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ARTICLE INFO ABSTRACT

Fractures control the hydro-mechanical behavior of rock masses. Explicit numerical analyses require detailed
information on fracture properties, spacing, and orientation. This paper advances an implicit joint-continuum
model for the coupled hydro-mechanical analysis of regularly spaced-persistent fractured rock masses. The
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;EI;[ i stimulati stiffness tensor combines the compliance of each fracture set and the intact rock; similarly, the permeability
AZﬁl?ar‘ ¢ stimulation tensor adds the fluid transport through fractures and the matrix. The fully coupled hydro-mechanical analysis
l1ations

incorporates the rock mass stiffness and permeability tensors, and satisfies force equilibrium and macroscopic
fluid mass balance. We implement the implicit joint-continuum model within a finite element framework and
verify the numerical simulator against closed-form solutions for simple boundary conditions. The application of
the code to the hydraulic stimulation of a fractured rock mass shows the effect of stress anisotropy and fracture
orientation on the development of open-mode discontinuities (i.e., hydraulic fracture) and hydro-shearing. The
implicit joint-continuum model can be readily extended to more complex coupled processes, including thermal

and chemical phenomena.

1. Introduction

A rock mass consists of intact rock blocks separated by fractures,
fissures, faults, and bedding planes. Discontinuities vary over a wide
range of length scales and convey anisotropic and heterogeneous en-
gineering properties to the rock mass.'">

Important fracture characteristics are orientation, surface rough-
ness, persistence, degree of interconnectivity, separation and aperture.’
Fractures have a much higher compliance and permeability than the
surrounding intact rock, are dominant conduits for fluid transport, and
favor localized mechanical deformation.

Shear-induced fracture dilation and contraction can cause dramatic
changes in the hydraulic transmissivity tensor and the fluid pressure
field in the rock mass. Associated changes in the effective stress will
cause additional fracture deformation.® Clearly, the coupled hydro-
mechanical behavior of a fractured rock mass is of great interest to
infrastructure engineering, radioactive waste disposal, the recovery of
geothermal energy, CO, geological storage, oil and gas recovery and
tectonic faulting.>®

Numerical models of fractured rock masses fall under discontinuous
or continuous-media models. Discontinuous-media models such as the
Distinct Element Method and the Discontinuous Deformation Analysis
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use discrete block systems to form the rock mass.”® These simulations
are computationally demanding for large-scale and long-term predic-
tions, and are limited by the available fracture distribution data.’
Hydro-mechanical coupling in discontinuous-media models typically
involves the separate solution of fluid flow and deformation equations
followed by ambiguous numerical steps to link the two.'? Furthermore,
these uncoupled-recoupled numerical procedures hinder the im-
plementation of additional coupled processes such as thermal effects.
By contrast, continuous-media models involve fully coupled gov-
erning equations at the element level. Consequently, they are most
valuable to model the coupled hydro-mechanical behavior of rock
masses for complex engineering problems. Continuum methods can be
categorized in terms of the length scale of problem L relative to the
fracture spacing s, L/s. Classical equivalent-continuum models can re-
present highly fractured rock masses (L/s>1) but disregard preferential
fracture orientations."' On the other extreme, explicit joint-continuum
models introduce interfacial elements to represent each dis-
continuity.'>'® These are simple to implement into finite element si-
mulators, but are only practical for the analyses of a small number of
fractures within the volume of interest (L/s ~ 1). For intermediate cases
(L/s > 1, but limited), implicit joint-continuum models incorporate
fracture sets with a regular geometric configuration into the rock mass;
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the resulting equivalent continuum combines the fracture and the ma-
trix deformation and flow properties. The meaning of an “implicit”
model is to take into account the discontinuous effect of regularly
spaced-planar-persistent fracture sets in an implicit way on continuum-
based modeling.

Previous implicit-joint models captured the effects of fractures in
the elastic compliance tensor for the fractured rock mass with various
degree of success with orthogonal fracture sets'*'® and randomly or-
iented fracture sets.!”'° In fact, there is still no definitive derivation of
the elastic compliance tensor for a rock mass with a general fracture
orientation. Furthermore, there is no consistent continuum re-
presentation of the elasto-plastic response of a fractured rock mass
where the preferred displacement direction is kinematically defined by
the fracture planes.*’

This manuscript documents the development and validation of a
three-dimensional hydro-mechanically coupled implicit joint-con-
tinuum model for a rock mass with one or several persistent fracture
sets of arbitrary orientation and spacing. Mathematical models, code
verification and practical examples follow.

