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Stress anisotropy and wave propagation:
a micromechanical view

J.C. Santamarina and G. Cascante

Abstract: Wave propagation is a constant-fabric macrophenomenon, suitable to microinterpretation. Both
velocity and attenuation characterize state, including inherent and stress-induced anisotropy. The purpose of this
research is to study the effect of isotropic and deviatoric stresses on wave propagation in particulate materials at
low strains and to interpret results at the microlevel. A resonant-column device was modified to allow for the
application of axial extension and axial compression deviatoric loading. The fixed-free boundary condition of the
sample was maintained. Data for round, hard-grained sand show that shear wave velocity and attenuation are
primarily dependent on the mean stress on the polarization plane, with minimal effect of the deviatoric component,
in agreement with prior observations at stress ratios less than 2-3. Attenuation is strongly correlated with the
mean stress in the polarization plane and the level of shear strain. Damping does not vanish at low strains,
contrary to predictions based on hysteretic behavior; hence, other loss mechanisms must take place at low
strains. Low-strain wave parameters are adequately corrected for mid-strain using modified hyperbolic models.
Measured velocity and damping trends during isotropic and anisotropic loading qualitatively agree with
predictions based on regular arrays.
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Résumé : La propagation d’ondes est un macro-phénomene a fabrique constante qui se préte a une micro-
interprétation. Tant la vitesse que 1’atténuation caractérisent 1I’état comprenant I’anisotropie inhérente et celle
induite par les contraintes. Le but de la présente recherche est d’étudier I'effet des contraintes isotropes et
déviatoriques sur la propagation d’ondes aux faibles déformations dans des matériaux constitués de particules, et
d’interpréter les résultats & un micro-niveau. Un appareil a colonne résonnante a €té modifié¢ pour permettre
I’application de chargements déviatoriques en extension et compression axiales. La condition de limite fixe-libre
de I’échantillon a été maintenue. Les données pour le sable 2 grains durs arrondis montrent que la vitesse de
P’onde de cisaillement et 1’atténuation dépendent principalement de la contrainte moyenne sur le plan de
polarisation, avec un effet minime de la composante déviatorique, en accord avec les observations antérieures
faites a des rapports de contraintes inférieurs & 2-3. L’atténuation est fortement corrélée avce la contrainte
moyenne dans le plan de polarisation et le niveau de déformation de cisaillement. 1.”amortissement ne disparait
pas aux faibles contraintes, contrairement aux prédictions basées sur le comportement en hystérése; ainsi,
d’autres mécanismes de perte doivent se produire aux faibles contraintes. Les paramétres d’ondes aux faibles
déformations sont corrigés adéquatement pour les déformations moyennes en utilisant des modeles hyperboliques
modifiés. La vitesse mesurée et les tendances a I'amortissement durant un chargement isotrope et anisotrope
concordent qualitativement avec les prédictions basées sur les allures réguliéres.

Mots clés : ondes mécaniques, colonne résonnante, amortissement, module de cisaillcment, anisotropie de
contrainte, vibration aléatoire.

{ Traduit par la rédaction]

Introduction

The propagation of low-strain mechanical waves is a small
perturbation phenomenon that assesses the state of the soil
without altering the fabric or causing permanent effects.
Therefore, velocity and attenuation are constant-fabric
characteristics of a soil and can be uniquely used to monitor
ongoing internal changes in the medium.
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The state of a particulate medium can be described at the
micromechanical level by characterizing the distribution
of contacts, interparticle forces, and particle orientations.
Therefore, it is theoretically feasible to relate the micro-
mechanical characteristics of the particulate medium to
the macrocharacteristics of wave propagation, i.e., velocity
and attenuation and their frequency dependency. Empirical
relations have been proposed. For example, there are first-
order correlations between velocity and the state of stress,
which include adequate corrections for void ratio. On the
other hand, empirical relations for attenuation are scarce,
even though it appears that attenuation is a clear indicator
of geoprocesses such as loading, diagenesis, creep, cemen-
tation, and decementation.
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The purpose of this study is to assess the effect of
isotropic and deviatoric stresses on low-strain wave prop-
agation in particulate materials. The resonant-column device
and measurement procedure was modified to determine
velocity and attenuation in samples subjected to axial com-
pression and axial extension loading. Empirical relations and
observed experimental results are analyzed with a micro-
mechanics perspective.

The micromechanics of low-strain
parameters

The stress-dependent deformation and strength behavior
of soils follows from their particulate nature. In addition,
the analysis of particle-to-particle interaction with contact
theories such as Hertz and Mindlin explains the inherently
nonlinear and nonelastic nature of soils. Such microme-
chanical analyses can be analytically or numerically used
to study soils and to extend experimental observations.

