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Abstract 

Tomography is the inversion of boundary projections to reconstruct the internal characteristics of the medium between the 
source and detector boreholes. Tomography is used to image the structure of geological formations and localized inhomogenieties. 
This imaging technique may be applied to either seismic or electromagnetic data, typically recorded as transmission measurements 
between two or more boreholes. Algebraic algorithms are error-driven solutions where the goal is to minimize the error between 
measured and predicted projections. The purpose of this study is to assess the effect of the ray propagation model, the measurement 
errors, and the error functions on the resolving ability of algebraic algorithms. The problem under consideration is the identification 
of a two-dimensional circular anomaly surveyed using crosshole measurements. The results show that: ( 1 ) convergence to the 
position of the circular anomaly in depth between vertical boreholes is significantly better than for convergence in the horizontal 
direction; (2) error surfaces may not be convex, even in the absence of measurement and model errors; (3) the distribution of 
information content significantly affects the convexity of averaging error functions; (4) measurement noise and model inaccuracy 
manifest in increased residuals and in reduced convergence gradients near optimum convergence; (5) the maximum ray error 
function increases convergence gradients compared with the average error function, and is unaffected by the distribution of 
information content; however, it has higher probability of local minima. Therefore, inversions based on the minimization of the 
maximum ray error may be advantageous in crosshole tomography but it requires smooth projections. These results are applicable 
to both electromagnetic and seismic data for wavelengths significantly smaller than the size of anomalies. 

1. Introduction 

Inversion problems are frequently encountered in 
engineering and science. Fideli ty and quality of  inver- 
sions are conditioned by the nature of  the phenomenon, 
the quality and extent of  available data, the adequacy 
of  the model  selected to represent the intervening phe- 
nomenon, and the inversion procedure. Accumulated 
evidence in the literature shows that poor data or a poor 
inversion model  will blur images, add non-existent fea- 
tures, and increase the probabil i ty of  non-uniqueness. 

Wave-based seismic geotomography was proposed 
in the 1970s to determine the characteristics of  geolog- 
ical materials by inverting boundary measurements 
(e.g. Bois et al., 1972; Ivansson, 1986). The most sig- 
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nificant data restrictions in geotomography include lim- 
ited angular coverage, mixed presence of 
underdetermined and overdetermined regions, noise in 
the data, coupled effects of attenuation on traveltime 
data, inadequate source characterization, and the effects 
of  improper coupling of  the transducer to the medium, 
among others. 

Wave-propagat ion models  used in geotomography 
include straight ray, curved ray, and wave equation 
modeling. Ray models are applicable when the wave- 
length is significantly less than the size of  the anomaly. 
If  velocity variations throughout the medium are small 
( less than 20-30%)  straight rays may be assumed, 
otherwise significant ray bending takes place and the 
inversion problem involves sequential backprojection 
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and ray-tracing cycles to obtain the solution (Bois et 
al., 1971; Lytle and Dines, 1980; Gustavsson et al., 
1986; Ivansson 1986). Assumptions related to the 
homogeneity and isotropy of the background medium 
(which hosts the anomaly) are also included under 
these model restrictions. On the other hand, when the 
wavelength A approaches the size of the anomalies, 
diffraction takes place and full-wave solutions are pre- 
ferred (Devaney, 1982; Kak and Slaney, 1988). Wil- 
liamson (1991) and Williamson and Worthington 
(1993) showed that ray tomography is applicable when 
the scale length of the anomaly is at least the radius of 
the first Fresnel zone. That is, if the average ray length 
is n wavelengths, the size of the inclusion must be at 
least ~. A. (n) °5, where ~is between 0.5 and 1. 