2. Formulation of the proposed model

The proposed formulation assumes that fracture sets are made of
persistent, quasi-planar parallel fractures with regular spacing (Fig. 1 -
XYZ global coordinate system). The fracture strike 6 is the angle mea-
sured clockwise between the North direction (+Y) and the intersection
line formed by the joint plane and the XY surface. The dip angle  is the
steepest angle formed by the fracture plane and the XY surface.
Therefore, the vectors that define strike, dip and the vector normal to
the fracture plane are functions of 8 and f in the local xyz coordinate
system:

n’ = (sin 6, cos 6, 0)strike direction (€D)]

The fracture spacing s is the normal distance between two adjacent
fracture planes in a set. Therefore, the fracture spacing s; in the global
XYZ axes is (s; e))-n? = s where vectors e’ form the orthonormal bases in
the XYZ space.

Lower index in notations is for global or local coordinate system,
and upper index for the vector sequence to define the fracture plane
throughout the whole paper. In coordinate system, small letter of the
symbol is for local coordinate on the fracture plane (e.g. u, ), and ca-
pital letter for global coordinate systems (e.g. U; ).

2.1. Mechanical model

Stress changes deform intact rock blocks and cause fracture dis-
placements. The overall mechanical behavior of the fractured rock mass

(a)

Y
— X
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combines the intact rock and fracture sets in series and satisfies stress
continuity across the fracture plane.

Compliance tensor for the fractured rock mass. The applied stress o
and the fracture orientation define the stress components on the frac-
ture plane S; for example, the stress component on the fracture plane
caused by the applied stresses in the Z-direction follows from equili-
brium,

nz
_ oz _
Sq = ni-oynd = 5 (nd-651 + n-05)-01

2

where g is a 2nd order stress tensor oy, §; is Kronecker delta, and
a-b is the inner product of two vectors Zle a;b; = a;b;. Super-indices
and sub-indices range over the set {1,2,3}.

The elastoplastic fracture stiffness matrix d, relates the stress S; on
a fracture plane to displacements S, = d;,-ug; conversely, u, = ¢;;-S,
where the joint stiffness matrix dlfq is the inverse of the joint compliance
matrix cp]q = dp]q‘l. The stress transformation in Equation (2) combines
with the fracture compliance matrix to provide the relationship be-
tween the fracture displacement u, and the acting stresses g in the Z
direction,

z

n
7
Up =G~ (nd-63 + n-83)-ou

3)
The displacement along the fracture u, leads to the strain tensor ¢;
in the XYZ global coordinate system through two sequential steps: (1)
compute the global displacement U in the Z direction for a rock mass of
unit length from the local joint displacement, U; = w-nf/sz; and (2)
compute the strains in the Z direction that result from these global
displacements &}, = Uz, y,, = Uy and 7, = Uy. We assume a sym-
metric strain tensor analogous to continuum mechanics,”! and assemble
the strain tensor z,f for the given fracture displacement and fracture
spacing

J

&

nz
j = Z_Zs(”ipésj + nf83)-up

“@

Equations (3) and (4) give a mechanical relationship between the
applied stress tensor g and the induced joint strain tensor ei}! in the Z
direction. The same procedure computes the compliance tensors in the
X and Y directions. The compliance tensor C” of a fracture set sums the
compliances in each global direction. Finally, the stress-strain re-
lationship for a single fracture set is:

n z
& = Chiou= Y, = (nfo; + nPoy)cloni(nf-dy + nf-du) oy
;&S (5)
where the 4th order compliance tensor C’ represents the deforma-
tion effect of a fracture set on the rock mass.
The compliance tensor C™ for the rock mass with multiple fracture
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Figure 1. Fractured rock mass — Definitions. (a) Coordinate system and fracture orientation. (b) Schematic model for mechanical analysis
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sets adds the compliance tensors for each fracture set C’ and that of the
intact rock
e=g+ ) d=(C+),Ng=C"g ©)
The numerical algorithm involves two steps. First, it updates the
stresses for the intact rock and each fracture set. Then, it distributes the
strain increments g from the previous trial step into the intact rock g¢
and each fracture set g’. The stress continuity between the intact rock
and fractures determines the strain increment of the intact rock and
each joint set from the total strain increment,

de® = C% D™: de
dg! = C’: D™ dg ()
where a: b is the 2nd order inner product in tensor calculations,

a,--bl--.