The micromechanical representation involves particle
orientations, contacts, and interaction forces among particles.
The physical and geometrical properties of particles and
their relative arrangement influence the macrobehaviour.
Regular and isotropic random packings of monosized
spheres have been extensively studied, in part because of
their relative simplicity. Real soils can be analyzed as
combinations of regular packings, matching properties
such as porosity, density, and coordination number (Petrakis
and Dobry 1987; Deresiewicz 1973).

Interparticle forces depend on the applied stresses and the
degree of effective connections among particles, i.e., coor-
dination number C,. The minimum coordination number
for stable configurations can be determined by equating
the number of unknown forces and the number of equi-
librium equations in the system. The coordination number
most often observed in three-dimensional random packings
is around C, = 8, which is also the coordination number of
the cubical-tetrahedral packing. The average coordination
number has been related to the void ratio e by empirical
equations, e.g.,

[1] C, =13.28 — 8e (Chang et al. 1991)

12

(2] C, = (Field 1963)
1 +e

3] C, =28.486 — 10.726(1 + e)

(Smith et al. 1929)
These regression equations hide substantial scatter. For
example, significant changes in the coordination number
may take place during conventional triaxial loading, even
though the corresponding changes in void ratio can be rela-
tively small (the coordination number can change from C, =
6.2 to C, = 5 while a dense sample subjected to deviatoric
loading changes from initial contractive to dilative behav-
ior Ae = 0; Chantawarangul 1993). Thus changes in void
ratio may not reflect the real increase in coordination num-
ber. Particle eccentricity increases the average coordination
number, affects the packing pattern, and decreases porosity
(Fayed and Otten 1984; Aloufi and Santamarina 1995).
Numerical and experimental micromechanics research has
shown that fabric anisotropy causes mechanical anisotropy.
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Conversely, stress anisotropy causes fabric and contact
force anisotropy: the average number of contacts and the
average normal contact force increase in the direction of the
higher applied normal stress until limiting values of force
and fabric anisotropy are reached. The polar distributions
of micromechanical parameters can be approximated by a
second- or fourth-order Fourier series. Using these approx-
imations Rothenburg and Bathurst (1989) found that the
macroscopic angle of internal shear strength is a function
of the limiting anisotropy in contacts, and in tangential
and normal forces.

When the wavelength is significantly longer than the
internal scale of the material, such as particle size, prop-
agation parameters can be defined for the equivalent con-
tinuum. The shear wave velocity V| is

(4] VS=F
p

where G is the shear modulus and p is the mass density
of the medium. Damping D is defined as the ratio between
the energy lost E  and the energy returned E| by the
system in each cycle:

1

5] D=s-

return

return

Elosx

The velocity and attenuation in a given propagation
mode can be computed from other propagation modes if
Poisson’s ratio v is known (Fratta and Santamarina 1996).
Poisson’s ratio for isotropic-continuous media can be cal-
culated knowing the ratio between the shear modulus G
and the constrained modulus M, G/M:

z(ﬁ)_l
6] v=—M

Low- and high-strain Poisson’s ratios reflect different
deformation mechanisms in the particulate medium. The
relationship between micromechanical parameters and con-
stant fabric wave propagation parameters will be studied by
assessing G, D, and v.

Regular packings: isotropic loading

Expressions for the low-strain shear stiffness G of regular
packings under isotropic loading are summarized in Table 1
(Petrakis and Dobry 1987; Wang and Nur 1992; and deriva-
tions by the authors as part of this study, Cascante 1996).
Based on the hysteretic behavior of a Mindlin contact, the
strain-dependent damping for a simple cubic packing D,
can be computed from eq. 5 (Dobry et al. 1982):

512
1 - [1 - 7} 5[2 - ”]
(7] D = £ Vi Y

\ —

- 372

57 v 6

—|1=|1-—= Yt
Y Yi

where the threshold strain vy, is the strain between particles
that causes global slippage at the contact
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Table 1. Poisson’s ratio v and shear modulus G for isotropically loaded regular packings of

monosize spheres.

Packing Poisson’s ratio v

Shear modulus G

pack
Isotropic continuum v, =V G, =pV2
3 . 1/3
Simple cubic (SC) [ a- v)u‘n(f}
Ca=6 Prack = 0 Ge=m oy
(- v 173
Body-centered 9[ .G }
cubic (BCC) Vo = ——— Gace = 6
C,=8 P23 - 2v) (6 — 5v)
, U3
Face-centered v “4 - 3U)l: 30,6 2}
cubic (FCC) Vpack = T2 Gor = 20 -w
C,=12 8§ - Sv Fec 22 - v
2 173
Cubical tetrahedral ) 3304 - 3y - 30,G7 -
(CT) (from S5 v, = (a+ Dk" —(a+ 2)k +1 201 — V%)
C, =38 Pk (Ba - DE* + (a + 2k — | 52 - v)
_2-v , 3
Cutécal tfetrahedral k= 21 - v) 21 — v)[zzﬂoc 2)}
(CT) (from S,3,3) ) G = -V
C, =38 a = 3128/3 cT 52 - v)

Note: v, G, Poisson’s ratio and shear modulus of the material, respectively;

S,i» elastic stiffness constant.

