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A B S T R A C T   

Fractures prevail mechanical behavior of a rock mass and confer an overall anisotropic response. Engineering 
analyses in the elastic regime often use transverse isotropy to model fractured rock masses with a single fracture 
set. An alternative implicit joint-continuum model combines the mechanical response of the intact rock and 
fractures by adding their compliance matrices. It can accommodate multiple fracture sets and non-linear fracture 
response. While the transverse isotropic model is inadequate to model fractured rock media because of its 
inherent assumptions on the continuity for all stress components, the implicit joint-continuum model is verified 
against the exact solutions of internal stress distributions and displacement field. The analysis of strip founda-
tions using the implicit joint continuum approach shows that the maximum settlement and tilt will take place 
when the fracture set strikes quasi-collinear with the strip direction (θJ 

≈ ±15◦) and the fracture dip angle is 
either βJ ≈ 40◦ ± 10◦ or βJ ≈ 140◦ ± 10◦.   

1. Introduction 

Discontinuities in rock masses range from bedding planes to fissures, 
fractures, and faults. The general term ‘fracture’ in this manuscript re-
fers to geological discontinuities. Fractures have higher mechanical 
compliance and hydraulic permeability than the surrounding intact rock 
(Cai and Horii, 1992; Oda et al., 1993) and impart an anisotropic hy-
draulic and mechanical response. Rock mass ratings consider fracture 
characteristics to inform the engineering analysis of slopes, foundations, 
and tunnels with the rating adjustment (Bieniawski, 1973; Bindlish 
et al., 2012). 

The design of foundations subjected to high loads such as high-rise 
buildings, arch dams, and large bridges demands careful consideration 
of the rock mass properties (Hungr and Coates, 1978; Serrano and 
Olalla, 1996). The prediction of displacement and stress fields beneath 
shallow foundations resting on fractured rock masses is challenging even 
for the simplest case in two-dimensional analyses (Alehossein et al., 
1992; Davis, 1980; Imani et al., 2012; Maghous et al., 2008; Prakoso and 
Kulhawy, 2004; Sutcliffe et al., 2003; Zhang et al., 2012; Yu, 2006). Due 
to the inherent difficulties in large-scale field tests, bearing capacity is 
generally estimated by rock core tests and empirical corrections related 
to the rock mass rating disregarding joint orientation. Its assessment is 

also available from analytical and numerical methods such as limit 
analysis, slip line, block/wedge analyses, or finite elements (Imani et al., 
2012; Prakoso and Kulhawy, 2004; Sutcliffe et al., 2003; Zhang and Lei, 
2014). Settlement analyses are equally challenging when fractured rock 
masses are involved. There are some solutions for cross anisotropic 
media, such as radial stress distribution beneath a line load for varying 
joint orientation (assumes no shear stress – Bray, 1977), and stress and 
deformation fields when the load direction is collinear with the direction 
of anisotropy in transverse isotropy (Bell, 1992; Duncan and Christo-
pher, 2005; Gerrard and Harrison, 1970; Liao and Wang, 1998; Wang 
et al., 2006). 

Despite advances in numerical and analytical techniques, satisfac-
tory modeling remains difficult and uncertain (Jing, 2003). This 
manuscript documents a study of shallow foundations on fractured rock 
masses. It explore limitations in the inclined transverse isotropy model 
and compare results against the recently developed implicit joint- 
continuum model (Shin and Santamarina, 2019). 

2. Numerical models for fractured rock mass 

This section reviews the formulation for the transverse isotropic 
model, followed by a brief description of the implicit join-continuum 
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model. 

2.1. Inclined transverse isotropic model 

Transverse isotropy is the simplest model that can represent the 
anisotropic behavior of a rock mass. The model is well suited for layered 
rocks and rock masses with a single fracture set where the rock is 
isotropic within the plane of symmetry (Amadei and Goodman, 1981; 
Cho et al., 2012). 