Iterative geotomographic algorithms operate on a 
discrete medium, where the region to be inverted is 
divided into pixels and the goal of inversion is to deter- 
mine the attenuation or slowness at each pixel. If  the 
number of pixels exceeds the number of independent 
measurements, the problem is underdetermined and the 
solution is not unique. The restriction of norm mini- 
mization may be imposed to solve the problem. Alter- 
natively, the medium could be defined in parametric 
form, greatly reducing the number of unknowns; this 
type of "simplified medium" assumption is often a 
recourse in geophysical exploration. For example, in 
the case of a circular inclusion within an isotropic 
homogeneous medium, there are only five unknowns: 
the velocity of the host background Vback, and the inclu- 
sion coordinate location Xin c and Yinc, size Rinc, and 
velocity Vin ~. Inversion would seek to identify the com- 
bination of these five parameters that minimizes the 
error between the results of the forward model and the 
measured boundary data. This method does not benefit 
from the error-redistribution approach used in algebraic 
algorithms. 

Whether the problem is posed in discrete or para- 
metric form, iterative algorithms are error driven, a 
factor which affects their resolving ability (Menke, 
1989). Menke (1984) studied the resolvability of the 
position of an inclusion anomaly between two lines of 
sources and receivers. He found that horizontal reso- 
lution was somewhat poorer than the vertical resolu- 
tion, but that this could be improved by increasing 
either the density or the angular coverage of sources 
and receivers. Menke (1984) assumed ray beams of 
finite width to take into account limited ray bending 

and the measurement of properties along a finite ray 
tube. 

The purpose of our study was to determine the 
resolvability of background and anomaly characteris- 
tics, the effects of data restrictions, the consequences 
of the assumed wave propagation model, and the per- 
formance of different error functions. The study was 
restricted to crosshole data and ray models of propa- 
gation. 

2. Methodology 

The case under consideration involved a 2-D circular 
inclusion centered in a square image region. Tomo- 
graphic crosshole data were obtained by ensonifying 
the medium from discrete source positions on one side 
of the square image zone and measuring projections by 
means of receivers at discrete positions on the opposite 
side. The medium was defined in parametric form, 
[ Vback, Rinc, Xinc, Yinc, Vinc] • The parametric study con -  
s i s t ed  of determining the global error between meas- 
ured traveltimes and those traveltimes estimated by 
forward modeling. Three ray models and three error 
functions were used. 

2.1. Experimental data 

Data were obtained in the laboratory using sound 
waves in air. A 0.23 m radius balloon filled with helium 
was placed at the center of a 1.5m x 1.5m frame, and 
crosshole traveltime data were obtained for 16 sources 
mounted on one side of the frame, and 16 microphones 
mounted on the opposite side and connected to a mul- 
tichannel digital storage oscilloscope (Fig. 1 ). A total 
of 256 traveltimes were measured. The characteristic 
wavelength in the background medium was 0.08 m. 
While the velocity of sound in helium is significantly 
higher than in air ( v m =  1039 m/s; V~r=343 m/s) ,  
first arrivals through the balloon have very low ampli- 
tude. Measured traveltimes yielded an actual inclusion 
velocity, Vine, of approximately 410 m/s.  

2.2. Ray models 

Three ray models were used. The first was the 
straight ray model. The second model was a second- 
order Fourier approximation to the ray equation, 
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Region Size: 1.5 m x 1.5 m Paramete rs  Xin c = 0.75 rn 
C o n f i g u r a t i o n :  Crosshole Yinc = 0.75 I l l  
Transducers: 16 sou rce  p o s i t i o n s  Rin c = 0.23 m 

16 rece iver  positions Vinc ~ 400 rrds 
Vback = 343 mJs 

Fig. 1. Circular inclusion in homogeneous background-crosshole 
tomographic data. Five model parameters [Xinc, Y~,c, R~,c, Vi°c, Vb,ck]. 
Source signal wavelength: 0.08 m. 

whereby a half-sine wave was added to the straight ray. 
The amplitude of the sine arc was varied until the trav- 
eltime was minimized; amplitude is the only parameter 
optimized in this model. The third ray model repre- 
sented each ray as a jointed sequence of 16 segments. 
For a given ray, the initial location of nodes between 
segments was along the straight line between the source 
and the receiver. Then, nodes were recursively dis- 
placed normal to the straight ray until the traveltime 
was minimized (Santamarina and Cesare, 1994). For 
all three models, traveltimes were computed as: 

li~k~u~k (1) 

where ti is the traveltime i between a given source and 
receiver, ALk is the length of the ray segment k, and vk 
is the velocity along the segment. Straight rays are 
fastest to compute and easiest to implement in inversion 
programs as they do not require retracing, i.e. the matrix 
of travel lengths is computed only once. On the other 
hand, segmented rays have a large number of degrees 
of freedom, resulting in computer intensive optimiza- 
tion; yet this model computes the shortest traveltimes. 

