In-situ assessment of the stress-dependent stiffness of unbound aggregate bases: application in inverted base pavements

Efthymios Papadopoulos, Douglas D. Cortes & J. Carlos Santamarina

To link to this article: http://dx.doi.org/10.1080/10298436.2015.1022779
In-situ assessment of the stress-dependent stiffness of unbound aggregate bases: application in inverted base pavements

Efthymios Papadopoulos⁎, Douglas D. Cortesb1 and J. Carlos Santamarinaa2

aDepartment of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, Atlanta, GA 30332, USA; bDepartment of Civil Engineering, New Mexico State University, Room 202, 3035 S. Expina St., Hernandez Hall, Las Cruces, NM 88003, USA

(Received 28 October 2014; accepted 21 February 2015)

Unbound aggregate bases are the primary structural components in many flexible pavements. The response of the unbound aggregate base is critical to the overall performance of the pavement, particularly in inverted base pavements given the proximity of the base to the traffic loads. The behaviour of granular materials such as unbound aggregate bases is inherently nonlinear and anisotropic. An experimental methodology is developed to assess the in-situ stress-dependent small-strain stiffness of unbound aggregate bases under controlled load using wave propagation techniques. CODA wave analysis is used to detect small changes in travel time. The methodology is applied in two distinct case histories of inverted base pavements. Results show that field-compacted granular bases exhibit higher stiffness, lower stress sensitivity and more pronounced anisotropy than laboratory-compacted specimens. The discrepancy in stiffness observed among the two field case histories is primarily attributed to traffic preconditioning sustained by the older pavement. Additional results show that the effect of suction on the stiffness of coarse-grained granular bases is insignificant.

Keywords: unbound aggregate base; inverted base pavement; granular base; pavement; field test; wave propagation; crosshole; uphole; CODA analysis; stiffness

1. Introduction

Stress redistribution within a pavement structure is determined by the relative flexural rigidity between successive pavement layers, i.e. stiffness and thickness (Burmister et al. 1943, Burmister 1945, Fox and Fox 1951). Consequently, layer stiffness is an important parameter in the calculation of a pavement’s structural capacity (AASHTO 1993, NCHRP 2004).

Unbound aggregate bases support the surface asphalt concrete layers and protect the sub-grade. The stiffness of granular bases is inherently anisotropic and stress-dependent due to their particulate nature (Arthur and Menzies 1972, Roesler 1979, Kopperman et al. 1982, Cascante and Santamarina 1996, Santamarina and Cascante 1996, Yimsiri and Soga 2002). There have been only a few attempts to measure the anisotropic stress-dependent stiffness of granular bases in situ (Terrell et al. 2003). Yet, the stiffness of granular bases is a critical constitutive parameter for analysis and design, particularly in the case of inverted base pavements due to the proximity of the base to the traffic loads (Cortes and Santamarina 2013, Tutumluer 2013, Papadopoulos and Santamarina 2014).

This study documents an experimental procedure to assess in situ the stress-dependent small-strain anisotropic stiffness of granular bases. Novel field procedures and signal processing techniques are employed. The methodology is applied to two distinct cases of inverted base pavements.

2. Previous studies

The resilient modulus \(M_r \) is used to describe the stiffness of pavement layers (Hicks and Monismith 1971). Several laboratory tests have been developed to determine the resilient modulus of granular bases (FHWA 1996, Tutumluer and Seyhan 1999, NCHRP 2002, Puppala 2008). These tests simulate material compaction and loading history relevant to field conditions. However, laboratory compaction does not properly emulate roller compaction, and the stress conditions imposed during resilient modulus tests do not capture the complexity of the stress history and stress field experienced by the granular base under working conditions (Kim and Tutumluer 2005). Furthermore, most tests do not consider the inherent as well as the stress-induced anisotropy of the granular base stiffness which can have a considerable effect on pavement response (Barden 1963, Gazetas 1982, Kim et al. 2005, Al-Qadi et al. 2010, Wang and Al-Qadi 2013).

Several techniques have been devised for the in-situ measurement of the stiffness of unbound aggregate bases (Fleming et al. 2000). Commercially available systems include the falling weight deflectometer (FWD), the light
weight deflectometer (LWD) and the seismic pavement analyzer (SPA) (Nazarian et al. 1993, Fleming et al. 2007, NCHRP 2008). All three methods apply a dynamic load. The first two methods measure surface deflections under an impulse load, while the SPA uses wave propagation and a combination of seismic reflection and SASW measurements. In this case, P-wave velocity V_p is related to constrained modulus M_{max} through the bulk density ρ:

$$M_{\text{max}} = \rho V_p^2$$ \hfill (1)

Similarly, the shear wave velocity is related to shear modulus G_{max}:

$$G_{\text{max}} = \rho V_s^2$$ \hfill (2)

Recent results confirm the correlation between laboratory and field-measured stiffness values using wave propagation and the resilient modulus of granular bases in the field (Williams and Nazarian 2007, Schuettpelz et al. 2010).