Transverse isotropy (local coordinate system xyz where z is normal 
to the isotropic plane). Five elastic constants describe transverse 
anisotropy: stiffness and Poisson’s ratio Ep and νp = νx = νy on the 
isotropic xy-plane, Ez and νzp normal to the isotropic plane, and the shear 
modulus Gzp within the plane normal to the isotropic plane. The stiffness 
tensor is positive definite and enforces νpzEz = νzpEp. Consider a rock 
mass with a single fracture set normal to the z-axis and characterized by 
spacing s, normal fracture stiffness Kn,[Pa/m], and shear stiffness Ks [Pa/ 
m]. The equivalent modulus Ez for the rock mass considers the intact 
rock in series with fractures (Goodman, 1989), 

Ez
− 1 = Ep

− 1 +(s⋅Kn)
− 1
, Gzp

− 1 = Gp
− 1 +(s⋅Ks)

− 1
, νpz = νp (1) 

The elastic compliance matrix built with these five elastic constants 
gives the stress-strain relationship for the transverse isotropic material, 
dσ = D : dε (Hudson and Harrison, 2000). 

Fracture plane in the global coordinate system XYZ. Three unit 
vectors define the fracture plane in the global coordinate system XYZ in 
terms of the fracture strike θ and dip β angles (Fig. 1). 

n1 = (cosθ⋅cosβ, − sinθ⋅cosβ, − sinβ)
n2 = (sinθ, cosθ, 0)

n3 = (cosθ⋅sinβ, − sinθ⋅sinβ, cosβ)

dip direction
strike direction

normal direction
(2) 

In the definition of the fracture plane nij, the first sub-index (i) refers 
to the dip(i = 1), strike(i = 2) and normal(i = 3) vectors, and the second 
sub-index (j) indicates 3 spatial components for the each direction 
vector. 

Inclined transverse isotropy. These unit vectors define the rotation of 
the stiffness tensor Dijkl from the fracture local coordinate system xyz 
onto the global coordinate system XYZ 

Dijkl = npinqjnrknslDpqrs (3)  

where sub-indexes (i,j,k,l) are indexes of global coordinates, and sub- 

indexes (p,q,r,s) are the summation indexes used in the local stiffness 
tensor Dpqrs. 

Similarly, stresses in the global coordinate system are: 

σij = nipnjqσpq (4) 

The inclined transverse isotropic model can efficiently capture the 
anisotropic mechanical behavior of a rock mass with a single fracture set 
only. Furthermore, it does not evaluate fracture displacements (elastic 
or plastic), and it cannot adequately capture fluid coupling. The implicit 
joint-continuum model described next overcomes these limitations. 

2.2. Implicit joint-continuum model 

A change in stress causes concurrent deformations in the intact rock 
and on fracture planes (Formulation details in Shin and Santamarina, 
2019). The overall strain in the rock mass ε is the sum of the strain in the 
intact rock εC and the equivalent strain in fracture sets εJ (Superscript C 
and J stand for intact continuum and the joint). The rock mass stiffness 
tensor relates the strain increment to the stress increment dσ = Dmdε. 

The mechanical behavior of a fractured rock mass satisfies stress 
continuity across fractures, and combines in series the stiffness of the 
intact rock and the equivalent stiffness of fractures. If compliance C is 
defined as the inverse of stiffness D, the equivalent compliance tensor for 
a fractured rock mass Cm is a linear summation of the compliance tensors 
of the intact rock CC and each fracture set CJ. 

Cm = CC +
∑

CJ (5) 

The compliance tensor for a single fracture set CJ is a 4th order tensor 
CJ

ijkl. It adds the compliances in each global direction (Shin and Santa-
marina, 2019), 

εJ
ij = CJ

ijkl σkl =
∑

r

n3r

4⋅s
(
npiδrj + npjδri

)
⋅cJ

pq⋅n3r⋅
(
nqk⋅δrl + nqi⋅δrk

)
⋅σkl (6)  

where δij is Kronecker’s delta. The fracture stiffness matrix dJ
pq expresses 

the fracture elastoplastic stress-displacement response Sp = dJ
pq⋅uq at the 

fracture scale, and it is used to compute the fracture compliance matrix 

cJ
pq =

[
dJ

pq

]− 1
. 

