing in the
cranial direction mobilised larger interface shear resistances
than shearing in the caudal direction. Differences of from 25
to 90% were observed during monotonic and cyclic shearing
(Figs 10(a) and 10(b), respectively). Huang & Martinez
(2021) examined the effect of normal effective stress, over-
consolidation ratio and shearing velocity on the interface
shear behaviour between clay and snakeskin-inspired sur-
faces and concluded that the response has a smaller direction
dependence as compared to the interfaces with sand.
Martinez et al. (2018), O’Hara & Martinez (2020) and
Martinez & O’Hara (2021) also investigated the effect of
snakeskin-inspired surface texturing on the performance of
model piles during centrifuge load tests. The results indicate
a difference in installation forces of 48% and pullout forces of
128%, where loading in the cranial direction consistently led
to greater frictional resistances (Fig. 10(c)).

Load transfer and anchorage
The foundation and anchorage systems used by the

geotechnical engineering industry are mostly composed of
linear elements, primarily due to ease of construction and the
industry’s familiarity with these types of elements. Advances
in the understanding of the mechanisms that contribute to
capacity generation and in techniques to construct non-linear
elements efficiently may lead to improvements in the
infrastructure construction sector.

Tree root systems. Research on the anchorage mechanisms
of root systems has been performed in the fields of plant
biology, soil science and geotechnical engineering. This
research has highlighted several factors that contribute to
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Fig. 9. Biological strategies for directional friction in snakeskin: (a) photograph of ventral scales of a milk snake (scale bar corresponds to 1 cm,
from Hu et al. (2009)); (b) schematic diagram of cranial and caudal shearing directions; (c) friction coefficient (μ) measurements for different
snakes in the cranial and caudal directions; (d) scanning electron microscopy images of denticles within a snake scale (arrow points towards snake’s
tail and scale bar is 2 μm long, from Baum et al. (2014))
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anchorage capacity and load transfer, including architecture
(i.e. level of branching and branching angle), root stiffness
and soil shear strength (e.g. Coutts, 1983; Gray & Ohashi,
1983; Ennos, 1993; Stokes et al., 2000; Fourcaud et al.,
2003; Gregory, 2006; Hamza et al., 2007; Mickovski et al.,
2007). Investigations focused on developing bio-inspired
technologies for foundation and anchorage systems have
involved field, centrifuge and laboratory experiments and
numerical simulations. For instance, Burrall et al. (2020)
performed field vertical pullout tests on fruit trees with three
different rootstock types (Lovell, Marianna andMyrobalan),
which differ in their architectural characteristics. The results,
shown in Fig. 11(a), indicate that the rootstock type had an
important influence on the initial stiffness, peak capacity and
softening of the pullout force–vertical displacement curves.
The pullout performance of the root systems was calculated
to be one to two orders of magnitude more efficient in terms
of material use than business-as-usual alternatives such as
micropiles and spread footings. Laboratory tests by Mallett
et al. (2018) provided further insight into the effect of root
architecture on the soil deformation around root analogues
in sand. X-ray CT scans reveal the formation of shear bands
within the sand whose location depends on the root internal
angle (Fig. 11(b)). The geometry of the sand slip surface was
generally conical in shape; however, its size and orientation
changed with the root angle. Aleali et al. (2020) applied a
multifaceted bio-inspiration approach to generate design
ideas for deep foundations with greater shaft resistance than
conventional cylindrical piles. Their design incorporates
biological strategies such as a flexible but incompressible
core, a longitudinally split shell that allows lateral expansion
for anchorage and lateral root-type anchoring elements.
FE modelling of the bio-inspired laterally expansive pile
shows significant advantages in terms of greater confining

pressure and load-carrying capacity compared to conven-
tional piles.

Mass and thermal transport
Slope stability and the movement of water and heat are

geotechnical engineering challenges that can be aggravated
by changing environmental conditions, such as rainfall and
drought. In addition, distribution networks for resources
represent an optimisation problem subjected to multiple
constraints. Understanding and applying biological strat-
egies to develop new solutions for the transport of mass and
heat, accounting for their effects on soil response where
applicable, can lead to the development of safer and more
resilient and sustainable engineering solutions.

Plants. Trees and plants take up moisture from the soil
through their roots, which then evaporates from their leaves
(evapotranspiration). This water removal from soil increases
the soil suction (e.g. Blight, 2003; Hemmati et al., 2012),
and is sometimes referred to as ‘hydraulic reinforcement’.
Researchers have quantified the suction magnitude and the
influence zone size for different plant and tree species,
concluding that vegetation increases both the suction
magnitude developed during drying as well as that main-
tained during wetting (e.g. Ng et al., 2013). Other researchers
have shown that vegetation can alter the soil-water retention
curve (Leung et al., 2015a) and reduce the hydraulic
conductivity and infiltration rate in soils (e.g. Leung et al.,
2015b). Engineering analyses have confirmed the beneficial
effects of vegetation on slope stability (Gray & Sotir, 1996).
For instance, Switala & Wu (2018) showed through FEM
simulations that slope displacements during rainfall were
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significantly smaller on vegetated slopes than on bare slopes
(Fig. 12(a)). In addition, the authors showed that slope
horizontal displacements were smaller when both mechan-
ical reinforcement by roots and increase in suction by
evapotranspiration were considered (Fig. 12(b)).

