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ABSTRACT 

Results from a set o f  questionnaires designed to compare methods of  obtaining 
membership functions were analyzed to identify general trends in fuzziness. It was 
found that fuzziness in comprehension is ahvays reflected in the answer; concepts 
such as difficulty, imprecision, and shape of  membership functions are clearly 
interrelated; and the transition between crisp extremes through fuzziness has 
characteristic manifestations. Emphasis is placed on the practical implications of  
these ideas, applications include developing standard and type H fuzzy sets, 
improving the completeness and consistency of  available data, and supporting the 
development o f  knowledge-based systems using fuzzy sets. 

KEYWORDS: fuzziness, fuzzy  sets, hedges, knowledge elicitation, mem-  
bership functions,  uncertainty 

INTRODUCTION 

It is hypothesized that individuals perform as top-level observers of the 
complex phenomena that take place in their environment, reducing them to 
simpler but uncertain abstractions (see also Part I of this paper). Of concern is 
the extent of this transformation and the trends that characterize it. Conceptu- 
ally, it is possible to analyze this question by studying the human cognitive 
processes of perception, storage, decision making, and response in relation to 
the properties of a given phenomenon. Alternatively, the combined effect of 
these processes can be observed indirectly by measuring the fuzziness (viewed 
as a dimension of uncertainty) of their response to specific tasks or stimuli. 

Following this alternative approach, results from a set of questionnaires 
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distributed among graduate students and professors enrolled in a course on fuzzy 
sets at Purdue University were analyzed to provide insight into these issues. The 
questionnaires consisted of seven parts involving topics related to engineering, 
such as the stability of building, and others from everyday life such as the age of 
people. Four elicitation methods were used to determine membership functions: 
point estimation, interval estimation, fuzzy set exemplification, and pairwise 
comparison. Details on these methods of measurement and the evaluation of 
their applicability are given in Part I of this paper. 

The study presented herein analyzes the results of the measurement methods, 
looks into the relationship between the difficulty of the task and the fuzziness in 
the result, and considers how those effects transcend the type of response mode. 
Ideas are further developed to show trends in fuzziness that have important 
consequences and potential applications. 

F U Z Z I N E S S  A N D  I M P R E C I S I O N  

O n e  of the questionnaires required individuals to evaluate the relative size 
(i.e., ratio of areas) of six rectangular figures, comparing them two at a time. 
The largest rectangle was 890 times larger than the smallest one. Figure 1 shows 
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the mean value of the ratio estimated by the 22 assessors versus the actual ratio 
(plots for each individual are similar, and they all conform to Stevens's power 
law [1]). Figure 1 also shows the sample standard deviation (SSD) of the 
answers, which is a measure of discrepancy between the subjects' assessments. 
The second part of this questionnaire asked the subjects for an estimate of  the 
uncertainty in their answers on a 1 to 10 scale. A plot of  the mean uncertainty 
versus the correct size ratio is shown in Figure 2. The analysis of these figures 
indicates that as the degree of difficulty increases (i.e., increasing relative size of 
areas), the imprecision of the answers increases, as well as the discrepancy 
(disagreement) among assessors (Figure 1); uncertainty remains at a minimum 
low value when comparing elements that differ by less than one order of 
magnitude, and then it increases in proportion to the degree of difficulty (Figure 
2). In other words, difficulty, uncertainty, imprecision, and disagreement are 
clearly related, all of  them being minimum for the extreme simplest case of 
comparing two figures of the same size. 

These trends were observed for all the results obtained with the four 
measurement techniques considered in this study, regardless of the topic of the 
questions. However, their manifestation differed among the elicitation methods; 
some of  their particular characteristics are presented below. 
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FUZZINESS AND RESPONSE MODES 

The pairwise comparison method consists of  comparing two objects to assess 
the relative degree by which they possess a certain quality [2]. The range of the 
scale is specified, with one extreme representing the case of two objects 
possessing the quality with the same degree, while the other extreme 
corresponds to two objects that are completely different in the sense of the 
quality. Figure 3 shows the disagreement between assessors (expressed by the 
SSD of the answers) plotted against the mean relative weight for three different 
scales. These results are based on several different questionnaires (colors, old, 
tall buildings, surfaces) including data provided by Winslow [3] for the 
comparison of gray levels. It is observed that disagreement is maximum at the 
center of the scales where comparisons are the vaguest; there is perfect 
agreement, that is, null SSD, at the two extremes; and there is a transition 
between extreme situations through middle-of-scale, fuzzier comparisons. 

