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ABSTRACT: Inherent physical difficulties associated with the ef-
fect of low-velocity anomalies on wave propagation, limited data
sets, and restricted illumination angles affect the tomographic as-
sessment of piles, caissons, slurry walls, and other similar geotech-
nical systems. This study evaluates various inversion methodolo-
gies for the tomographic detection of low-velocity anomalies.
Travel time and amplitude data are gathered in the laboratory by
simulating realistic field conditions. The inversion methodology in-
volves data preprocessing, fuzzy logic constraining, and various
forms of tomographic inversion based on either pixel or parametric
representations of the medium. It is shown that the tradeoff between
variance and resolution in pixel-based inversions can be overcome
by adding information, such as regularized solutions, or by captur-
ing the problem in parametric form for a presumed simple geome-
try. Results show that amplitude-based inversion may be more ad-
vantageous than time-based inversion in the detection of
low-velocity anomalies; however, consistent coupling of transduc-
ers is required. The most robust inversion method tested in this
study for the detection of low-velocity anomalies under standard
field situations (i.e., limited data and restricted illumination angles)
involves a combination of fuzzy logic constraining followed by
parametric-based inversion.

KEYWORDS: nondestructive testing, elastic waves, ultrasound,
velocity, attenuation, inverse problems, tomography, piles, cais-
sons, columns, beams

Nomenclature

A Amplitude, V
B Normalized amplitude
E Error norm, s or V
L Length, m, travel length, m

M Number of measurements
N Number of measurements
Q Matrix of touched pixels
s Slowness, s/m
T Transmission coefficient
t Travel time, s

V Wave velocity m/s
x, y Coordinates, m

a Attenuation coefficient, l/m

b Geometric attenuation exponent
h Damping coefficient
l Wavelength, m
r Regularization coefficient

Low-velocity anomalies such as cracks, cavities, honeycombs,
necking, and localized degradation can be very detrimental to the
engineering performance of piles, caissons, and slurry walls. Sev-
eral nondestructive techniques have been proposed and attempted
to detect anomalies (Samman and O’Neil 1997; Wong 1995; Llopis
and Ballard 1995; see Sansalone and Carino 1991 for a discussion
of stress wave methods in NDT of concrete). Tomography is an al-
ternative. In this case, boundary measurements are inverted to ren-
der a tomographic image of the spatial distribution of material pa-
rameters within the body; the intent is to visualize the presence of
anomalies in the image.

However, there are several inherent difficulties in tomographic
imaging. First, straight-ray tomography presumes that travel paths
are zero-thickness straight lines. This assumption is valid when the
wave frequency is infinite and velocity changes within the host
medium are smaller than about 30% (Santamarina 1994). Low-ve-
locity anomalies often present much higher contrast; in this case,
nonlinear inversion procedures may be required.

Second, when the wavelength l approaches the main dimension
of the inclusion, diffraction prevails. In the diffraction regime,
waves bend around low-velocity inclusions effectively masking
their presence. This situation is sometimes referred to as “diffrac-
tion healing” (Potts and Santamarina 1993). Under these condi-
tions, the straight-ray assumption adds model error to the inversion
and degrades the quality of the tomographic image [Kak and
Slaney 1988; Devaney 1984; Gelius (1995) presents a diffraction
solution methodology for nonuniform background and uses syn-
thetic data to validate the solution].

Third, buried structures such as piles and walls can be illumi-
nated in limited directions, in contrast to medical tomograms which
are gathered by illuminating the body in 360 deg. Restricted illu-
mination hinders the constraining of the anomaly in the prevailing
direction of wave propagation.

Fourth, scatterers near the ray path affect the arriving wave
fronts. Consider a source and a receiver separated by a distance L.
The ellipsoid drawn with a cord of length L 1 l /4, with foci at the
source and receiver locations, delimits the region sampled by the
wave front (this is known as Fresnel’s ellipsoids); if multiple re-
flectors are present, the cord length becomes L 1 l /2 (Nolet 1987).
Therefore, closely spaced sources and receivers tend to sample
similar regions; thus, a high number of closely spaced measure-
ments does not necessarily indicate independent information. The
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size of ellipses and their superposition will decrease with shorter
wavelengths, i.e., higher frequencies. Vasco et al. (1995) present a
travel time tomographic solution that uses Frenel’s ellipsoids. In
this approach, the time of first arrival is replaced for the time at the
first peak, which is easier to determine.