1/3
(%] Q2 - vfol?

(1 - w1 + »eG"?

where f is the interparticle friction coefficient and o, is
isotropic confinement. The evaluation of eq. 7 shows that
damping depends on the confining pressure to an exponent
—2/3 for a constant level of shear strain y. Duffy and
Mindlin (1957) computed the damping for the face-centered
cubic array and also found a variation with confinement
with exponent —2/3.

Equation 7 shows that attenuation depends on the strain
level of the perturbation. Yet, it presumes constant fabric,
thus it is applicable below the threshold strain, i.e., y <
Y. In real particulate materials, strains larger than the
threshold strain produce changes in coordination number,
alterations in the degree of particle frustration, and gen-
eralized particle rotation, which reduces energy losses.
These processes justify the lower rate of increase in damp-
ing with strain observed in experimental studies, as com-
pared with eq. 7.

Low-strain values for Poisson’s ratio have been computed
for different regular packings of monosized spheres. Equa-
tions are also summarized in Table 1. For a simple cubic
packing v, = 0, since the stiffness matrix of the packing
is diagonal, i.e., deformation localizes at contacts, with
no lateral manifestation. Equations for Poisson’s ratio are
plotted in Fig. 1. Note that Poisson’s ratio is low for small-
strain phenomena. Most regular packings are anisotropic,

8 v =

o,, isotropic confinement;

and the standard relationship between Poisson’s ratio and
moduli (eq. 6) is not longer applicable.

Regular packings: anisotropic loading

Petrakis and Dobry (1987) used an incremental approach to
derive expressions for the shear modulus of regular packings
subjected to anisotropic loading at constant fabric. The
shear modulus in a simple cubic (SC) array G, is governed
by the stresses in the direction of particle motion o, and in
the direction of wave propagation o, (Petrakis and Dobry
1987):

173 1/3
Bl G, =26y 20| | _%n
s 22 — v) g, + O

The direction of propagation, principal stress directions,
and packing directions are collinear. On the other hand,
the shear modulus for a body-centered cubic packing Ggec
is determined by the mean effective stress (Petrakis and
Dobry 1987):

9?3 (l _ vjm o + 20 )3
10]  Ggee = £ =
T Ghee = 5,1 % 3

The energy-based definition of damping (eq. 5) and
Mindlin’s contact permit deriving a relationship for damping
in a simple cubic array subjected to anisotropic loading
D, (Cascante 1996). The resulting equation is cumbersome;
however, it can be expressed as a function of the damping
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for the isotropically loaded SC array D, (eq. 7). For shear
strains lower than vy/10, the ratio D,/D; is independent of
the strain level, and it is closely approximated by the fol-
lowing linear relation:

[11] —Déé— = 044 + 0.56SR
i

where SR is the stress ratio (0.5 < SR < 2.5). Hence, the
damping of a shear wave propagating in a SC array will
double when the stress ratio in the plane of polarization
approaches SR = 2.8. However, the SC packing is “locked”
and does not change with the stress ratio; this is not the case
in soils.

Random packings

The low-strain, constant-fabric shear stiffness of statically
isotropic packing under isotropic confining stress o, was
computed by Chang et al. (1991) using Hertz and Mindlin

contact theories:
2/3
2 \1/3
jl (G°o,)

_(5-4v) V3c,
"5 vy V2w = v) (L +e)

where v and G are the Poisson’s ratio and the shear modulus
of the material of the particles, respectively, and e is the
void ratio of the granular medium.

Chang et al. (1991) proposed a relationship for the low-
strain Poisson’s ratio for the packing (v_ ) in terms of
the Poisson’s ratio for the particles (v):

[12] G

pack

S
2(5 - 3v)

Similar to the case of regular packings, the low-strain
Poisson’s ratio for the isotropic packing under isotropic
stress conditions is smaller than Poisson’s ratio of the par-
ticles (e.g., v = 0.3, v,y = 0.04; see similar results in the
review by Wang and Nur 1992).

A micromechanics-based close-form solution for wave
attenuation in isotropic random packings would be governed
by Mindlin’s equation if the frictional contact loss is
assumed, thus it will manifest stress and strain dependency,
as observed in regular packings. No close-form solution
was found for G, D, or v of random packings subjected
to anisotropic loading; a limited set of numerical results
was presented by Chang et al. (1991).