' 'jl"he stiffness tensor D™ = C™~1 of the jointed rock mass relates the
strain increment to the stress increment dg = D™dg and is required to
build the global stiffness matrix in the finite element simulator.

Constitutive models. We adopt an elasto-plastic behavior for the in-
tact rock. The Mohr-Coulomb failure criterion is defined by the friction
angle ¢p and cohesion c of the intact rock: 7y = ¢ + 0, tan(g,). The
numerical implementation of this model computes the stiffness tensor
D€ from the compliance tensor C° (Equation (6)), and updates stresses
components.*?

The non-linear constitutive model for fractures captures normal
stiffness, shear stiffness and strength (Examples of complex fracture
response’ 23-25). Detailed descriptions follow:

(i) Normal stiffness K,: The tangential normal stiffness describes the
closing or opening response of the fracture to the imposed normal
stress. We select a hyperbolic stress-aperture relationship.®

On

-2
K, =Kp|ll - ————
" "0( On + emin'Kno)

€]
where K,,, is the normal stiffness at zero normal stress, and e;, is
the terminal fracture aperture at high normal stress.

(ii) Shear stiffness K;: The fracture shear stiffness is lower than the
normal stiffness K, but tracks its evolution; therefore, we relate K;
to K, by a stiffness ratio k, = K;/K,. Empirical evidence shows that
the stiffness ratio depends on the degree of weathering, normal
stress, and rock type.?°~%°

(iii) Strength: The fracture shear follows the Coulomb failure criterion
and combines friction ¢pb and dilation against asperities. Then, the
peak strength =f is a function of the effective normal stress o,

7 = 0, tan(gp, + a) 9)

The asperity angle a decreases during shear as an exponential
function of the shear plastic work W,.a = ag-exp(—Aq W,)>*!

Numerical formulation for the fracture model. The elastoplastic stiff-
ness matrix S; = d;j-u; describes the fracture elastic response and shear
strength. The displacement increment for each fracture set is propor-
tional to its compliance tensor (Equation (7)). The consistent tangent
formulation computes the stiffness matrix and updated stresses. This
formulation ensures a quadratic rate of asymptotic convergence.*>

Given a failure function f= o5 — g, tan(g, + a) and a plastic po-
tential function g = g; — g, tan(a), the updated stress components
S§™*+D and the stiffness matrix d’ are obtained as a function of the
plastic multiplier A\.

1| = (s S)tan(p, + @)

AL =
K, + K, tan(p, + a)tan o

(10)

where the shear stress t in the fracture results from the stresses
acting on the fracture plane z = S — S, 0 (S = [Sy, Sy, S;]), therefore the
shear stress magnitude on the fracture plane is o; = |7| and its direction
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is n = 7/0;. Then,

S+D = |ST| — AAL(Kn — K, tan a8) 11)
¢ =k88[6+una?)iaenEio_sg 5-ne w
du |s7|
+Kn® (Ll - %)
ou 12)
When the fracture elastic stiffness matrix is

d*=K(1-86Q 6 +K,8®J, the trial stress component on the
fracture is ST = S™ + d%*.Au, and the Dyadic product is a @ b = a;b;.

The derivative of the plastic multiplier with respect to
the fracture displacement is % = (Ksh — K; tan(gp, + «)3)/

(K + K, tan(p, + a)tan(a)). The plastié energy dissipation due to
frictional sliding is W, = [ oeduf = [ oydA.