At the scale of the rock mass, the compliance tensors of the intact 
rock CC and of each fracture set CJ provide the strain components 
contributed by the intact rock εC and the fracture sets εJ due to the 
applied stress σ. 

ε = εC +
∑

εJ = (CC +
∑

CJ) σ = Cm σ (7) 

The implicit joint-continuum model simulates complex mechanical 
behavior for a rock mass with multiple fracture sets, where complicated 
elastoplastic models emulate behaviors of each fracture set and the 
intact media. 

Implicit joint-continuum model and transverse isotropic model are 
implemented in the multi-dimensional FEM simulator Geo-COUS (Geo- 
COUpled Simulator) developed to investigate coupled phenomena in the 
porous and fractured media subjected to multi-phase flow (Shin and 
Santamarina, 2017). 

2.3. Validation: Elastic Deformation 

Consider a column made of a fractured rock with a single fracture set 
subjected to a stress perturbation in the vertical Z-direction (inset Fig. 2a 
– Note: UX and UZ are the horizontal and vertical displacements at the 
center of the top plane). The analytical solution for the equivalent elastic 
modulus Em (Amadei and Goodman, 1981; Yoshinaka and Yamabe, 
1986) and the displacement ratio UX/UZ are functions of the fracture dip 
angles βJ and the fracture stiffness ratio kr. Fig. 1. Coordinate system and joint orientation.  
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1
Em =

1
EC +

cos2βJ ⋅(cos2βJ + sin2βJ/kr)

Kn⋅s
(8)  

UX/UZ =
2sin(2βJ) + sin(4βJ)

2sin2(2βJ) +
8kr (1+Kn ⋅s/Ec − sin2βJ )

1− kr

(9)  

where EC is the elastic modulus of the intact rock, and fracture stiffness 
ratio (kr = Ks/Kn) is shear to normal stiffness ratio for the deformation on 
the fracture plane. Fig. 2a shows the normalized elastic modulus Em/EC 

for various dip angles βJ (model parameters in Table 1). The analytical 
solution (Equations (8) and (9)) matches the numerical results computed 
with both the “inclined transverse isotropic model” and the “implicit 
joint-continuum model” for the two different fracture stiffness ratios kr. 

In agreement with mechanistic considerations, the analytical solu-
tion and the two numerical models show that the displacement ratio is 
UX/UZ = 0 for intact rock, for a rock mass with very high fracture 
stiffness, or for the extreme case of horizontal βJ = 0◦ or vertical frac-
tures βJ = 90◦. However, the UX/UZ vs. dip angle βJ trends highlight 
pronounced differences between the two models (Fig. 2b):  

• the analytical solution is in full agreement with numerical simulation 
results computed with the implicit joint-continuum model.  

• the transverse isotropic model predicts very different UX/UZ values: 
it shows negative UX for fracture dip angles βJ > 40◦ at kr = 0.2 and a 
full range of dip angles at kr = 1.0. Note that the figure displays UX/ 
UZ values computed with the finite element code and using the 
theoretical solution based on stress and strain rotations – not shown 
here. 

The marked discrepancies in UX/UZ predictions in Fig. 2b underline 

the fundamental differences between these models. The transverse 
isotropic model requires stress continuity for all stress components 
through the anisotropic plane and induces bedding-parallel stress (σxx) 
to decrease UX/UZ (Fig. 2c). This guarantees a positive definite stiffness 
tensor. On the other hand, the implicit joint-continuum model recog-
nizes that fractures must transfer σzz, σzx and σzy to satisfy equilibrium, 
but it allows stress discontinuity for σxx, σyy (where the z-direction is 
normal to the fracture plane). The following section explores 

Fig. 2. Deformation of a rock mass with a single joint set under uniaxial compression condition. (a) Variation of normalized stiffness Em/EC with dip angle βJ, (b) 
Variation of horizontal-to-vertical displacement ratio UX/UZ with dip angle βJ. (c) Force equilibrium in inclined transverse isotropic model. Analytical solution (A), 
and numerical solutions for inclined transverse isotropy (ITI) and implicit joint continuum (IJC). 