In the point estimation response mode, individuals assign a particular object to 
the category it best fits according to the property under consideration. Figure 4 
was developed from a questionnaire on the darkness of nine colors using a 
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unitary distance between any two consecutive levels of darkness to compute the 
SSD of the answers. Again, the trend shows maximum agreement for the 
answers corresponding to extreme situations, i.e., black and white colors, and 
maximum dispersion for intermediate ones. 

In the third method, interval estimation, a segment is given as a representation 
of the scale of the quality being analyzed; the ends of the segment correspond to 
the extremes of  the quality. Individuals are asked to provide the interval on such 
a line that best represents the object being considered. It was found that intervals 
close to the extremes were narrower than those intervals representing fuzzier, 
middle-of-scale concepts. 

The fourth method evaluated with the questionnaires was the exemplification 
method, which consists of providing the membership values corresponding to 
several discrete levels selected on a reference axis. All the unimodal and 
monotonic membership functions derived with this method from the responses to 
all questionnaires were used to develop Figure 5. Agreement between assessors 
is observed for the crisp conditions of full support (membership value of 1.0) 
and null support (membership value of 0.0). Discrepancy between the answers 
increases toward intermediate degrees of belongingness where fuzziness is the 
greatest. 
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Figure 5 also shows results by Norwich and Turksen [4, 5] for both unimodal 
and monotonic membership functions, but where the SSD is calculated from 
several answers provided by the same subject. While the two trends are the same 
with respect to the effect of vagueness in the transition between extremes, the 
important conclusion here is that the collective fuzziness of fuzziness is 
significantly larger than the individual one. This is relevant in the development 
of type II fuzzy sets and may have important implications in some knowledge 
acquisition problems. However, this conclusion requires further verification: 
The tests by Norwich and Turksen were performed under more controlled 
conditions than those reported here, and using different tasks. 

In summary, the results presented in this section indicate that (1) fuzziness in 
comprehension is always transmitted to the answer, regardless of topic or 
response mode; and (2) the transition from one extreme (i.e., not having the 
quality under investigation) to the other (i.e., fully possessing the quality) is not 
disorganized but follows consistent trends and quantifiable relations. 

FUZZINESS AND MEMBERSHIP FUNCTIONS 

The study of the trends regarding the membership functions involved both 
unimodal and monotonic functions. For simplicity of presentation, and because 
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the most complete data set corresponds to the method of  intervals, the following 
discussion will use the answers obtained with this elieitation technique. 
Although there were minor differences in the results, these trends were the same 
independently of the elicitation method. 

Unlmodal  Funct ions  

Figure 6 shows unimodal membership functions representing the darkness o f  
nine different colors ranging from white (No. I) to black (No; 9). These curves 
are not normalized, and they are based on the answers given by the 22 subjects. 
It is observed that fuzziness (width) increases and maximum support (height) 
decreases toward the middle of the scale, that is, for colors of intermediate 
darkness. This characteristic of subnormality was also found by Norwich and 
Turksen [4], working with one subject at a time. Both extremes, black and 
white, are represented not by single vertical lines but by narrow fuzzy sets, 
showing that even "cr isp"  extreme conditions are not precisely perceived. 
These extreme membership functions are not monotonic functions formed by 
accumulation to the extremes, but unimodal (noncumulative) membership 
functions that are affected by the absolute bounds of the variable. 

For each of  the colors, the answers of 10 assessors were taken at random from 
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the original data, a normalized membership function was constructed, and the 
distance d between the peak point (point with a membership of 1.0) and the 
furthest crossover point (point with a membership of 0.5) was measured and 
plotted against the position of the peak point. The process was repeated nine 
times for each color, resulting in Figure 7. Although the approach used to 
develop Figure 7 is only a crude scheme to generate additional information from 
a limited number of data points, the observed trend is clear and very similar to 
those shown in Figures 3 and 4. The distance d is minimum at the extremes, 
where fuzziness is the lowest, and increases toward the center of  the scale, 
where fuzziness is the greatest. 