The displacement increment Au induced by stress changes in the
fractured rock determines the updated stress components S®+ on the
fracture plane. The determinant of the stiffness matrix tends to zero at
the peak strength for the elasto-perfect plastic model. We use the
Moore-Penrose inverse to maintain numerical stability and to compute
the stiffness tensor of the fractured rock mass from the compliance
tensor in Equation (6).%°

2.2. Hydraulic model

Fluid transport takes place through the intact rock and fractures.
Fractures dominate the flow behavior and determine the “geo-
plumbing” of the rock mass in most cases.

Intact Rock. The fluid flow in the intact rock is darcian
v; = kj“(—0h/0X;) and a function of the intact rock permeability k;*,
where the gradient in total head 0h/dX; represents changes in both
elevation and fluid pressure.

Fractures. Fluid flow along fractures occurs in a quasi-two-dimen-
sional plane, controlled by the relative distribution of apertures along
the fracture plane.®*>® Laboratory studies show that fracture trans-
missivity varies with surface roughness, applied normal stress, aperture
dilation during shear displacement, and gouge formation from asperity
degradation.>** The dilation of critically stressed fractures renders
them most permeable.*>*°

A cubic law T, = y.eg/( 12y) relates the smooth fracture aperture e
to the transmissivity T, for an incompressible fluid of unit weight y and
viscosity p. The hydraulic aperture e of a natural fracture is smaller
than its mechanical aperture e,.>”-*>%-*® The hydraulic aperture ey
evolves with the mechanical aperture e, during the fracture normal
deformation and shear-induced gouge production,*’

ep = ep + f Aey, (13)

We assume that the change in mechanical aperture Ae,, equals the
normal fracture displacement u,. The proportionality factor f is a
function of the plastic work f = f, exp(—c;W,) in agreement with the
mechanical model described above .*°

The transmissivity tensor for a single fracture has two equal in-plane
components and a zero out of plane component TV = Th)(1 — § ® 9).
Then, the permeability tensor for a fracture set is k/ = T//s in the local
coordinate system, since the number of joints per unit length is the
reciprocal of the joint spacing s. The permeability tensor in the global
coordinate system is %n,-kn]’-Tk,f. Finally, the permeability tensor for
multiple fracture sets in the global coordinate system is
Dkl =% %n[‘n}?}dj.

Rock Mass. We adopt Darcy's law to describe the fluid flow through
the fractured rock mass in the global coordinate system
v; = kyj:(—0h/dX;). Flow through the fractured rock mass combines fluid
transport through the intact rock and fracture sets.”®

ky = kg + 3 Ky (14)
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2.3. Extension

A broad range of fracture sizes hinders the use of continuum-based
numerical methods for hydro-mechanical analyses.”’ Hierarchical
fracture systems can be modeled as a combination of explicit large
fractures embedded in an implicit joint-continuum that represents the
rock matrix. This approach facilitates the implementation of combined
statistical-deterministic multi-scale fracture systems for the study of
fluid flow and hydro-mechanical coupling in complex rock masses.”*>*
The combined representation can model fracture persistence,” and si-
mulate sudden shear dilations and flow paths that result from stress
changes.*

3. Verification of the proposed model

We implemented the hydro-mechanical model described above in
the multi-dimensional FEM simulator Geo-COUS (Geo-COUpled
Simulator); this simulator has been designed and structured to in-
vestigate coupled phenomena in porous and fractured media subjected
to multi-phase flow. The continuum elements for three-dimensional
analyses involve 20 nodes for displacement and 8 nodes for fluid
pressure.

We tested mechanical and fluid flow algorithms separately and for
coupled cases, and compared results against analytical solutions ob-
tained for simple boundary conditions. All tests involve a
2my X 2my X 4my rock block that is discretized into 16 elements (1 m®
each) and 141 nodes. The displacement boundary condition on the
bottom plane is U; = 0 (Note: the center node is fixed Ux=Uy=U, = 0
to hold the block in position); all other five boundaries are stress-con-
trolled. Table 1 summarizes the material parameters for the intact rock
and fracture sets used in various tests. We adopt linear elastic and
perfect plastic material properties to compare simulation results against
analytical equations.

3.1. Deformation and strength with a single fracture set

Consider a rock mass with a fracture set at a dip angle (3 and spacing
s. The analytical solution of the equivalent elastic compliance under
vertical compression combines the compliance of the intact rock and
the fracture set as in Equations (6).">2°

2 in2
CV"=CC+CJ=i+M(cos2ﬁ+SH;{—ﬁ)

E°¢ Kys r (15)

where E° is the elastic modulus of the intact rock, and k, = K,/K, is
shear to normal stiffness ratio for the deformation along the fracture
plane.