Table 1 
Material properties in numerical simulation.   

Properties 

Fig. 2 Intact 
rock 

Linear-elasticity: EC = 10GPa, ν = 0.3 

Joint set Linear-elasticity: EC/(s⋅Kn) = 4.0. s = 0.5 m, kr(=Ks/Kn) =
0.2,1.0 

Fig. 3 Intact 
rock 

Linear-elasticity: EC = 10GPa, ν = 0.25 

Joint set Linear-elasticity: EC/(s⋅Kn) = 0.94, s = 0.5 m, kr = 0.067 (Note: 
same parameters as the example in Goodman 1989). 

Fig. 4 Intact 
rock 

Linear-elasticity: EC = 10GPa, ν = 0.25 

Joint set Linear-elasticity: EC/(s ⋅ Kn) = 0.94, s = 0.5 m, kr = 0.067 
Coulomb-plasticity: cJ(cohesion) = 0, ϕJ(friction angle) = 45◦ , 
δJ(dilation angle) = 30◦

Fig. 5 Intact 
rock 

Linear-elasticity: Ec = 10 GPa, ν = 0.25 

Joint set Linear-elasticity: Ec/(s⋅Kn) = 0.94, s = 0.5 m, kr = 0.067 
Coulomb-plasticity: cJ(cohesion) = 0, ϕJ(friction angle) = 45◦ , 
δJ(dilation angle) = 30◦

Fig. 6 Intact 
rock 

Linear-elasticity: Ec = 10 GPa, ν = 0.3 

Joint set Linear-elasticity: Ec/(s⋅Kn) = 4.0, s = 0.5 m, kr = 0.2  
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implications for the case of shallow foundations. 

3. Implications: Shallow foundations 

This section revisits previous studies and provides new results using 
the implicit joint-continuum model. Table 1 summarizes the material 
parameters for the intact rock and fracture sets used in the following 
studies. 

3.1. Line load: Bray’s solution 

Bray (1977) provides the analytical solution for the radial stress 
distribution due to a line load normal to the surface of a transverse 
isotropic half-space as a function of fracture plane orientation βJ, the 
intact rock to fracture stiffness ratio EC/(s⋅Kn), and the fracture set shear- 
to-normal stiffness ratio kr (Note: Bray’s derivation was not published). 
This highly cited analytical solution predicts severely distorted stress 
bulbs in fractured rock masses (Duncan and Christopher, 2005; 
Goodman, 1989; Oda et al., 1993; Singh, 1973) in agreement with 
experimental results (e.g., block system with two staggered orthogonal 
fracture sets in Gaziev and Erlikhman, 1971). 

Stress distribution from Bray’s equation is compared with numerical 
results from the inclined transverse isotropy and the implicit joint- 
continuum models. The plain strain finite element model consists of 8- 
node displacement and 4-node fluid pressure continuum elements 
(120,801 nodes and 40,000 elements). The plain-strain simulations 
involve a 100 m wide and 100 m high domain with sliding-displacement 
boundary on both lateral and bottom. Results summarized in Fig. 3 
show: 

• The three cases on the left (Fig. 3a) show very good agreement be-
tween the radial stress σr distribution computed using Bray’s equa-
tion (white lines) and numerical results computed with the inclined 
transverse isotropic model (colored bulbs). Numerical results 
confirm the absence of tangential σθ and shear stress τrθ in the entire 
domain due to the surface line load, in agreement with Bray’s 
assumption (Note the similarity to Flamant’s solution for the stress 
field induced by a line load normal to the surface of an elastic half- 
space).  