2.3. Error functions 

Three error functions were used to evaluate the 
global error between measured traveltimes and travel- 

times computed for each set of parameters. These error 
functions are based on the L1, L2 and L~ norms. Ll and 
L2 norms were divided by the total number of rays n to 
express the "average residual error per ray" and to 
facilitate comparison: 

~le ,  I 
Average absolute error Eabs = 

n 
(2) 

Average squared er ror  Esq r = E ~  ~~ 72 (3) 

Maximum ray error Emax = max I oil (4) 

where ei is the error for ray i, ei= [ti* - t i ] ;  t~* is the 
predicted traveltime, and ti is the measured traveltime. 

The average squared error  Esq r presumes that the data 
follow Gaussian statistics, and places more emphasis 
on large magnitude errors than on the absolute error 
function E,bs. The maximum error function selects the 
single largest error. Standard ART and SIRT algorithms 
attempt to minimize Esqr. Regardless of the selected 
error function, the partial derivative of the error func- 
tion with respect to a parameter, e.g. Rinc, gives the 
component of the gradient that drives the convergence 
of the solution to the correct value of that parameter. 

3. Analysis and results 

The invertibility of model parameters [ Vback , Rinc, 
Sinc, Yinc, Vinc ] depends on the sensitivity of the selected 
error function to each parameter. Errors between meas- 
ured and predicted traveltimes are minimized when the 
model parameters are at or near their true values, i.e. 
global minimum of the error surface. However, there 
are differences in evaluation of error functions and rates 
of parameter convergence, which are dependent on 
information density, ray model error, and measurement 
errors. These effects were evaluated using the follow- 
ing procedure: ( 1 ) one of the model parameters was 
varied [Vback , Rine, Xinc, Yinc, o r  Vinc]; (2) traveltimes 
were computed for all rays with the selected ray model; 
(3) the chosen error function was evaluated with 
respect to the measured traveltimes (Eqs. 2, 3 or 4). 
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3.1. Error functions 

The sensitivity of different error functions to varia- 
tions in the five parameters was studied with traveltimes 
obtained from the multi-segment ray model. Results 
are summarized in Fig. 2. The ray nodes most often do 
not fall on the boundary between the anomaly and the 
background medium. This manifests as noise in the 
error-parameter curves, particularly with geometric 
parameters Xinc, Yinc and Rin c. While average error func- 
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tions reduce these and other effects such as data errors, 
the maximum error function highlights these effects 
and may even present local minima (see variation for 
Xin c in Fig. 2). 

Error surfaces show different gradients. The maxi- 
mum ray error function presents the highest gradient 
for all five parameters, with lower gradients in the aver- 
age squared error function. Average error functions 
result in shallow transitions around optimum while the 
maximum ray error function remains acute (see vari- 
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Fig. 2. Error surfaces for each parameter. Different error functions based on L~,/12, and L= norms. (Laboratory data analyzed using curved rays).  
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ation for Yinc in Fig. 2). In summary, error averaging 
functions appear to be less efficient yet more reliable 
in guiding the convergence than the maximum func- 
tion. 

3.2. Parameter convergence 

Convergence curves are dissimilar for the different 
parameters, depending upon dimensionless ratios that 
involve the size and velocity of the inclusion, the sep- 
aration between boreholes, and the host background 
velocity. While a comparison at a dimensionless level 
is more general, the analysis loses clarity and, therefore, 
comparisons are restricted to dimensionally similar 
parameters. 