Leaf venations. The problem of connecting a central node
to a set of spatially scattered points is common to many
natural and artificial systems of all scales and levels of
complexity. In engineering, this is common in distribution
networks (e.g. public transportation, water and gas distri-
bution). Patino-Ramirez & Arson (2020) evaluated a leaf
venation (LV) algorithm for designing bio-inspired infra-
structure transportation networks employing Runion’s algor-
ithm (Runions et al., 2005). This algorithm generates
venation systems that grow out a stem in a finite domain
that contains a given distribution of auxin sources. Auxin is a
growth hormone that dictates the direction of growth of
venation segments. Patino-Ramirez & Arson (2020) mod-
elled the city of Atlanta metropolitan area with the stem
representing the intersection of two Metropolitan Atlanta
Rapid Transit Authority (MARTA) metro lines and the
auxin sources representing population centroids (Fig. 12(c)).
Results indicate that leaf-inspired models can perform
similarly to or better than computer-intensive optimisation
algorithms in terms of network cost and service performance,
which could facilitate the design of engineering transpor-
tation and resource distribution networks.

Termite mounds. The nest and mound superstructures built
by colonies of fungus-farming termites (Fig. 12(d)) are

efficient at controlling internal ventilation, which helps
regulate internal heat and humidity (Turner & Soar, 2008;
Katariya et al., 2018; Vesala et al., 2019). The mound is
porous across nano-, micro- and macro-scales, with the tunnel
structure within the mound constituting the macro-scale pores
(Turner, 2005). Air is brought up through the nest as a result
of diurnal temperature oscillations, where it mixes with spent
air and gases such as carbon dioxide, then rises into the
mound where it is dissipated through the mound material to
the atmosphere (King et al., 2015). Turner & Soar (2008)
indicated that gas exchange with the atmosphere is controlled
by convection in the main tunnel, mixed convection and
diffusion in the millimetre-scale tunnels and diffusion through
the micro- and nano-pores. Relative to the atmospheric
temperature, the mound’s internal temperature is from 10 to
15°C warmer during the night and from 10 to 15°C cooler
during the day largely due to the large thermal capacity of the
soil surrounding the nest (Turner & Soar, 2008; also Bardunius
and Lingwall, personal communication, 2020). The mound is
constructed by the termites from locally available soils around
the nest (Jouquet et al., 2004), where termites employ only the
fine fractions of soil at moisture contents between the liquid
and plastic limits (Kandasami et al., 2016). In addition,
organic material in the soil is essential for effective cohesion of
transported soil pellets (Zachariah et al., 2017).

CLOSURE: OPPORTUNITIES AND CHALLENGES
Important advances have been made in the last decade to

understand the strategies that biological organisms use to
interact with soils to accomplish functions such as burrowing
and anchorage. Examples include strategies used by marine
worms and earthworms, clams, ants, fish, snakes, tree and
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plant roots, leaf venations and termite mounds. This
biology-based understanding is being leveraged to inspire
new solutions for geotechnical applications such as foun-
dations, soil anchors and nails, soil penetration and exca-
vation, site characterisation, sensor deployment, slope
stability and both mass and thermal transport.

The strategies employed by living organisms to interact
with soils have evolved in highly constrained environments,
which require them to prioritise efficiency while coping with
multiple demands simultaneously. These strategies have been
‘vetted’ by the process of natural selection; thus, they are
multifunctional, redundant, robust and efficient. However,
the development of bio-inspired solutions requires assess-
ment of the differences between biological and engineering
environments, such as the larger sizes and greater stresses
relevant to geotechnical engineering applications. This is
important at a fundamental level because the forces that
govern soil behaviour depend on the particle size and
confining stress, and because biological processes have a
strong dependency on the organism’s size.

The implementation of bio-inspired solutions towards
geotechnical practice requires collaborations and cross-
training between researchers, practitioners, engineers and
biologists. The early involvement of practitioners is critical to
identify industry needs and viable solution paths while
cross-training between engineers and biologists is necessary
for the discovery of biological strategies and development of

bio-inspired technologies. These interdisciplinary teams
need to have basic disciplinary knowledge and understanding
in geomechanics, geotechnical practice, biology and
bio-inspired design. This emphasises the need for educational
developments at university and professional levels. This
shared background will enable researchers to develop sound
hypotheses, designers to understand the technical aspects
and applicability of new technologies, contractors to com-
plete construction successfully and verify performance,
regulators to understand how new technologies fit within
existing regulations and owners to recognise the potential
benefits of investing and adopting these bio-inspired
solutions.
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