Fig. 2a shows the normalized elastic modulus E™/E* for a single
fracture set as a function of the dip angle B, where the rock mass
stiffness is the inverse of its compliance E™ = C™~!. Numerical results
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obtained with the implicit joint-continuum model match the analytical
solution and accurately reproduce experimental results®®>” — Note:
some published analytical solutions appear incorrect under the same
boundary conditions —.'*'®!'” The shear displacement along fractures
dominates the vertical deformation of the rock mass with a low stiffness
ratio k,. Therefore, the elastic modulus of the rock mass with a single
fracture set at dip angle B can be lower than the elastic modulus when
the fracture set is horizontal 3 = 0°. The elastic moduli for different
stiffness ratios k, converge to the same values for dip angles 3 = 0° and
90° (Fig. 2a).

A fractured rock mass fails through either the intact rock or along
the fractures.>*58-60 Therefore, the compressive strength oy of a rock
mass with a single fracture set at dip angle B is limited by either the
intact rock strength of = g, tan?(45° + @/2) + 2c tan(45° + @/2) or the
shear resistance along the fracture plane
o = [1+ (1 + tan? f)-tang’/(tan B — tang’)], in agreement with
constitutive models in Section 2.1. Fig. 2b illustrates the variation in
compressive strength as a function of the dip angle . These numerical
results match analytical predictions.

Fig. 2c and d explore the fractured rock mass deformation for three
selected dip angles B = 10°, 45° and 65°. The vertical stress oz versus
vertical displacement U, plot shows that the vertical displacement for
the elastic-to-plastic transition varies with the dip angle B (Fig. 2c).
Fig. 2c shows the horizontal displacement Uy at the center of the top
plane (X = 0m, Y = O0m, Z = 4m) versus its vertical displacement Ug;
the displacement ratio Ux/U, becomes constant when either the intact
rock fails or sliding shear develops along the fracture set (see Fig. 2d for
B = 10°). The numerically computed displacement ratio Ux/U;, agrees
with the analytical solution for the elastic deformation

Ux _ 2 sin(2pB) + sin(4B)
U 2sint(ag) + i 1+ % — sind ) (16)

(Note: other authors reached different equations'®'”). The dis-
placement ratio Ux/Uy for slip-failure along a dip angle (3 with a dila-
tion angle a is Uy/Uz = 1/tan(f — a) in agreement with numerical re-
sults (Fig. 2d).

3.2. Deformation and strength with two fracture sets

We now consider a vertical compression test on the same block, but
with two quasi-conjugate fracture sets such that (,-f; = Ap = 45°.
Fig. 3 shows a precise match between the analytical solution and nu-
merical results computed using compliance addition (Equation (15)).
Note that the elastic modulus of the rock mass does not have a simple -
periodicity, therefore transverse isotropy cannot reproduce the re-
sponse of the implicit joint-continuum model in Fig. 3a. Shear sliding
along the fracture sets limits the rock mass strength regardless of the
fractures orientation (Note: parameters in Table 1a). The solid line in
Fig. 3b shows the analytically computed strength envelope for the rock

Table 1
Material properties in numerical simulation.
Model Properties
Figs. 2, 3, 4 Mechanical Intact rock E¢ = 10*MPa, v = 0.3
Plastic behavior o = 1 MPa, ¢ = 0.5MPa, ¢ = 30°,§ = 30°
Fracture set Kn =5 x 10°MPa/m, k, = 0.2/1.0, e, = 1cm, s = 0.5m
Plastic behavior ¢ = 0, ¢, = 20°, « = 20°
Hydraulic Intact rock ke =10""2m/s
Fracture set Initial hydraulic aperture ep, = 2mm = constant
Figs. 5 and 6 Mechanical Intact rock E¢ =10*MPa, v = 0.3
Fracture set kr =0.2,ey =2mm, s = 0.2m
Plastic behavior ¢ = 0, ¢, = 30°, 1, = 50 m/MN
Normal stiffness: Ky, = 11.35MPa, e, = 2 mm
Hydraulic Intact rock ke =10""m/s