The error surfaces for the velocity and size of the 
inclusion, Vin c and Rinc, are not symmetrical (Fig. 
2a,b): small size or low-velocity contrast imply 
decreased relative importance of the inclusion with 
respect to the background. Additionally, in weakly het- 
erogeneous media with only a few small anomalies 
such as the case under study, the velocity of the back- 
ground affects all rays, for the majority of their travel 
distances. Hence, convergence of the background 
velocity is very steep as shown in Fig. 2c. 

Convergence of the vertical position of the inclusion 
Yinc, in depth between to the instrumented boreholes is 
significantly better than for the horizontal position Xin c 

(Fig. 2d,e). The incorrect location of the anomaly in 
the horizontal direction affects mostly the same group 
of rays which traverse the inclusion in the correct loca- 
tion. Furthermore, the affected rays are deflected by a 
small range of angles, with limited effect on travel- 
times. In contrast, the incorrect Y-location affects a 
significant number of rays: originally untouched rays 
may become touched by the inclusion, and those that 
traverse the inclusion in the correct location may not 
do so for the new assumed position. As a result, the 
total residual error increases sharply. 

An important consequence of the convergence inter- 
pretations stated above is that if the anomaly is assumed 
to be absent from the region traversed by any ray, the 
error analysis may lead to a lower total residual error 
than in the case of a misplaced anomaly. Hence, only 
rays that traverse the inclusion in its correct position 
are affected by its absence. Therefore, error averaging 
functions are not convex, even in the absence of meas- 
urement and model errors. 

If error maxima fall outside of the region under study 
defined by the square tomographic image plane, con- 
vergence is not affected. However, if error maxima 
occur inside this region, algorithms may converge to 
local minima, thus rendering inadequate tomographic 
images. Geometry is a governing parameter: the larger 
the relative size of the inclusion, the further away the 
error maxima boundary is from the correct location of 
the inclusion. In addition, the coupling between the 
distribution of information content and the type of error 
function also affects the convexity of the error surface, 
as shown next. 

3.3. Information density 

There are different measures of the information con- 
tent at a given pixel, such as the number of rays that 
touch the pixel, the total length of rays across the pixel, 
and the maximum angle between any two rays across 
the pixel. The distribution of information content by 
any of these measures is quite uneven when only cros- 
shole data are available, as shown in Fig. 3. In partic- 
ular, it can be seen that the information density is very 
low near the non-instrumented boundaries. 

Error averaging functions reflect not only the mag- 
nitude of errors for single measurements, but also the 
number of rays in error. Therefore, as the assumed 
location of the inclusion approaches the boundaries 
where the number of rays decreases, the magnitude of 
the average error functions also decreases. On the other 
hand, the maximum error function reflects the value of 
the worst traveltime error, regardless of the number of 
rays in error. Thus, the maximum ray error function is 
expected to be more stable with respect to information 
content. 

6 0  ° - 9 0  ° 

(a) {b) 
Fig. 3. Distribution of information content within the unknown space 
for the crosshole configuration. (a) Total travel length per pixel. (b) 
Maximum angularity of any two rays traversing the pixel. 



352 J.C. Santamarina, A.C. Reed / Journal of Applied Geophysics 32 (1994) 347-355 

UJ 

0 . 2  

0 .1  

. • . . . . .  . ,, , ,'" " " . 

0 0.3 0.6 0.9 1.2 1.5 

Y i n c  [ m ]  

0 ilxiiii iill "*'÷ 

0.1 

~\~7"£ ...... ÷ ... AVERAGE - SOUARE 

0 . 3  0~6 0 . 9  1 .2  1 .5  

Y l n c  [ m ]  

Fig. 4. Effect of  information content on error surfaces. Inclusion at 

two locations: Y~,c = 0.3 m and Y~.c = 0.75 m. Averaging error func- 
tions reflect distribution of information. (Simulated data analyzed 
using curved rays). 