This paper documents a tomographic study designed to simulate
realistic field measurements, i.e., small data sets and restricted illu-
mination angles, in the search for low-velocity anomalies. Both
amplitude and travel time data are considered within the first-order
linear approximation of straight rays and with an effective curved
ray model. Tomographic inversions are obtained using pixel-based
and parametric-based representations of the medium.

Tomographic Inversion: Pixel-Based Representation

Tomographic inversion in terms of pixel values starts by sub-
dividing the region into pixels of constant material properties
(Fig. 1a). The distance traveled by the ith ray through the kth
pixel determines the length Li,k. Then, the summation of travel
lengths Li,k times material parameters permits estimating travel
time or amplitude.

Travel Time Tomography—The travel time ti from a source to a
receiver is computed by multiplying the length of ray i in pixel k,
Li,k times the slowness of pixel k, sk (inverse of the pixel velocity
Vk), and adding for all pixels touched by the ith ray (see Fig. 1a):

ti
KmeasL

5 ∑
k

}
L
V

i

k

,k
} 5 ∑

k

L i,k?sk (1)

In matrix form:

t KmeasL 5 L
5

? s

known known unknown
(2)

where t KmeasL is the vector of measured travel times, L
5

is the matrix
of estimated pixel travel lengths, and s is the vector of unknown
pixel slowness.

Amplitude Tomography—The wave front attenuates as it propa-
gates through the medium. Three different effects cause this atten-
uation: expansion of the wave front (geometric attenuation), re-
flection at interfaces, and energy loss within the material (material
attenuation). The following equation captures these three causes of
attenuation:

Ai
KmeasL

5 Ao?1 2
b

?1∏
k

Tk2?e
2∑

k
L i, k?ak

(3)

where Ai
KmeasL is the amplitude measured at the end of ray i, Ao is the

amplitude measured at an arbitrary distance Lo, Tk is the transmis-
sion coefficient between pixel k and its neighbor, the b exponent
reflects the geometry of the propagating front (in terms of ampli-
tude: b 5 0.5 for cylindrical and b 5 1 for spherical wave front),
and ak is the material attenuation coefficient in pixel k. The direc-
tivity of sources and receivers is assumed spherical in Eq 3. Fur-
thermore, the transmission coefficient between pixels can be as-
sumed ~100% in quasi-homogeneous media (Tk 5 1 and ∏Tk 5 1).
Then, taking the logarithm on both sides, Eq 3 becomes:
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In matrix form, Eq 4 can be written as:

BKmeasL 5 L
5

? a

known known unknown
(5)

where the vector BKmeasL includes the natural logarithm of the nor-
malized measured amplitudes corrected for geometric spreading
(the denominator AoLo

b is a constant; its true value remains un-
known in most applications), L

5
is the matrix of travel lengths, and

a is the vector of unknown attenuation coefficients.

Matrix Inversion—The goal of tomographic inversion is to solve
for the vector of unknown pixel values. From Eqs 2 and 5,

sKpredL 5 L
5

KinverseL?t KmeasL (6)

and

aKpredL 5 L
5

KinverseL ? BKmeasL (7)

where sKpredL and aKpredL are the vectors of predicted pixel values for
slowness and attenuation respectively. The matrix L

5
is either sin-

gular and/or nonsquare in most cases. Various forms of the least-
squares solution can be applied (Table 1—details can be found in
Santamarina and Fratta 1998):

• The Least Squares Solution (LSS—Solution 1 in Table 1) ap-
plies to over-determined problems.

• The Damped Least-Squares Solution (DLSS—Solution 2 in
Table 1) allows solving mixed-determined problems. This is
the prevailing condition in geotechnical engineering applica-
tions.

• The Regularized Least-Squares Solution (RLSS—Solution 3
in Table 1) incorporates information by means of a regulariza-
tion matrix. For example, the regularization matrix permits
smoothing the second derivative of the solution. Previous
studies show that regularization is very effective in mixed-de-
termined problems such as cross-hole tomography (Ghesh-
laghi and Santamarina 1998; Samani 1997 presents a theoret-
ical approach for the tomographic imaging of state of stress in
soils using regularization solutions).