Fracture set

Initial hydraulic aperture ep, = 2mm
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Figure 2. Mechanical model validation - Rock mass with a single fracture set subjected to vertical compression. (a) Rock mass stiffness normalized by the intact rock
stiffness vs. fracture orientation. (b) Rock mass strength normalized by the confining stress vs. fracture orientation. (c) Normalized stress vs. displacement at three dip
angles. (d) Horizontal vs. vertical displacements at three dip angles. Lines: analytical solution; data-points: numerical results. Confining stress 1.0 MPa. Material

parameters in Table la.

mass with two fracture sets at AR = 45°. The solution combines the
Mohr-Coulomb failure criterion and the envelope superposition
method.? The numerical model predicts the same strength and failure
modes as the analytical solution. Results in Fig. 3 highlight the pre-
valent role of fractures on the rock mass stiffness and strength.
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3.3. Permeability and hydro-mechanical coupling

Consider a fractured rock mass with a single joint set (strike 6 = 0°,
dip angle B, spacing s). The permeability in the global Z direction is
ki, = o et B (derived from Equation (14)). The predicted sin?-trend
adequately matches hydraulic conductivity measurements gathered
using sandstone samples cored at various orientations with respect to

o 5
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=
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c
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»
8 2 ’
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E —— Jeager (2007) P
§ 0 r T T
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Figure 3. Mechanical model validation - Rock mass with two fracture sets subjected to vertical compression. (a) Rock mass stiffness normalized by the intact rock
stiffness vs. fracture orientation. (b) Rock mass strength normalized by the confining stress vs. fracture orientation. Confining stress 1.0 MPa. Difference in dip angles

A= 45°.Material parameters in Table 1.
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Figure 4. Hydro-mechanical coupling - Model validation. Fluid pressure that
triggers shear failure. Rock mass with a single fracture set at dip angle f. Lines:
analytical solution. Data points: numerical results. Boundary stresses:

ox=1.0MPa, o;=1.5MPa. Fracture strength parameters: c=0MPa, ¢=20°
(Table 1a)

the bedding plane within intact rock cores.®!

Hydro-mechanical coupling can induce rock mass failure as the pore
pressure increases. We test the numerical simulator against Jaeger's
weakness model: the fractured rock mass is subjected to an anisotropic
state of stress (0z, Ox = Oy) and the fluid pressure gradually increases
until the fractured rock mass reaches failure. Analytically, the fluid
pressure at failure is

tan(f — ¢)
tan(8 — @) — tan(B)

where oy and o is the horizontal and vertical stresses (sketch in
Fig. 4).

Numerically, the fluid injection pressure that triggers shear failure is
the last value before numerical instability. Fig. 4 shows the fluid
pressure Py required to trigger failure as a function of the dip angle .
The analytical solution in Equation (17) matches numerical results
(Fig. 4).

Pr=ox + (07 — ox) an

4. Example: hydraulic stimulation

The dependency between fluid pressure, effective stress, fracture
aperture and fluid flow can lead to complex non-linear effects and in-
stabilities. The implicit joint-continuum model validated above is ap-
plied herein to analyze the challenging problem of hydraulic stimula-
tion in fractured rock masses.®” This is the quintessential example of a
hydro-mechanical coupled problem.

Natural fractures are not necessarily oriented normal to the current
minimum in-situ stress. Therefore, the in-situ principal stress direction
does not necessarily control the direction of maximum flow.®>*° In
fact.

(i) Small shear displacements can cause significant dilation and a
substantial increase in permeability®>®’; then, fractures aligned
with the maximum shear stress will be most conductive in critically
stressed fields.

(i) The fluid pressure required to reactivate favorably orientated

fractures can be lower than o,.°%°°

High-pressure fluid injection may cause’’: tensile fractures when
the fluid pressure exceeds the tensile strength (not explored in this
study), opening mode discontinuities along pre-existing fractures (when
fluid pressure overcomes the confining stress), or hydro-shearing
(Fig. 4).