The combined effect of  information content and 
error function was studied only in reference to the ver- 
tical location of  the inclusion, Yinc" TWO different 
" k n o w n "  vertical positions of  the anomaly were 
assumed: Yi,c = 0.3 m and the standard value used pre- 
viously, Yi,c = 0.75 m. Computed traveltimes for all 
other inclusion locations are compared to the travel- 
times of  these two locations. The resulting average- 
square and maximum error functions are plotted in Fig. 
4. As shown, the low information density at the top and 
bottom boundaries produce error maxima within the 
region of  interest when the average error function is 
used. On the other hand, the maximum ray error func- 
tion remains constant away from optimum. Local max- 
ima may significantly mislead error driven algorithms 
searching for off-center anomalies; indeed, there is a 
high probability that the algorithm will place the anom- 
aly on the opposite side. 

Note that for the given model parameters used in this 
simulation, no significant differences between the con- 
vergence gradients near optimum are observed between 
the two anomaly positions. The error functions are zero 
at optimum convergence in each case because the com- 
puted traveltimes for the misplaced anomaly are com- 
pared with respect to the computed traveltimes for the 
assumed correct location (i.e. no model or measure- 
ment error involved). 

3.4. Mode l  error 

The three ray models (straight ray, sine arc, and 
multi-segment) were used to study the effect of  model 
error on convergence. The average squared error func- 
tion and the laboratory data are used in the comparison. 
Results are shown in Fig. 5. In general, the smaller 
minimum error indicates that the model more closely 
approximates the true ray propagation, whereas steeper 
error gradients between the ray models for the same 
parameter indicate that the particular model shows 
greater sensitivity to the parameter. 

General trends are similar for all models. It was 
expected that the multi-segment model would present 
not only lower minima, but also steeper gradients. 
While this was observed, the actual differences are 
relatively small. The sine arc and the multi-segment ray 
models correspond closely to each other; such an agree- 
ment is not expected in asymmetrical problems or in 
the case of  multiple anomalies. The straight ray model 
leads to the highest minima and slightly lower error 
gradients since it does not optimize the ray paths as the 
other two models do. 

The greatest inversion discrepancy is for the inclu- 
sion size, i.e. the value of  Rin c corresponding to the 
lowest point on the error surfaces. In this case, the 
straight ray model predicts a significantly larger inclu- 
sion than the true value, whereas the inclusion size is 
accurately predicted by the two curved ray models: 
Rinc = 0.28 m instead of  0.23 m. This is in agreement 
with prior observations that showed that straight ray 
tomography enlarges high-velocity anomalies (Potts 
and Santamarina, 1993) 

3.5. Measuremen t  error  

Results presented in Figs. 2 and 5 were obtained by 
comparing predicted traveltimes with measured trav- 
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eltimes. Real data include measurement errors which 
result from uncertainty in the location of  sources and 
receivers, source signal triggering jitter, inadequate 
coupling, and the inherent effect of  attenuation in the 
determination of  first arrivals, among others. 

The disparity between measured and predicted trav- 
eltimes involves both measurement errors and model  
errors. Thus, in order to study the effect of  measurement 
errors alone, measured traveltimes for the centered 

inclusion were simulated with the curved-ray model. 
Travelt imes for off-center positions were computed 
with the same model, and noise was added. That is: 

t error= [1 + r n d ( e - ,  e + ) ]  . t  i (5)  

Finally, the average square error was computed. 
Results for the effect of  measurement error on the 
resolvabil i ty of  Yinc are shown in Fig. 6 for three levels 
of noise e: 0, 2, and 5%. A conclusion from these results 

0"00 0:3 0:8 0:9 1:2 0'00 0:3 0:6 0:9 1:2 

Xinc [m] Yinc [m] 

Fig. 5. Model error in forward model: effect on error surfaces. Note that straight rays overestimate size of high-velocity anomalies. (Laboratory 
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Fig. 6. Error surface for Y-location of inclusion as a function of 

measurement  noise. (Simulated data analyzed using curved rays) .  

is that measurement errors raise the error surface, 
reduce convergence gradients, and reduce the curvature 
around optimum, thus diminishing the ability to resolve 
the anomaly. 