[ 13 ] vpack =

Empirical relations for wave
propagation parameters

Isotropic loading
Several investigators have proposed empirical expressions
for G, for soils under isotropic loading ¢,. These equa-

tions are of the following form:
[14] G
hence,

[15] V,=Acl”?

where A and b are constants, and f(e) is a function of void
ratio (e.g., Hardin and Black 1966; Hardin and Drnevich
1972; Stokoe et al. 1985; Saxena et al. 1988). For example,

= Af(e)a”

max
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Fig. 1. Poisson’s ratio of packing vs. Poisson’s ratio of
particles. Regular (body-centered cubic, BCC; cubic
tetrahedral, CT; face-centered cubic, FCC) and random
(Rnd) packings of monosize spheres (eqs. in Table 1 and

BCC
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the empirical correction for void ratio proposed by Hardin
and Drnevich (1972) is

(297 — e)?
(1 + e

The parallelism between the empirical eq. 14 (after sub-
stitution of f(e), eq. 16) and the micromechanics-based
eq. 12 (after substitution of C,, eq. 1) is remarkable. Hence,
it appears that the constant A in eq. 14 is determined by the
stiffness of the material of particles, at constant fabric.

There is a fundamental difference between the expo-
nent b back-calculated by fitting eq. 14 to experimental
data and the exponent of the stress in the G, relation
derived from micromechanical principles (eq. 12). In micro-
mechanics analyses, b is a constant fabric parameter, that
depends on the nature of contact stiffness (e.g., b = 1/3
for Hertzian contact, and & = 1/2 for cone-to-plane contact,
Goddard (1990)). However, the measurement of » requires
confining the medium at two different stress levels, causing
fabric changes. Under isotropic stresses, fabric changes
may produce significant variation in C,, yet, changes in
e may be imperceptible (compare predictions with egs. 1,
2, and 3). Hence, the back-calculated exponent represents
not only the nature of contact stiffness, but also the effect
of changes in fabric.

An early empirical equation for damping in dry sands
was proposed by Hardin (1965) and applies for the strain
range 107% <y < 107%

[17] D =0.985(y"%, "%

The data used by Hardin (1965) to determine this equation
were obtained by varying the confining pressure o, in kPa
between 24 < o, < 144 kPa, and the void ratio between
0.50 < e < 0.66; the frequency was less than 600 Hz. This
equation predicts that confinement and strain determine
damping, similar to damping loss at Mindlin’s contacts
(egs. 7 and 11).

[16]  f(e) =
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Table 2. Relations for the hyperbolic model and the Ramberg-Osgood model (after Ishihara 1986).

Relation Hyperbolic model

Ramberg-Osgood model

T = f(y)
shear stress 7 as
function of shear strain
Y: G, 1S maximum
shear modulus and ;
is shear strength

GrmaxY
Gnan Y

Tf

1+

Gy = ()
secant modulus G,
as function of maximum
shear strain vy,;
v, is a reference shear
strain

max
Yo
Ye

o]

sec

1+

D = f(y)
damping ratio D as
function of shear
strain -y

1+

A -2+
T |
’yl’

Yr

D = f(Gnnr)
damping ratio D as
function of normalized
shear modulus G

nor

S S R </,
w(l - Gnnr) 1 - Gnor

Ya

Yr

)

1

Gnor

G,
T = ’mdx’y —
I+ a [—
Tr
GIHDX
GSUC! = G r=|
1+ a, not ‘Y}L
’Yr
r=~1
Gn(»r‘Ya
2Ar = 1) Y,
= (r + l)a“ r
il G
1 + o n(“”YZ
’Yl
D= M“ - Gl
w(r + 1)

Note: Normalized shear modulus G, = G,./G,

nor sec’ Y max> Hor

Anisotropic loading

Two empirical relations have been suggested to relate the
shear wave velocity V along principal directions with the
state of stress in anisotropically loaded media. The stress
in the direction of propagation ¢, and in the direction of
particle motion o are involved in both cases (Roesler
1979; Knox et al. 1982; Yu and Richart 1984; Santamarina
and Fam 1995):

[18] V, = Acpof

where A, a, and 3 are constants. The alternative equation

associates shear-wave velocity with the mean stress and

deviatoric stress components on the polarization plane:
o, + O,

()

2

where A, {, and s are constants. For isotropic confine-
ment o, both equations reduce to eq. 15, and the expo-
nent § must be ¢ = 0 (see also Yu and Richart 1984 for
alternative forms of these equations that take explicitly
into consideration the stress ratio). The authors are not

aware of empirical equations to relate damping to
anisotropic states of stress.