• The three plots on the right (Fig. 3b) present the radial stress field 
computed using the implicit joint-continuum model. Pressure bulbs 
are very similar to Bray’s theoretical solution for fracture dip angles 
βJ = 0◦ and βJ = 90◦. However, the radial stress field for βJ = 45◦

shows a single stress bulb normal to the fracture set, rather than the 
two orthogonal stress bulbs predicted by Bray’s solution and the 
transverse isotropic model (see also Bindlish et al., 2012; Agharazi 
et al., 2012). The radial stress bulb parallel to the dip direction of the 
joint comes from the continuity of bedding-parallel stress (σxx) in the 
transverse isotropic model (see Fig. 2c and Fig. 3a for βJ = 45◦.). 

Differences between predictions obtained with the transverse isot-
ropy model and the implicit joint continuum model follow previous 
observations in Fig. 2. The implicit joint-continuum model allows for 
stress discontinuity and transfers only stress components acting on the 
joint plane. 

3.2. Strip load on a fractured rock mass 

Numerical analysis is performed for the strip footing on the surface of 
a fractured rock mass with a single fracture set at a dip angle βJ = 60◦. 
Fig. 4 presents the mean stress field in the rock mass at three load levels. 

Fig. 3. Radial stress (σr) bulb due to line load on the surface of a fractured rock mass with a single fracture set.  
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The elastic response of the matrix and fractures determines stress con-
tours before fractures reach shear failure (Fig. 4a for q ≤ 1.2 MPa - Refer 
to Fig. 3 for the shape of radial stress bulb). Local shear failure is 
controlled by the shear strength of the fracture set and it gradually skews 
the stress bulb (Fig. 4b). Eventually, there is a dramatic change in the 

mean stress field under the footing (q ≥ 2.0 MPa - Fig. 4c), and the stress 
bulb narrows parallel to the fracture direction. Yield ratio is the ratio of 
acting shear stress to shear strength on the fracture plane. The parallel 
zone to the fracture direction has a lower yielding ratio and still high 
mean stress level than its surroundings. 

Fig. 4. Distribution of mean stress in the intact rock and yield ratio of the joint due to different strip load (q) on the surface of a fractured rock mass with a single 
fracture set (dip angle βJ = 60◦). Footing width B = 5 m. 

Fig. 5. Strip footing on the surface of a fractured rock mass with a single fracture set. (a) Vertical (UZ) displacement with various dip angles βJ, (b) Horizontal (UX) 
displacement with various dip angles βJ. The yellow dots correspond to the three cases (βJ = 60◦) shown in Fig. 4. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 5 shows the horizontal and vertical displacements at the center 
of the strip footing for different fracture dip angles βJ as a function of the 
applied load q. These results show:  

• There is no horizontal displacement at the center of the footing 
resting on intact rock or on the rock mass with either horizontal βJ =

0◦ or vertical βJ = 90◦ fractures due to geometrical symmetry and 
compatibility (Fig. 5a).  

• The vertical displacement is greater for the footing on fractured rock 
than on intact rock (Fig. 5b). The underlying mechanisms depend on 
the dip angle: the fracture normal stiffness softens the rock mass for 
βJ = 0◦, but stress focusing and deeper depth of influence are 
observed along with rock columns beneath the footing for βJ = 90◦. 
The slight non-linearity observed for βJ = 90◦ results from shear 
yielding along vertical joints beneath the strip loading.  

• Dip angles between βJ = 30◦ and βJ = 75◦ accentuate the non-linear 
trend between the vertical displacement and the applied load, as the 
non-linear fracture response has greater impact on the observed 
boundary deformations.  

• The footing load that triggers yielding and the ensuing plastic zone 
depend on the fracture dip angle. 

Simulation results reported in Figs. 4 and 5 correspond to a rock mass 
made of elastic intact rock and a elasto-plastic single fracture set. 
Therefore, the load-deformation response does not reach ultimate ca-
pacity (Note: the implemented numerical code does incorporate elas-
toplastic matrix response and multiple fracture sets). 