• In many cases, an initial estimate of pixel values is available
(e.g., host medium property) or can be readily generated by
preprocessing the measurements (e.g., cross-hole data). This
estimate is incorporated to the inversion as shown in Table 1—
Solution 4.

Table 1 presents two other special solutions. The singular value
decomposition provides both a methodology for inversion as well
as information about the number of meaningful equations relative
to the number of unknowns (SVD—Solution 5 in Table 1; Menke
1989). Finally, the “fuzzy logic constraining” algorithm (Solution
6 in Table 1) facilitates the detection of anomalies; the solution
obtained is a credible initial guess to other formal in-
version solutions. The method follows (Santamarina and Fratta
1998):

• Compute the average slowness or attenuation for each ray,
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ai 5 }
Bi

Km

L

e

i

asL

} average attenuation coefficient (9)

• Assign the average value calculated with Eqs 8 and 9 to all k-
pixels “touched” by the i-ray; these are the entries in the ma-
trix Qi,k.

• The value selected for pixel k is either the minimum or the
maximum of the values in the k th column of Q

5
, depending on

whether a high or a low contrast anomaly is sought,

s*k or a*k 5 min[ Q
5

KkcolumnL high value anomaly (10)

s*k or a*k 5 max[ Q
5

KkcolumnL low value anomaly (11)

Equations 10 and 11 yield the pixel values used to color the tomo-
graphic image.

Tomographic Inversion: Parametric Representation of the
Medium

The medium and the anomaly can be described in terms of a
small number of unknown parameters. The parameters needed to
describe the problem of a circular inclusion in homogeneous host
medium are the velocity of the medium Vmed (or the attenuation
amed), the velocity of the inclusion Vinc (or attenuation ainc), and
the location and radius of the inclusion (xinc, yinc, Rinc). The solu-
tion starts with an initial guess of the parameters. Then, travel times
(or amplitudes) are computed by forward simulation; computation-
ally effective solutions can be developed for simple models such as
the one depicted in Fig. 1b (algorithms can be found in the authors’
website). Unknown parameters are iteratively modified until a
good match between computed and measured travel times (or am-
plitudes) is obtained. This representation applies to anomalies that
are traversed by rays (Fig. 1b).

If the anomaly has high contrast with the medium, rays will not
travel through it but around it (Fig. 1c—Table 2). While there is no

explicit information about the properties of the inclusion Vinc (or
ainc), the properties of the host medium may be altered near the in-
clusion. Therefore, the velocity around the edge of the inclusion
Vedge may be included in the list of unknowns (or the attenuation
aedge—see Wielandt 1987).

The main advantage of the parametric representation of the
medium is reducing the number of unknowns, from hundreds of
pixel values to a handful of descriptive parameters. Intrinsically,
this representation incorporates information to the problem, as the
geometry and number of inclusions are presumed known. The main
disadvantage of this approach is the need to invoke time-consum-
ing forward simulation in every iteration.

Experimental Study

An experimental tomographic study was designed to assesses
the viability of using a small set of low-angularity data to determine
the location of a low-velocity inclusion in concrete. The specimen
consists of a 0.610 m length, 0.305 m wide, and 0.305 m high
block. The material is lightweight concrete (Portland cement mixed
with 2 mm Styrofoam beads). Lightweight concrete facilitates the
implementation of the experiment without compromising the qual-
ity of the data or the interpretation of the results. The P-wave ve-
locity in this material is approximately V < 1170 m/s. A cylindri-
cal cavity 0.076 m in diameter is formed in the specimen (Fig. 2).
The P-wave velocity in air is V 5 340 m/s (Note: The relative
impedance between the concrete and air is ~4700.)

Sources and Receivers—The impact source strikes onto metal
pads cemented on the concrete. The electrical contact at impact
triggers the oscilloscope (Fig. 2). Receivers are Valpey-Fisher
VP-1093 piezocrystal transducers (frequency range: DC-1.2
MHz). The contact imprint of these transducers is 2.36 mm. Be-
cause amplitude tomography is critically dependent on the
consistent coupling of all receivers, receivers are mounted on
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TABLE 1—Selected matrix inversion methods (after Santamarina and Gheslaghi 1995).