- O

2

o] v, = A(

Corrections for strain level

Equations 18 and 19 are applicable for low-strain measure-
ments (y < 107°), i.e., G,y OF V. Two simple models can
be readily used to describe nonlinear behavior in particulate

materials: the hyperbolic model and the Ramberg-Osgood

a,, and r are constants.

model (Ishihara 1986). The stress—strain relationship and the
variation of the shear modulus and damping with the strain
level are summarized for each case in Table 2. Because
the normalized modulus G/G,,,, and damping D are func-
tions of the normalized strain y/7,, a relationship between
G/G,,., and D can be derived for each model (also shown

in Table 2).

Resonant column: anisotropic loading

The standard resonant column for isotropic loading (SBEL
D1128) was modified for the application of deviatoric
loads, keeping the fixed-free boundary conditions of the
sample.

Axial compression (AC)

Deviatoric axial compression loading is applied by pulling
the top cap downwards by means of a thin central cable
(Fig. 2). Fixtures were designed to permit 3000 N gravity
loading, which is equivalent to 750 kPa for the 7.1 ¢m
diameter sample. A thin high-resistance steel cable (outside
diameter, OD = 2.0 mm) extends vertically through the
center of the sample and passes through the bottom plate of
the confining cell. Pressures inside the sample and in the
cell are isolated with O-ring seals. The effect of O-rings on
the transmitted load was determined for different confining
pressures. The force measured by a gaged stud inside the
cell was compared against the external gravity load applied
on the cable. For the range of confinements used in this
study (30-600 kPa) the correction is small (30 N).
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Fig. 2. Axial compression modification to the resonant
column device.
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The dynamic effect of a thin rod passing through the
sample was studied by Allen and Stokoe (1982). They
found that the computed shear modulus of the soil becomes

J J.
200 G=V]p+pL|-G=
[20] s(p prjj .

s

where J, and p are the area polar moment of inertia and
the mass density of the soil, respectively; J,, p,, G, are the
area polar moment of inertia, mass density, and shear mod-
ulus of the rod, respectively. A linear radial variation of
shear strain was assumed in deriving eq. 20. The evaluation
of this expression for typical parameters shows that the
effect of the thin cable is negligible in the computation of
the shear modulus of the soil. Allen and Stokoe (1982)
experimentally verified that the influence of the rod was
ncgligible on damping as well.

Axial extension (AE)

Deviatoric axial extension loading is imposed in a similar
manner: the top cap is pulled upwards by means of a thin
central cable (Fig. 3). The cable, which has the same
mechanical characteristics as the one used in axial com-
pression, is rigidly attached to the top cap. An internally
gaged stud (Strainsert ST-FB) acts as load cell, and it is
mounted in series with the cable. The stud extension passes
through the top plate of the pressure cell and is pulled
with a simple screw mechanism mounted on a spring with
constant k = 270 N/cm. An O-ring seal is used to isolate the
cell pressure. The gaged stud remains inside the cell, thus
no load correction is needed.
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Fig. 3. Axial extension modification to the resonant
column device.
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It can be shown that for this installation, the computed
shear modulus of the soil becomes

JrLS} L

r’’s
‘IS Lr ' JS Ll’

where L, and L, are the lengths the sample and of the thin
rod, respectively. For L, greater than L, (our case), the
effect of the thin cable in AE is smaller than in AC. The
influence of the axial extension modification on resonant
frequency and damping was experimentally studied using
a calibrated aluminum probe. Results are summarized in
Fig. 4. It can be concluded that for frequencies greater
than 30 Hz the change in attenuation due to the thin cable
is negligible and there is no significant effect on resonant
frequency.

21] G = vj[p + py

Calibration: driving system

The standard procedure for calibration with metal specimens
was used. The mass polar moment of inertia of the driving
system was recalibrated whenever changes were made,
e.g., the connector added for axial cxtension testing. Cal-
ibration was performed for different AE tensile forces.
The average computed stiffness of the aluminum specimen
was very close to the value computed for the calibration
without the AE fixtures, differences less than 1%. For
damping, differences were also small, less than 3%.

Experimental studies

Tests with the resonant column were designed to experi-
mentally study (1) the effect of anisotropic states of stress
on wave propagation parameters, and (2) the relationship
among damping, states of stress, and maximum shear strain
under anisotropic states of stress. These studies were con-
ducted using band-limited random noise excitation. Results
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Fig. 4. Transfer function broad-band random noise, transfer
function narrow-band random noise, and coherence for a
calibration specimen: (a) without axial extension
modification D = 0.035, f, = 19.50 Hz; (b) with axial
extension modification D = 0.034, f, = 19.22 Hz (where f is

the natural frequency of the system).
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presented next include typical data for isotropic, axial
extension, and axial compression loading.