However, there are several limitations with conventional in-situ testing techniques. First, the state of stress in the pavement is unknown. Second, most conventional methods do not consider the anisotropic stiffness properties of the unbound aggregate base. Third, the interpretation of boundary measurements conducted at the pavement surface requires inverse problem solving to estimate the stiffness of the pavement layers. Fourth, inversion propagates measurement errors and increases the uncertainty of the inferred values (Santamarina and Fratta 2005).

On the other hand, the small-strain stiffness of the material can be directly measured in situ using seismic methods under controlled loading conditions. For example, Terrell et al. (2003) embedded several three-dimensional accelerometers within the unbound aggregate base during pavement construction, and later conducted seismic tests to measure the horizontal and vertical shear wave velocity under different surface loads. The present study is based on P-wave propagation in cross-hole and up-hole configurations conducted under controlled surface load to measure the anisotropic stress-dependent stiffness of the unbound aggregate base.

3. Experimental configuration

Two test configurations are implemented to properly characterise the anisotropic stress-dependent stiffness in granular bases. The up-hole and cross-hole techniques, shown in Figure 1, are both based on P-wave propagation and require the installation of sensors in the unbound aggregate base.

3.1. Perforation

Small-diameter boreholes were drilled in the pavements using several drilling techniques and borehole diameters. Results showed that a 16 mm (5/8") diamond core drill bit is able to effectively advance the hole with causing minimal material disturbance and without triggering borehole instability.

3.2. Cross-hole

The cross-hole configuration is selected to measure the horizontal stiffness (Figure 1a). A piezocrystal is placed in each borehole to form a source–receiver pair. The perforation is filled with high viscosity oil (cP = 320-
mPa s) to stabilise the walls and to couple the piezocrystals with the unbound aggregate base material. The high viscosity of the oil combined with the low permeability of the unbound aggregate base prevents leakage during the course of the test. The source crystal is connected to a signal generator, while the receiver is connected to a preamplifier and a digital storage oscilloscope.

3.3. Up-hole

The up-hole configuration is used to determine the vertical stiffness of the base. The piezoelectric actuator is coupled through an aluminium rod with a reaction mass that transmits the vibration to the bottom of the hole (Figure 1b). The rod is acoustically isolated from the perforation walls to prevent spurious signals. A piezoelectric accelerometer embedded and coupled with the asphalt concrete acts as the receiver. The actuator is connected to a signal generator and power amplifier, while the accelerometer is connected to a signal conditioner and finally to a digital storage oscilloscope.

3.4. Loading configuration

A 300 mm diameter steel circular loading plate is placed on the pavement surface in order to serve as the loading platform. The vertical force on the plate is applied through a hydraulic actuator that reacts against the frame of a loaded dump truck. The loading is imposed in stages and wave propagation data are recorded at each loading and unloading stage.

4. Case studies: Lagrange and Morgan County

The methodology described above was used to characterise the unbound aggregate base layer at the two inverted base pavements in Georgia (Figure 2). The one in Lagrange (tested on 28 August 2013) involves an 87 mm asphalt concrete layer, a 150 mm unbound aggregate base and a 250 mm cement-treated base. Construction and material properties are documented in Cortes and Santamarina (2013). The second case is the haul road for the Morgan County quarry operated by Martin Marietta Aggregates (tested on 27 September 2013). It consists of a 75 mm asphalt concrete layer, a 150 mm unbound aggregate base and a 200 mm cement-treated base. This pavement was previously tested by Terrell et al. (2003).

The properties of the unbound aggregate bases tested are summarised in Table 1. Results from the two tests are summarised next.

4.1. Wave signatures

Figures 3 and 4 show a typical signal cascades obtained during cross hole test and up hole tests. Travel time decreases and stiffness increases with increasing contact stress. Changes in travel time between consecutive signals are very small and hinder the accurate determination of wave velocity base on first arrival. The innovative signal-processing method used in this study to infer wave velocities is presented next.