Solution Criterion Solution—Estimate

1. LSS

2. DLSS

3. RLSS

4. RLSS with initial
guess so

5. SVD

6. Fuzzy logic
constraining

min(eT?e)

min [eT?e 1 h2?sT?s ]

min [eT?e 1 r?(R—?s)T?(R—?s)]
R— regularization operator
r regularization coefficient

Replace:
t→(t,meas.2 L—.so)

Factorization of L— 5 U—?L—?V—
T

Columns of U—: eigenvectors of L—?L—
T

Columns of V—: eigenvectors of L—
T?L—

Li,i 5 li and Li,h 5 0 for i ° h
li sqrt eigenvalues of L—?L—

T or L—
T?L—

Constrain the inclusion by determining where
it cannot be

The results can be used as initial guess so

s,est. 5 (L—
T?L—)21?L—

T?t,meas.

s,est. 5 (L—
T?L— 1 h2?I—)21?L—

T?t,meas.

s,est. 5 (L—
T?L— 1 r?R—

T?R—)21?L—
T?t,meas.

s,est. 5 so 1 (L—
T?L— 1 r?R—

T?R—)21?L—
T?t,meas. 2 L—?so)

s,est. 5 V—
,p.?(L—

,p. 2 1?(U—
,p.)T?t,meas. (keeping l1 $ . . . $ lp $ 0)

Avg. slowness i 5

Assign the ith average parameter to all pixels touched by the ith ray. Arrange in
a matrix Q——

.

sk
,min–ave. 5 min[Q——

,k column.]
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,max–ave. 5 max[Q——
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ti
,meas.

}
∑
k

Li,k

NOTE: so is an initial guess.
The residual error is e 5 (t,meas. 2 L—?s,pred.).
These solutions are general, even though they are written with travel time tomography notation.
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FIG. 1—Inversion models. (a) Pixel representation of the medium using straight rays. (b) Parametric representation of the medium and straight rays.
(c) Parametric representation of the medium and curved rays.

spring-loaded supports and coupling is enhanced with a coupling
jelly.

Consecutive sources and receivers are separated at 5.1 cm. This
separation takes into consideration the expected wavelength of the
propagating waves, so that two consecutive receivers can provide
independent information, i.e., Fresnel’s ellipses between two con-
secutive rays present limited overlap. Overall, the region of the
anomaly is covered with six sources and six receivers producing a

total of 36 signals. This is a very small data set from the point of
view of tomographic detection of anomalies.

Data Acquisition—A computer-based Rapid System RS-2000
digital storage oscilloscope captures the signals with 500 kHz sam-
pling rate. Captured signals are displayed on the screen, visually in-
spected, and saved into the computer hard drive (Fig. 2). No other
signal processing technique is used on the raw data.
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TABLE 2—Parametric representation of medium and anomaly.

Straight-Ray Assumption

Travel Time Tomography Amplitude Tomography

Parameters: Parameters:
X-coordinate of inclusion: xinc X-coordinate of inclusion: xinc

X-coordinate of inclusion: yinc X-coordinate of inclusion: yinc

Radius of inclusion: Rinc Radius of inclusion: Rinc

Slowness of inclusion: sinc Attenuation of inclusion: ainc

Slowness of medium: smed Attenuation of medium: amed

Model: Model:

t,meas. 5 }
(L

V

2

m

L

ed

inc)
} 1 }

V
Li

i

n

n

c

c
} B,meas. 5 (L 2 Linc)?amed 1 Linc?ainc

where: where:
L 5 ray length L 5ray length

Linc 5 f(ray location, xinc, yinc, Rinc) is ray Linc 5 f(ray location, xinc, yinc, Rinc) is ray
length across inclusion length across inclusion

Curved-Ray Assumption

Travel Time Tomography Amplitude Tomography

Parameters: Parameters:
X-coordinate of inclusion: xinc X-coordinate of inclusion: xinc