Sample preparation: load history

A uniform, hard-grained sand was used in this study (Barco
sand 32, Dyy = 0.44 mm, e, = 0.73, ¢, = 0.56, C, =
1.5, C, = 0.96, SiO, content = 99.6%, and G, = 2.65 glem’).
Samples were prepared by the dry pluviation technique
from a constant falling height (e = 0.60, D, = 76%; sample
length L = 0.13 m, diameter d = 7.1 cm). Once the upper
platen was set in place, a vacuum was applied to hold the
sample and the split mold was removed. Then, connections
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Fig. 5. Stress—strain curves for dry sand (L, loading;
U, unloading; I, isotropic): (a) axial extension (AE) test

and (b) axial compression (AC) test.
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for the driving plate, linear varying displacement trans-
ducer (LVDT), and accelerometer were made, and the
chamber was assembled. The sample vacuum was gradually
released while increasing the cell pressure, until an effective
confinement o, = 35 kPa. Isotropic loading (IL) was applied
to all samples tested in this study, increasing the confining
pressure from 35 to 200 kPa. The additional loading history
imposed on different samples included axial compression
and axial extension. The stress—strain behavior for the two
similar samples subjected to AE and AC is presented in
Fig. 5. The void ratio was almost constant in all tests.
Each load increment was maintained until all microseismic
events had ended (10-30 min). Then, narrow-band random
noise excitation with averaging was used to measure wave
propagation parameters of samples.

Isotropic loading (IL)
Confinement was increased isotropically from 35 to 200 kPa,

followed by a predefined cycle of deviatoric loading. The
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Fig. 6. Variation in low-strain wave parameters during
isotropic loading I-L and unloading I-U: (a) shear wave
velocity and (b) damping.
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maximum axial strain reached during IL was €, = 0.05% in
both AE and AC samples. The variations of velocity and
damping with stress for IL are shown in Fig. 6.

Axial extension (AE)
Axial extension loading was imposed on sample AE after
isotropic loading to o, = 200 kPa. The stress—strain curve
shows the nonelastic deformation induced upon loading
(Fig. 5a), leaving a residual strain €, = 0.4%. The maximum
quasistatic axial strain during AE was one order of mag-
nitude higher than the strain reached during isotropic loading.
Figure 7a shows the change in velocity V| due to changes
in the vertical stress. A reduction in velocity is observed
during AE unloading, ending with a smaller value than at
the initial isotropic condition; while the state of stress is
identical, the change in velocity reflects residual fabric
changes during deviatoric loading. Changes in damping
are proportionally larger than changes in velocity. However,
results show higher variability in damping than in velocity
measurements.

777
Fig. 7. Variation in low-strain wave propagation
parameters for axial extension (AE) loading and
unloading: (a) shear wave velocity and (b) damping.
(a)

3204
)
E. 280
>
& )
°
=

2401

200 T v v v v T T T v

40 80 120 160 200 240
Vertical Stress [kPa]
(b)

9.5

8.5
A
o
E. 7.5
o
£
g 65
&
=)

— Isotropic
5.57 O Loading
A Unloading
45 x x ; - . . . . r
40 80 120 160 200 240

Vertical Stress [kPa]

Axial compression (AC)

Axial compression was conducted on sample AC, after
isotropic loading to o, = 200 kPa. Figure 5b shows the
stress—strain plot; the residual deformation £, = 1.2% was
three times greater than in AE (the maximum stress ratio
was approximately the same). Figure 8a shows the evo-
lution of velocity during loading and unloading; there are
no residual effects due to fabric changes imposed during
deviatoric loading. Wave velocity increased almost linearly
with vertical stress, and at a lower rate than during isotropic
loading. The same observations apply to damping (Fig. 8b).

Analyses and discussion

Velocity-stress and damping-stress relations (low
strain)

The change in low-strain propagation velocity V, with the

increase in isotropic stress (Fig. 6a) was fitted with eq. 15

by linear regression analysis in log—log scale and verified

by a nonlinear least-squares fitting algorithm (Table 3).
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Table 3. Velocity—stress regression parameters.
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Axial
Equation Parameter Related stress Axial extension compression
[18] a o, 0.12 0.10
B o 0.16 0.17
a+ B — 0.28 0.27
[19] g O mean 0.28 0.28
llj O geviawric 0.00 —=0.01
{+ — 0.28 0.27
[15] b/2 a, 0.27 0.27

Fig. 8. Variation in low-strain wave propagation
parameters for axial compression (AC) loading and
unloading: (a) shear wave velocity and (b) damping.
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The back-calculated velocity—stress exponent b/2 = 0.27
is in agreement with published data (e.g., Hardin and
Richart 1963). The velocity—stress trend during AE and
AC loading and unloading was fitted using eq. 18 (Table 3).