Figure 7 and other plots obtained from other tasks in the questionnaire have a 
similar shape: The central three-quarters of the curve have flatter slopes than the 
end parts, and the range of  possible distances d is wider at the center of the scale 
than at the extremes. Therefore, major reductions in fuzziness occur close to the 
extremes, while the "fuzziness of fuzziness" increases toward the center of  the 
scale. This observation is important in the construction of type II fuzzy sets. 
Additional information can be obtained from plots like those in Figures 3, 4, and 
7: the flatter the curve, the more even the understanding of concepts across the 
scale; the lower the end values, the better the perception of the extremes; and the 
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lower the curve, the more familiar or less complex the concept. All these 
geometric features can help characterize the fuzziness involved in comprehend- 
ing a problem. A tentative classification of fuzziness based on all the results 
obtained in this study is shown in Figure 8 (note that the bandwidth is plotted in 
this figure; the bandwidth is defined as the distance between the two points with 
0.5 membership value). There are five regions: extreme simplicity, low, 
medium, and high fuzziness, and extreme complexity. Most topics covered in 
this study, and to the authors' contention frequent engineering problems, fall in 
the category of  medium fuzziness. Several applications of this classification plot 
will be discussed in the next sections. 

Monotonic  Functions 

The data reported in this case (Figure 9) are the membership functions for the 
stability of buildings and the cumulative version of  unimodal membership 
functions obtained for colors. The slope of each function was measured between 
0.25 and 0.75 memberships and plotted against the position of the crossover 
point (Figure 10). It is observed that the monotonic membership functions are 
steepest at the extremes and flattest in the central part of the scale, with a fairly 
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symmetrical trend about the middle of  the scale. The relationship between the 
absolute value of steepness and fuzziness is very stable. These is no value plotted 
close to the extremes because, as mentioned earlier, bounds also have fuzzy 
representation, and thus the crossover points are away from the ends. The 
characterization oi' problems according to their degree of fuzziness proposed in 
Figure 8 for the case of unimodal membership functions could be repeated for 
monotonic ones using the slope of the functions. 

H E D G E S ~ E X T R E M E S - - E X P E R I E N C E  

Figure 10 clearly shows the effect of linguistic intensifiers (hedges): The 
flatness in the central part of the scale is consistent with the translation effect of 
hedges found by several researchers [4, 6, 7]. However, for situations closer to 
the ends of the scale, the trend in Figure 10 supports the steepening effect of 
hedges suggested by Zadeh [8]. Therefore, it is not a matter of which approach 
is correct but of where the membership function lies within the range of the 
variable. 

It was observed that, even for the obvious case of darkness, the extremes 
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black and white did not have crisp representations (Figure 6). This indicates that 
for most  practical situations extremes will be fuzzy. Therefore, if their 
definition is needed, it is the analyst's responsibility to establish it for the 
particular problem under consideration. When results are obtained from 
repeated measures from the same subject performing as measurement instru- 
ment, fuzziness in the extremes can be used as a measure of  the fuzziness of  
threshold and saturation levels of  the subject's Perception. If  aggregation or 
averaging of the results from different assessors is used to seek a consensus, one 
should expect higher fuzziness because of the variability in perception among 
assessors. 

The existence of both extremes of a quality is a key concept in this study: 
knowing the extremes of the variables involved is equivalent to fixing the context 
and all its related valuation scales (in communication, for example, this is a 
fundamental step in order to share meaning). The validity of Figures 8 and 10 for 
a wide variety of tasks indicates that once the individual knows the context and 
its extremes, he or she can act within it and make inferences without the need for 
the objective measures (valuation scales) of  the variables that govern the 
environment. In other words, the following two fuzzy propositions: 

�9 T is very tall 
�9 P is shorter but not much 
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conduce to " P  is quite tall ." This inference was made without specifying a scale 
for height, and it is as valid in this world as in Lilliput. Its translation to values of 
height is immediate once the context (extremes of "height") is known. Note that 
the example could have been related to earthquake accelerations and still be 
valid, and "quite high" would still keep the same relative position. Further- 
more, the real value of the acceleration is not needed to know that "quite high 
accelerations" produce important damage; however, this does not imply that the 
value space is not relevant--in fact, it was part of the experiential background 
used by the subject to set the context. 

The value meaning of the qualitative statements depends on the individual's 
previous experience, implying that subjects perform as holders of "adaptive 
molds" that are modified through a cycle of experience-feedback-adaptation as 
they better comprehend the phenomenon. From this perspective, the position of 
an experimental curve in Figure 8 is indicative of  the individual's skill level: the 
higher the curve, the lower the previous experience [9]. 