X-coordinate of inclusion: yinc X-coordinate of inclusion: yinc

Radius of inclusion: Rinc Radius of inclusion: Rinc

Slowness of inclusion: Vedge Attenuation of inclusion: ainc

Slowness of medium: Vmed Attenuation of medium: amed

Model: Model:

t,meas. 5 }
(L 2

Vm

L

e

e

d

dge)
} 1 }

V
Le

e

d

d

g

g

e

e
} B,meas. 5 (L 2 Ledge)?amed 1 Ledge?aedge

where: where:
L 5 ray length L 5ray length

Linc 5 f(ray location, xinc, yinc, Rinc) is ray Linc 5 f(ray location, xinc, yinc, Rinc) is ray
length at edge of inclusion length at edge of inclusion

FIG. 2—Experimental setup and peripheral electronics (trigger and receiver spacing: 51 mm).
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Data Preprocessing

Travel Times—Figure 3 shows a typical set of signals, for a
given source. Figure 4a shows the method for picking first arrivals
used in this study. While other strategies are considered, the tan-
gent method described in the figure provides the most consistent
data set. Figure 4b shows the average slowness “shadows” for each
ray as calculated using Eq 8. Note that the back-projection of the
shadows onto the space of specimen constrains the possible loca-
tion of the inclusion by discarding regions where the inclusion can-
not be. This observation leads to the graphical implementation of
the fuzzy logic constraining procedure.

Amplitude—Two different methods are tested to assess the en-
ergy arriving at each transducer (Fig. 5a). The first method consists
of selecting the amplitude of the first peak. The second method in-
tegrates the square of the signal from time zero to the first peak
(this time restriction avoids adding the effect of boundary reflec-
tions). The first method yields a more consistent data set. Figure 5b
presents the shadows of average attenuation along each ray com-
puted with Eq 9, where the values Lo and Ao are taken as Lo 5 0.305
m and Ao 5 0.150 V. It is important to note that amplitude data are
not corrected for the directivity of sources and receivers. This cor-
rection is often difficult in field measurements (see White 1983 for
theoretical directivity functions and Fratta 1999 for an experimen-
tal determination).

Figures 4b and 5b show that the anomaly yields more contrast-
ing shadows in terms of average attenuation (about 100% contrast)
than in terms of average velocity (about 10% contrast). Yet, con-

trast alone is not sufficient for a successful inversion: the signal-to-
noise ratio can be equally or more important. Figures 4b and 5b
show similar signal-to-noise ratio for both data sets.

Spatial Coverage—The total length traveled by all rays in each
pixel is a rough but meaningful indicator of the spatial distribution
of information. Figure 6a presents the spatial coverage for three
pixel resolutions (6 3 6, 5 3 5, and 4 3 4). The spatial coverage in
all three cases is uneven, with information densely concentrated at
the center of the image and sparse coverage at the edges (cross-hole
tomographic problems are mixed-determined in most cases). Min-
imum and maximum values of travel length per pixel are shown for
each resolution level (values are normalized with respect to pixel
width). Clearly, the coverage of each pixel decreases as the number
of pixels increases. It is important to note that the anomaly is lo-
cated away from the region of maximum spatial coverage, making
its detection more difficult (Figs. 2 and 6).

Singular Value Decomposition—Not all rays (i.e., equations) are
independent; for example, neighboring rays may yield the same in-
formation about some pixels. This situation worsens as the number
of pixels decreases. Singular value decomposition allows making
an informed assessment of the number of independent equations in
a system. Figure 6b shows the sorted singular values for the three
cases presented in Fig. 6a. As the number of pixels increases, the
number of nonzero singular values increases as well indicating that
more information is extracted from the data. However, the number
of unknowns increases at a faster rate, therefore the degree of un-
der-determination increases.

FIG. 3—Typical data set. Fan of signals from source 2.
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FIG. 4—Travel time data. (a) Determination of travel time by the tangent method. (b) Shadows of average velocity for all sources.
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FIG. 5—Amplitude data. (a) Determination of peak amplitude and energy. The amplitude method yields a more consistent data set. (b) Shadows of av-
erage attenuation for all sources; values are corrected for geometric spreading.
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Fuzzy Logic—Figure 7 presents the analytically computed fuzzy
logic images using both travel time and amplitude data for 5 3 5
pixel resolutions. The increase in resolution does not improve the
image quality. In general, the solution obtained with amplitude data
is of better quality than the solution obtained with travel time data.
These results show the importance of contrast in the data between
the background and the “shadow” caused by the inclusion. (Figs. 4
and 5).