The value of o + B is in agreement with the exponent
measured under isotropic loading b/2. Back-calculated
values for a and B imply that the stress in the direction
of particle motion has a stronger influence on shear wave
velocity than the stress in the direction of wave propagation
(for comparison, see results in Viggiani and Atkinson 1995;
Fam and Santamarina 1996, Stokoe et al. 1985). It follows
from eq. 10 that the sensitivity of the body-centered cubic
(BCC) shear stiffness to o, is also higher than to o

The same regression procedure was used to test the pre-
dictability of eq. 19. Values of { and s are listed in Table 3.
The coefficient { is very similar to the isotropic exponent
b/2. The value of s is close to zero even when isotropic
data is not considered in the regression analysis; thus,
shear wave velocity is mainly governed by the mean state
of stress in the plane of polarization, at least within the
stress ratios imposed in this study (Allen and Stokoe (1982)
found that S-wave velocity in soils subjected to anisotropic
loading were well described by either eq. 18 or eq. 19;
Yu and Richart 1984 found that increasing the stress ratio
decreases G,,,,, however, the reduction is not significant
for stress ratios less than 2 or 3).

Wave velocity in anisotropic media is often modeled
as elliptical or piece-wise elliptical (Helbig 1994). In the
special case of weakly cross-anisotropy, the polar variation
of V is expressed as a fourth-order Fourier series (only
even terms; Crampin 1977). This is the same form of equa-
tions that are used to capture the polar anisotropy in micro-
mechanical properties, as discussed previously. While it
is tempting to conclude on the inherent link between these
equations, values of { and {s support the simpler relationship
of V, with the mean stress in the polarization plane. This is
not the case with compressional propagation: experimental
evidence shows that V, depends on the stress in the direction
of propagation (Kopperman et al. 1982; Hoque et al. 1995).

Observed trends in shear wave velocity during AE and
AC loading are very similar to the predicted behavior for
regular cubic packings at constant fabric (eq. 10). Figure 9a
shows the change in shear wave velocity computed with
egs. 9 and 10 for a quartz sand (SC and BCC packings;
v = 0.15, G = 33 GPa, mass density p = 1.66 kN-s?/m™).
The representative velocity—stress exponent for BCC is
0.08 during AC loading (compare with a = 0.10, Table 3)
and 0.06 during AE (compare with a = 0.12, Table 3).
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Fig. 9. Variation in low-strain wave propagation parameters
for regular packings subjected to isotropic and anisotropic
loading (IL, AL) under constant fabric conditions:
(a) shear wave velocity for SC eq. 9 and BCC eq. 10,
(b) damping for SC egs. 7 and 1.
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Fig. 10. Variation of wave propagation parameters with
strain level and isotropic confinement. Measured data and
fitted hyperbolic model trends: (a) shear wave velocity
and () damping (modified hyperbolic model).
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The variation of the low-strain damping D, with
isotropic loading (Fig. 66) was fitted with a power relation,
as suggested by micromechanical analyses (eq. 7 (see text))
and empirical observations (eq. 17):

[22] D, =0.019q, "

m

The exponent is —0.22, while an exponent —2/3 was the-
oretically predicted for SC and FCC arrays based on
Mindlin frictional contact loss. If the damping—stress power
relationship is fitted to data obtained at higher strain levels,
the exponent increases, indicating a higher mobilization
of interparticle friction.

The change in damping at constant radial stress but
subjected to AE and AC is shown in Figs. 7b and 8b. The
general trend is closely matched by the power relation in
eq. 22 in terms of the mean stress in the polarization plane.
For comparison, the change in damping based on eqgs. 7
and 11 for a SC packing is plotted in Fig. 96 for a constant
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strain y = 10730, The maximum shear strain during AE
and AC tests had a relative small variation 107°? < Y <
1073°. The measured trends show qualitative agreement
with predictions based on a SC array. Damping changed
little, while the ratio SR = ¢ /o, changed from SR =1 to
SR = 0.4 for AE and from SR = 1 to SR = 2.25 for AC, for
a constant o, = 200 kPa.

Velocity—strain and damping-strain relations
(isotropic: middle strain)

The effect of isotropic confinement and strain level on
shear wave velocity and damping is summarized in Fig. 10.
Measurements were made on a dense sample (¢ = 0.58,
D, = 90%) to reduce the effects of fabric changes during
testing. Equations in Table 2 were used to fit velocity and
damping data. Both hyperbolic and Ramberg-Osgood models
predict that damping (D) tends to zero at low strains
(y < 107%). Note that equations derived on the basis of
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Mindlin contact have the same limitations for low-strain
damping, as they are also based on a hysteretic model.
This is not observed in the experimental data (see even
the early results by Gardner et al. 1964).