P O T E N T I A L  APPLICATIONS 

There are many potential applications of these concepts. For example, it is 
possible to reverse the process used in developing Figures 8 and 10: Given the 
estimated position of a stimulus on a segment bounded by the extremes of the 
variable, one can enter these plots and obtain the width of unimodal functions or 
the slope of monotonic ones; then functions like pi, s, and z curves can be used 
to obtain the membership values. Implicit to the application of this simplified 
procedure is the need to recognize the extremes of the variable, select an 
appropriate level of fuzziness, and assume that the scale is linear. 

If  the perception of the variable does not follow a linear scale, the assessor 
must also identify intermediate points, for example by "bisection." A modified 
version of Stevens's power law of psychophysics [1] can also be used: The 
assumption is that subjects tend to map an input into a linear scale when they are 
allowed to respond in linguistic form. Then Stevens's law can be expressed as 

L = l o g  c + a '  log I 

where L is the linguistic scale, c is a constant, a '  is an exponent dependent upon 
stimulus involved, and I is the input. Data from questionnaires used in this 
study, and others related to the field of geotechnical engineering, were analyzed 
to verify this hypothesis. It was found that the modified law is supported by 
individual measurements and also by the average of collective measures. Table 1 
lists values of a '  that were determined from the data. Among all the cases 
considered in Table 1, the coefficient a relating surprise and probability of 
failure was found to be strongly case- and individual-dependent. 

Besides this simplified approach to developing membership functions, 
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Table 1. Modified Power Law" Linguistic Response 

315 

Stimulus Exponent a '  

Stability of buildings (H/B) 0.87 
N (Standard Penetration Test) 0.62 
Sensitivity of clays 0.81 
Strength of clays 0.65 
Earthquake acceleration 0.5 
Depth for soil improvement 0.52 
Time for soil improvement 0.32 
Permeability of soils 0.12 
Probability of failure (surprise) - 0.62 

concepts discussed in this paper can be applied: 
�9 To develop "probabilistie" and "type I I"  fuzzy sets (aided by the trends 

shown in Figures 5, 8, and 10). 
�9 To determine the level of a subject's understanding of a problem. 
�9 To fuzzify singletons. 
�9 To check, correct, or improve results based on incomplete, limited, or 

inconsistent data. 
�9 To improve quality and validity of  simple examples, such as those often 

used to illustrate fuzzy set applications. 
Andonyadis [10] used the findings of this study to improve incomplete and 

inconsistent data in the development of a pavement management system based on 
fuzzy set theory. An example of the fifth suggestion is the development of 
membership functions for linguistic matching based on the simplified technique 
described above. Finally, the concept that one does not need support values but 
just a list of degrees of belief to implement fuzzy operations and fuzzy inferences 
in a given context and the idea of transition between extremes have been used to 
develop a powerful fuzzy shell-environment in LISP [11]. 

CONCLUSIONS 

A questionnaire designed to determine the advantages and limitations of 
several elicitation techniques (Part I of this paper) also helped define and 
evaluate the characteristics of fuzziness in comprehension. The main conclu- 
sions of this study are: 

1o There is a clear interrelation among: difficulty, uncertainty, imprecision, 
dispersion between assessors, width of estimated intervals, height and 
width of  unimodal membership functions, and steepness of monotonic 
functions. 
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2.  

3. 

. 

So 

6.  

Juan Carlos Santamarina and Jean-Lou Chameau 

The fuzziness of the questions is always reflected in the answer, regardless 
of  the response mode. 
There is a gradual transition from crisp extreme situations to fuzzy 
intermediate ones. This trend is symmetrical and shows most of  the 
reduction in fuzziness occurring close to the extremes, leaving an 
intermediate region of a uniform degree of  fuzziness. 
The strength and general validity of the observed trends, for all topics 
considered, indicate the possibility of modeling fuzzy inferences just with 
a list of  degrees of belief (without the support values) once a context is 
agreed upon. 
Even "c lear"  extreme situations are not perfectly perceived by assessors 
and have fuzzy representations. 
Recognition of these trends may help in the application of  fuzzy set 
mathematics in several ways, such as in developing membership functions, 
rating fuzziness and skill, developing type II fuzzy sets, and evaluating 
incomplete or inconsistent data. Additional findings include a rationale for 
the effects of hedges, confirming the importance of shift as suggested by 
previous investigators. 
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