Pixel-Based Tomographic Images

The regularized least squares solution with initial guess (Table
1) is used to compute the images shown in Figs. 8 and 9 (images
obtained with other methods listed in Table 1 are of lesser qual-
ity). Fuzzy logic constraining (Fig. 7) provides the initial guess
for the regularized least squares solutions. The regularization ma-
trix is based on the smoothing operator. The regularization coef-

480 GEOTECHNICAL TESTING JOURNAL

FIG. 6—Data preprocessing. (a) Spatial coverage; the distance traveled in each pixel by all rays is normalized by the width of the pixel. (b) Singular
values; as image resolution increases, the number of nonzero singular values increases but at a lower rate than the number of unknowns.

FIG. 7—Initial guess from fuzzy logic constraining. 535 pixel resolution. (a) Velocity tomogram. (b) Attenuation coefficient tomogram.
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ficient controls the weight of the smoothing function into the fi-
nal image. The selection of this coefficient is based in the quality
of the image, the error in predicting the data, and the contrast be-
tween the largest and the smallest pixel value (for details see:
Engl 1993; Gheshlaghi and Santamarina 1998; Santamarina and
Fratta 1998). A high value of regularization renders an image
with small contrast and a high residual while a small value of r
results in a noisy image. In this study, a regularization coefficient
r 5 0.004 for travel time data and r 5 0.01 for amplitude data
yields the images that best fulfill the requirements of high con-
trast and small residual error.

Figures 8 and 9 present measured and predicted travel times,
amplitudes, and the computed tomograms. The smaller number of
pixels, the higher residual error—this is the tradeoff between the
“degrees of freedom” in the solution (i.e., number of pixels) and
the ability of the solution to match the data. Conversely, the
higher the number of pixels, the less robust the solution becomes.
Discretization of the space into pixels restricts the location of the
inclusion.

Parametric-Based Inversion

Problems with the image quality and robustness in the inver-
sion can be overcome by inversion based on the parametric rep-
resentation of the medium. The same procedure applies to travel
time or amplitude tomography, where velocities are substituted
for attenuation coefficients. Five independent parameters define
the properties of the medium and the inclusion (see Table 2 and
Figs. 1b and 1c). Each parameter is successively perturbed. The
L2 error norm permits evaluating and guiding the convergence of
the solution:

L2 norm: E 5 }
N
1

} ? !§∑
N2

§
1

i50§(t§i
Kc§al§cL§2§ t§i

Km§ea§sL)§2§ (12)

where ti
KmeasL is the measured parameter (travel time or amplitude),

and ti
KcalcL is the calculated parameter. Convergence is improved if a

proper initial guess is identified, for example, by fuzzy logic con-
straining (Fig. 7).
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FIG. 8—Velocity tomograms for different pixel resolutions. Regularized least squares solution with initial guess (regularization coefficient r 5 0.004).
(a) 636 pixels. (b) 535 pixels. (c) 434 pixels.
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Figures 10 and 11 present error functions near optimum for
travel time and amplitude data using straight and curved rays. The
straight-ray travel time solution shows excellent convergence for
parameters Vmed, yinc, and Rinc (see Fig. 10). The convergence is
weak for xinc, as discussed in Santamarina and Reed (1994). Due
to the use of straight rays, a velocity is computed for the inclusion
(albeit with poor convergence) even though the void is not trans-
versed by the wave front. The solution with curved rays avoids
this physical pitfall. Furthermore, it permits inverting for edge ve-
locity yet with very low convergence rate. In spite of this weak
convergence, this result shows the importance of boundary condi-
tions in the propagation of waves: as the wave propagates around
the void, it samples the stress-free boundary, and the wave veloc-
ity decreases.

Figure 11 presents error functions near optimum for amplitude
data using straight and curved rays. Trends and observations paral-
lel those made in reference to Fig. 10.