The strain-independent D, (eq. 22) was added to the
damping equations in Table 2 to represent the minimum
damping of the system, thus

[23-| Dsoil = Dm«)dcl + D

min

Figure 10 shows that the hyperbolic model for velocity
and the modified hyperbolic model for damping adequately
represent the dependence of velocity and damping on shear
strain (10 % < y < 107*°) and confinement (80 kPa < o, <
500 kPa). The global nonlinear regression analysis of the
data for all stress and strain ranges shows that y, and D_;,
vary with o,. The regression of velocity gave the following
expressions for V. (m/s) and vy, in terms of confinement
o, (kPa):

(24] V= 66480

m

[25]1 -, =0.0053 + 1.42 X 10 ’o,

For damping data, the regression for D, was presented
above (eq. 22); the regression for vy, in terms of confinement
a, (kPa):

[26] v, =0.011 + 4.97 X 10 %7,

Damping has higher sensitivity to shear strain level than
shear wave velocity, while velocity only changed 4%,
damping changed 90% (Fig. 10). The comparison of egs. 25
and 26 indicates that confinement has a stronger influence
in the reference strain -y, for damping than for velocity.

The strain-independent minimum damping D,;, implies
the presence of nonhysteretic loss mechanisms at low
strain. This can be foreseen: for a sand with average grain
size Dgy = 10° * m, and assuming an average strain field
v = 1077, the center-to-center relative displacement between
two adjacent particles is | A (1 A =0.1 nm), which is at the
atomic level. Thus, other attenuation mechanisms must
play an important role in real soils at low strains, including
chemical interaction of adsorbed layers at contacts (Spencer
1981; Bulau et al. 1984), wave scattering (Blair 1990),
thermal relaxation (Kjartansson 1979), and other forms of
energy coupling (e.g., mechano-electromagnetic, mechano-
acoustic). Potential loss mechanisms must satisfy inde-
pendence of strain and the inverse affect of confinement.
Any single model fails in justifying ail observed trends in
attenuation at low strains.

Conclusions

Analytical solutions for wave propagation parameters in
regular and random packings were compiled from the
literature or derived as part of this study. The similitude
between published empirical equations and theoretical
equations derived from micromechanical analyses is striking.

A resonant-column device was modificd to allow for
the application of deviatoric loads in axial extension and
axial compression, in order to study the effect of stress
anisotropy on wave propagation. The fixed-free boundary
condition of the sample was maintained.
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Velocity and damping showed minor residual changes
upon deviatoric loading and unloading (residual strains
0.4-1.2%). Fabric changes that occurred during these load-
ing paths had low effect on either wave parameter.

The shear wave velocity during the anisotropic loading
of round, hard-grained sand is governed by the mean stress
on the polarization plane, with minimal effect of the devi-
atoric component for stress ratios less than 2-3. When the
role of stress components is differentiated, the stress in
the direction of particle motion emerges more dominant.
Shear wave velocity in the tested soil behaves similar to the
shear stiffness of a body-centered cubic packing under
anisotropic state of stress. The hyperbolic model adequately
reflects the variation of shear wave velocity with confine-
ment and shear strain.

Attenuation is strongly correlated with the mean stress
on the polarization plane and the level of shear strain.
However, damping does not vanish at low strains, contrary
to predictions based on hysteretic behavior. Hence, the
hyperbolic model must be modified by adding 4 minimum
value D, which is independent on strain, yet it is function
of confinement. The exponent of the power relation between
low strain damping and confinement is significantly lower
than predicted by Mindlin’s frictional contact law. These
observations suggest that friction is not the prevailing loss
mechanism at low strain (y < 0.1vy,). Yet, measured damping
changes in soils during anisotropic loading show similar
trends to the changes in damping of a SC array with
Mindlin contact when subjected to the same stress path.
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List of symbols

a, B, {, ¥ exponents in velocity—stress power relationships
Ay, ¥ constants in Ramber-Osgood model
€ normal strain (g,, maximum axial strain; €,
residual strain)
shear strain (y,, maximum in cycle; v,, refer-
ence strain; vy,, threshold)
p mass density (p,, mass density of the rod)
o, isotropic confinement
o, O, stresses in the direction of wave propagation
and particle motion, respectively
shear stress
Poisson’s ratio
exponent in the modulus—stress relationship
(isotropic loading)
void ratio
friction coefficient
natural frequency of the system
constant
coordination number
- C, coefficient of curvature and uniformity in
grain size distribution, respectively
damping ratio (D,, anisotropic; D), isotropic;
D minimum damping)
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D,

E
El()ss

return

s Y

G

relative density

Young’s modulus

energy loss per cycle

energy returned per cycle (elastic energy)
Areal polar moment of inertia of specimen
and rod, respectively

shear modulus (G, secant; G,,,,, maximum;
G,, modulus of rod)

G
L

no

r
(L,

»

M
R
SR
1%
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normalized shear modulus = G /G,
length of specimen and rod, respectively
constrained modulus

radius of the specimen

stress ratio = o /o,

wave velocity (V,, shear; V, compressional)