<table>
<thead>
<tr>
<th>Table 1. Index, mechanical and construction properties for the unbound aggregate bases tested during this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan County</td>
</tr>
<tr>
<td>Maximum dry density $\rho_{\text{d,max}}$ (kg/m3)</td>
</tr>
<tr>
<td>Optimum water content w_{opt}</td>
</tr>
<tr>
<td>Mean grain size D_{50} (mm)</td>
</tr>
<tr>
<td>D_{10} (mm)</td>
</tr>
<tr>
<td>Uniformity coefficient C_u</td>
</tr>
<tr>
<td>Liquid limit</td>
</tr>
<tr>
<td>Fines content</td>
</tr>
<tr>
<td>Plastic limit</td>
</tr>
<tr>
<td>USCS class</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes: Data is from Terrell (2002), Cortes and Santamarina (2013) and Papadopoulos (2014). V_s calculated from surface waves measurement at zero overburden stress.
4.2. **CODA wave analysis**

CODA wave interferometry can detect minute changes in signals gathered during process monitoring (Snieder et al. 2002, Snieder 2006). CODA analysis assumes that the signal tails correspond to indirect travel paths. The distance travelled along these paths is longer than the direct path responsible for the first arrival; therefore, the effect of any changes in the medium stiffness is magnified. Figure 5a shows the superposition of two waveforms recorded at different stress levels during the Morgan County test. While the change in the first arrival between the ‘slow’ and the ‘fast’ signals is almost impossible to discern, the increasing ‘offset’ between the two signals with time can be used to infer the change in travel time.

CODA analysis can be implemented using time or frequency domain operations (Dai et al. 2011). The time-stretched cross-correlation method is employed in this study. First, the time values of the ‘slow’ signal are multiplied by a constant λ. Second, the cross-correlation between the ‘stretched slow’ signal and the ‘fast’ signal is computed. Third, the previous two steps are repeated for different values of λ to identify the λ-value that produces the highest cross correlation (Figure 5b). The optimal λ represents the ratio of travel times between the two original signals. The process is repeated for all signals to determine successive time ratios λ. Last, the signal with...
the clearest first arrival is selected to determine the base travel time t_{base}, while other travel times are inferred from the λ-values as $t_i = \lambda_i t_{\text{base}}$. Figure 5c shows the evolution in the stretching coefficient λ with applied contact stress q for the cross-hole test conducted in Morgan County.

4.3. Wave velocity

Horizontal and vertical wave velocities are computed using travel times determined through CODA analysis. For the up-hole test, the P-wave velocity in the unbound aggregate base is calculated by subtracting the travel time in the asphalt concrete H^{AC} from V^{AC}:

$$V^{GAB}_{p} = \frac{H^{GAB} - H^{AC}/V^{AC}}{\Delta t}$$

Equation (3) presumes that the P-wave velocity of the asphalt concrete remains constant during the test.

Computed velocities are plotted versus the contact stress q during loading and unloading in Figure 6. P-wave velocity increases with increasing contact stress in both cases. The maximum contact stress at the Lagrange site was limited by the truck weight. Both pavements show no hysteresis in stiffness between loading and unloading, which suggests that both granular bases behave elastically, albeit with a nonlinear stress-dependent stiffness.

Velocity values are considerably larger for the Morgan County pavement than the Lagrange pavement. Conditioning of the base due to repetitive loading can explain the discrepancies: the Lagrange section was constructed in 2009 and has been opened to traffic for only the past 2 years (Lewis et al. 2012). On the other hand, the Morgan County pavement has been in service for over 12 years and has experienced more than 10^6 ESALs (Lewis et al. 2012). Furthermore, similar discrepancy is observed between wave velocities obtained for the Morgan County section during the current study in 2013 and in the previous test conducted in 2002: in the 2002 test, measured velocities were 30–50% lower compared to values measured in this study.

5. Analyses

5.1. Determination of the state of stress

The determination of the stress-dependent stiffness requires knowledge of the state of stress within the layer; at the same time, the determination of the state of stress requires knowledge of material stiffness. Due to the interdependency between stress and stiffness, the determination of the stress-dependent stiffness is achieved through successive forward simulations using a numerical model built on the finite element code Abaqus. The constitutive model used and the associated model parameters are reviewed in Papadopoulos and Santamarina (2015). Simulations are iterated until the calculated wave velocity matches the measured values for the given external contact stress. The measured P-wave velocity V_p is then plotted versus the respective numerically inferred stress at the centre of the propagation path for both horizontally and vertically propagating waves (Figure 7).