Table 3 summarizes the geometric configuration of the medium
inverted in all cases. Clearly, parametric inversion renders a very
credible identification of the location and size of the anomaly, even
though the data set is very small and it was gathered along re-
stricted illumination directions. Other observations include: the
poor resolution of x-position in the four cases, the tendency to un-
derpredict the size of the low-velocity anomaly (diffraction heal-
ing), and the fairly limited advantages of curved rays even in this
extreme case of an empty cavity. This last observation is based on
the similarity in inverted parameters and residual error between
curved and straight ray solutions.

Discussion: Proposed Methodology

The quality of the data is most important in any successful to-
mographic solution. This paper presents solutions using two types
of data: travel time and amplitude. If the test methodology permits
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FIG. 9—Attenuation coefficient tomograms for different pixel resolutions. Regularized least squares solution with initial guess (regularization coeffi-
cient r 5 0.01). (a) 636 pixels. (b) 535 pixels. (c) 434 pixels.
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FIG. 10—Travel time data. Parametric inversion using straight rays (o–open circles) and curved rays (1-crosses). Note the scale for inclusion and edge
velocities are different.
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FIG. 11—Amplitude data. Parametric inversion using straight rays (o–open circles) and curved rays (1-crosses). Note the change in scale for inclu-
sion and edge attenuation.
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a consistent coupling between sources and receivers with the
geotechnical structure (and the directivity of sources and receivers
is known), amplitude data can provide high contrast projection or
shadows.

While curved rays yield better results than straight rays because
they match the physical reality closer, results presented in Figs. 10
to 11 and Table 3 show limited improvement in resolving the
anomaly. Furthermore, the problem becomes nonlinear. Therefore,
straight ray tomography can be “asymptotically” extended beyond
its theoretical range, particularly in cases such as the one addressed
here involving limited data sets and restricted illumination.

The solution based on the parametric representation of the
medium is a very robust method of analysis. Figure 12 shows the
variation of residual error with the number of unknown parameters
for all cases considered in this study. The reduction of unknown
pixel values decreases the resolution in the image and causes an in-

crease in the residual error. However, adding information about the
geometry of the problem, as done in parametric-based inversion,
increases the robustness of the inversion while sharply decreasing
the residual error. Still, the parametric solution is computer inten-
sive due to the cost in forward simulations and the extent of the
search space. The initial guess provided by fuzzy logic constraints
permits reducing the cost of finding the solution.

Following this discussion, a methodology for tomographic
imaging in civil /geotechnical structures with small data sets and re-
stricted illumination can be extracted:

• Determine arrival times and amplitudes.
• Assuming straight ray propagation, use fuzzy logic constrain-

ing to obtain a credible initial guess.
• Use the fuzzy logic solution to determine an initial guess.
• Propose a simple model to represent the medium in terms of a

small number of unknowns.
• Identify the optimal value of unknowns.
• If needed, convert this solution into a pixel representation, and

use matrix inversion techniques to refine the solution.

Conclusions

An experimental study is conducted to identify the location of a
low-velocity inclusion inside a concrete block. The anomaly is
placed outside the region of maximum information. The modeled
situation is similar to the presence of defects in piles, caissons,
slurry walls, and other similar geotechnical systems. Elastic waves
are used to “illuminate” the block. Both travel time and amplitude
data are extracted.

The test configuration and alternative pixel resolutions are ana-
lyzed to assess spatial coverage and the number of singular values.
Measurements are preprocessed with emphasis on the identifica-
tion of shadows generated by the anomaly. The back-projection of
these shadows helps constrain the presence of the anomaly, ren-
dering a credible initial guess.

When the medium is represented in terms of pixels, the data are
inverted with least-squares techniques implemented in matrix
form. Regularization permits incorporating additional information
into the problem, and it appears as the best inversion alternative for
the mixed-determined cross-hole tomographic measurements.

When the medium is described in parametric form, the inversion
of these parameters renders a very stable solution. The limited con-
straining of the anomaly in the direction of wave propagation is
also manifested in this representation (i.e., limited xinc resolution).

The combination of initial guess followed by inversion based on
the parametric representation of the medium solution provides the
most robust approach for the solution of the tomographic inversion
of low-velocity inclusions in civil/geotechnical structures, with
limited data sets and restricted illumination.
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