3.3. Effect of fracture strike and dip 

Experimental results showed that the modulus of subgrade reaction 
had a minimum at the dip angle nearby 30◦ although with an experi-
mental imperfection due to the bottom boundary constraint (Lee and 
Jeong, 2016), and that the prevailing vertical displacement into the 
fracture dip direction causes tilting for fracture dip angles βJ = 45◦

(Dvorak, 1966; Gaziev and Erlikhman, 1971; Majumder, 2015). 
This section uses the implicit joint-continuum model to investigate 

the effects of fracture strike and dip on the subgrade stiffness, and the 
footing displacement and tilt. The problem geometry involves a strip 
footing (B = 5 m) running in the North-South direction, and resting on a 
rock mass with a single fracture set (dip angle βJ, strike angle θJ - See 
sketch in Fig. 6a). The strip footing problem is inherently plane-strain, 
therefore it allows for vertical UZ and horizontal UX displacements only. 

Results for all βJ and θJ angles can be found in the Supplementary 
Information associated to this paper, where data are presented on a 
Lambert azimuthal equal-area projection. For clarity, trends extracted in 
Fig. 6 show the extreme conditions where fractures are either aligned 
with the strip footing (θJ = 0◦) or normal to it (θJ = 90◦). The following 
observations are fully consistent with the complete dataset. 

The plots reveal prevalent trends in the subgrade reaction of the rock 
mass normalized by the intact rock, i.e., the normalized settlement ratio 
UZ

r /UZ
rm (Fig. 6b), the horizontal displacement at the center of the 

foundation normalized by the vertical displacement UX/UZ (Fig. 6c), and 
foundation tilt (Fig. 6d). The three figures have a similar symmetric/ 
antisymetric character with respect to θJ = 0◦ and θJ = 90◦. In particular, 
the following can be derived:  

• Quasi-vertical fracture set βJ → 90◦: the subgrade is stiffest, UZ
r /UZ

rm → 
1.0, the horizontal displacement is UX/UZ≈0 (particularly for frac-
ture sets that strike normal to the strip footing θJ → 90◦), and tilt 
vanishes.  

• Quasi-horizontal fracture set (βJ → 0◦ or 180◦): the subgrade can be 
quite compressible, but there is minimal horizontal displacement 
UX/UZ≈0 and tilt.  

• Fracture set strikes quasi-collinear with the strip direction (θJ<±15◦): the 
subgrade is the most compressible, UZ

r /UZ
rm → 0.14, and both the 

horizontal displacement ratio UX/UZ and tilt are maximum when the 
fracture dip angle is either βJ≈35◦±10◦ or βJ≈145◦±10◦: 

4. Conclusions 

Fractures have a prevalent effect on the mechanical properties of 
fractured rock masses. Engineering analyses often use the inclined 
transverse isotropic model because it is simple and allows for efficient 

Fig. 6. Strip footing on the surface of a fractured rock mass with a single fracture set with various strike θJ and dip angle βJ (a) Geometry. (b) Normalized subgrade 
reaction = settlement UZ

r/UZ
rm. (c) Displacement ratio UX/UZ. (d) Tilt of the footing. 
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numerical simulations of fractured rock masses in the elastic regime. 
However, this model is limited to a rock mass with a single fracture set, 
and it involves inherent assumptions on the continuity for all stress 
components to guarantee a positive definite stiffness tensor. The in-
adequacy of transverse isotropy to model fractured rock media becomes 
apparent in the internal stress distribution and displacement field for 
various boundary-value problems, such us foundations. 

The implicit joint-continuum model combines the mechanical 
response of the intact rock and the fractures through their compliance 
matrices. It only allows transferring stress components acting on the 
normal face of the joint. Numerical simulations with simple boundary- 
value problems corroborate the numerical implementation against 
closed-form analytical solutions. The parametric study of strip founda-
tions resting on a fractured rock mass predicts maximum settlement and 
tilt when the fracture set strikes quasi-collinear with the strip direction 
(θJ≈±15◦) and the fracture dip angle is either βJ ≈40◦±10◦ or βJ 

≈140◦±10◦. 
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