3.6. Heterogeneous-anisotropic background 

The impact of changing the homogeneous isotropic 
background medium to a vertically heterogeneous ani- 
sotropic medium on the resolvability of the vertical 
location of an inclusion was investigated. This is a more 
relevant background in particulate materials such as 
soils. A 2 m diameter inclusion was moved vertically 
along the central axis of a 10 m wide by 20 m simulated 
deep soil formation. In the first case, the medium is 
vertically heterogeneous and anisotropic, having the 
following seismic velocity field: 

V,.(z) =a+f l ' z  x= 150+ 150.z °2 

Vh(Z) =8" V,,=O.8" V,,(Z) (6) 

where z is in m and the horizontal and vertical velocities 
are in m/s.  For comparison, the medium in the second 
case is isotropic and homogeneous, with velocity equal 
to the average velocity at depth of 10 m in the previous 
case, Vback = 388 m/s.  Simulated traveltimes were 
computed with the multi-segment algorithm, which is 
designed to find optimal ray paths in vertically heter- 
ogeneous, anisotropic media (Santamarina and Cesare, 
1994). Results computed with the average square error 
function are presented in Fig. 7. In the case of the 
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Fig. 7. Error surface for Y-location of inclusion in homogeneous-  

isotropic (Homo-lso) and in vertically heterogeneous-anisotropic 

(Hetero-Aniso) background. (Simulated data analyzed using curved 

rays).  

vertically heterogeneous anisotropic background, the 
error at shallower depth is greater than the error at 
greater depth because the larger velocity contrast 
between the inclusion and the background at shallower 
depth. The flattening and decrease of the curve at the 
extremes reflects that the inclusion is entering regions 
of low information content and should lead to error 
values equal to that of the absent inclusion case. The 
comparison with the homogeneous isotropic material 
shows virtually no difference around optimum. Away 
from optimum, convergence gradients in the homoge- 
neous-isotropic case are lower since the velocity con- 
trast between the medium and the anomaly remain 
constant. 

The background medium described by Eq. 6 is a 
four-parameter medium [a,fl,X,6] rather than the one- 
parameter homogeneous isotropic medium previously 
discussed. In this case, the error surfaces for the four 
parameters will require more study to evaluate the con- 
vergence of inversion algorithms. The study conducted 
by Santamarina and Cesare (1994) showed that it is 
not possible to separate the contribution of anisotropy 
6 from vertical heterogeneity [ a,fl,X], at least for the 
range of parameters frequently encountered in partic- 
ulate media. 

4. Conclusions 

Results from this study are valid for the inversion of 
transmission traveltime measurements, conducted 
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using either seismic or electromagnetic waves, when 

wavelengths are significantly smaller than the size of 

anomalies. The main conclusions are: 

The iterative solution of inversion problems is error 

driven. Therefore, the error surface determines conver- 

gence and resolving ability of the algorithm. 

Convergence to the depth position of the inclusion 

anomaly between the instrumented boreholes is signif- 

icantly better than for the position in the lateral direc- 

tion between the instrumented boreholes. The 

convergence of background velocity is very steep. 

Error surfaces may not be convex functions of the 

parameters of the medium even in the absence of meas- 

urement and model errors. Geometric characteristics, 

the distribution of information content, and the type of 

error function determine the convexity of the error sur- 

face. 

Error averaging functions reduce the effects of meas- 

urement noise and the consequent possibility of local 

minima. The maximum ray error function increases the 

curvature at the minimum, has high convergence gra- 

dients, and is unaffected by the distribution of infor- 

mation content. 

Measurement noise and model inaccuracy manifest 

in increased residuals and in reduced convergence gra- 

dients near optimum. Resolvability is reduced and the 

inverted solution may be inadequate. 

Anisotropy and vertical heterogeneity in the repre- 

sentative soil background host medium studied seem 

not to affect, and may even enhance, the error surface 

for accurately locating the vertical position of anoma- 

lies. However, inversion may not distinguish anisot- 

ropy from vertical heterogeneity in typical near-surface 

conditions. 
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