At the same stress, differences between vertical and horizontal stiffness reflect the inherent fabric anisotropy. The ratio of vertical to horizontal stiffness varies between 2 and 4. This ratio is considerably larger than the results of laboratory tests from the same material (Papadopoulos 2014) and highlights the differences between field and laboratory compaction conditions. Furthermore, the slope of the velocity–stress line is different for horizontal and vertical propagation, which indicates differences in stress sensitivity between the vertical and horizontal stiffness (Figure 7). The high fabric anisotropy encountered in field-compacted granular bases has been related to particle share (Kim et al. 2005), as well as the in-situ compaction process, which preferentially aligns particles and affects the distribution of contacts (Cortes and Santamarina 2013).
5.2. **Laboratory vs. field measurements – discrepancies**

The P-wave velocity is sensitive to the normal stress in the direction of wave propagation s_{norm} and follows a power law (Kopperman et al. 1982, Santamarina and Cascante 1996, Santamarina et al. 2001):

$$V_p = a \left(\frac{s_{\text{norm}}}{\text{kPa}} \right)^b$$

where s_{norm} is the normal stress at the propagation direction, the a-factor is the value of V_p at 1 kPa and the b-exponent captures the sensitivity of V_p to stress. Computed a and b parameters are plotted together with an extensive data-set of values obtained for a wide range of soils and jointed rocks (Figure 8). Field-compacted unbound aggregate base a and b parameters are similar to values for jointed rocks and higher than a and b values for soils. Thus, at the same stress, field-compacted granular bases exhibit higher stiffness than soils.

Furthermore, field-compacted specimens have higher a and lower stress sensitivity b than laboratory-compacted specimens of unbound aggregate bases. Granular bases in the field have been subjected to high compaction loads as well as heavy traffic during their service life. The heavy loads have resulted in asymptotically stabilising contact crushing and particle rearrangement (McDowell et al. 1996, Einav 2007, Hossain et al. 2007); these contact-level processes lead to high a-factors and low b-exponents.

6. **Suction effects**

The stiffness of unsaturated granular layers is sensitive to changes in moisture content due to the development of matric suction (Cho and Santamarina 2001, Yuan and Nazarian 2003, Siripun et al. 2011). In the absence of fines, the air entry value is a good indicator of the potential effect of suction on the 'equivalent effective stress' which affects stiffness (Alonso 2003, Lu and Likos 2004, Alonso et al. 2012). The air entry value reported for the unbound aggregate base in Morgan County is less than 5 kPa (Terrell 2002). At the same time, the calculated values of matric suction range between 11 kPa and 20 kPa, for water contents between 4.8% and 5.7% (Terrell 2002). Therefore, moisture has a minimal effect and the applied load and inherent fabric control the stiffness of unbound aggregate bases with no fines.

7. **Conclusions**

Two field configurations were developed to determine the stress-dependent stiffness and anisotropy of as-built unbound aggregate bases in pavements. The testing methodology was applied to the two inverted base pavements built in Georgia. Salient observations follow:

- The stiffness of field-compacted granular bases is anisotropic and elastic, but nonlinear and stress-dependent. Both granular bases tested were in the resilient regime.
- The stress-dependent stiffness of granular bases renders the simultaneous determination of the state of stress and stiffness within the pavement an
iterative process in order to extract the constitutive relationship that links the two.

- CODA wave analysis is a robust signal-processing technique for the accurate determination of the stiffness–stress response of granular bases in situ.
- Field-measured stiffness values are considerably higher than values measured on laboratory-compact ed specimens. In particular, field-compacted unbound aggregate bases have higher initial stiffness (α-factor) and lower stress sensitivity (β-exponent) than laboratory-compact ed specimens. The differences are attributed to the placement and compaction processes, as well as the extensive preconditioning sustained by the field material through traffic and weather cycles. The α and β parameters of field-compacted unbound aggregate bases are close to those of jointed rocks, indicating a very stiff material.
- Suction has a minor effect on the stiffness of granular base, when the aggregate is crushed rock with limited fines content.

Acknowledgements

This work was supported by the Georgia Department of Transportation and the Georgia Construction Aggregate Association under its Executive Director John Cardosa. Additional support was provided by the Goizueta Foundation. The research was conducted at the Georgia Institute of Technology.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. Email: dcortes@nsu.edu
2. Email: Carlos.Santamarina@KAUST.edu.sa

References

Kim, S.-H., Little, D.N., and Masad, E., 2005. Simple methods to estimate inherent and stress-induced anisotropy of aggregate base. Transportation Research Record: Journal of the