Let's consider a borehole (diameter of 0.4 m) within a 40m, X 40m,
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analysis domain of unit depth (Fig. 5). The layer is subjected to an in-
itial overburden stress o, = 20 MPa, and then kept under vertical plane-
strain boundary conditions. The far-field horizontal stresses are
ox = 30 MPa and oy = 15 MPa. For clarity, we simulate a single vertical
fracture set and consider three different orientations: perpendicular to
the minimum principal stress to favor opening (Set #1: 6 = 0°), inclined
with respect to the principal horizontal stress directions (Set #2:
6 = 30°), and perpendicular to the maximum principal horizontal stress
direction to capture an extreme condition of principal stress rotation
(Set #3: 6 = 90°). Table 1b summarizes the hydro-mechanical proper-
ties for the intact rock and the fracture sets (Biot's poroelastic constant
is assumed to be a = 1.07%).

Stage 1: Drilling (at constant fluid pressure). The borehole is “drilled”
in three numerical stages: (1) compute nodal forces caused by the far
field effective stresses in the medium without the borehole, (2) remove
elements within the borehole and replace them with nodal forces on the
borehole wall, (3) gradually relax the forces to zero while the borehole
fluid pressure remains equal to the far-field fluid pressure.

The Kirsch solution anticipates a tangential stress concentration
around the borehole in a homogeneous continuum. However, the
borehole response is intimately related to the orientation of the fracture
set, and two concurrent effects take place (Fig. 5a): (1) the increase in
the tangential effective stress parallel to the fracture set is taken by the
intact rock and causes minor strains, and (2) the radial effective stress
release increases the fracture set aperture near the well in the direction
normal to the fracture set. Zones of high plastic shear work around the
borehole anticipate the development of breakouts (Fig. 5a — See similar
results obtained using discrete element simulations in Ref. 72.

Stage 2: Injection. After drilling, a constant water flux ¢ = 0.02m>/
(min‘my) is applied to the borehole wall. The fracture set controls the
response: the fluid pressure increases inside the borehole, propagates
into the formation, opens fractures, transmissivity increases and favors
fluid flow localization along preexisting fractures (Fig. 5b). Fracture
opening and flow localization along preexisting fractures can take place
even against the maximum principal horizontal stress, as observed in
the contrived case of a single fracture set normal to the major principal
horizontal stress (Fig. 5b - Fracture Set #3: 6 = 90°). Yet, localization is
more pronounced when fractures are co-linear with the minimum
principal stress.

In all cases, aperture changes during injection pressurization are
quasi-normal to the changes in aperture observed during drilling. The
rotation in aperture direction near the wellbore is most prominent in
fracture Set #2 (6 = 30° - Fig. 5b).

Fracture sets that are co-linear with the principal horizontal stresses
develop opening mode discontinuities (Sets #1 and #3). However, the
initial shear stress on misaligned fracture sets promotes shear sliding
during fluid pressurization (Set #2: 8 = 30° - See also.””’? In this case,
the sequence of events during injection-pressurization includes a de-
crease in normal effective stress on the fracture plane, initial shear
sliding, an increase in aperture in response to the diminished normal
stress and the shear-induced dilation, invasion of the fluid pressure
front along the more transmissive fractures and a further reduction of
shear strength.

The fluid pressure increases rapidly inside the borehole. When the
injection rate is low, the injection pressure reaches a maximum value
when the pressure front interacts with the model boundaries and the
flow rate matches the leak-off flux (¢ < 0.02m>/min/m; - Fig. 6); in
this case, the maximum injection pressure is below the far field normal
stress. Higher injection rates produce a transient pressure above the far-
field normal stress. The peak injection pressure is smallest for the
fracture set that is misaligned to the principal stress directions due to
the effective stress dependent hydro-mechanical fracture response:
pressurization triggers shear failure at an injection pressure that is
lower than the minimum far-field horizontal stress.

Stage 3: End-of-injection. The injection pressure decreases when the
fluid injection stops, and asymptotically approaches the far field fluid
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Figure 5. Hydraulic stimulation - Rock mass with a single fractures set. Central borehole in vertical view. (a) Changes in aperture after drilling. (b) Changes in
aperture and (c) excess pore pressure during fluid injection. Parameters: Table 1b.
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Figure 6. Hydraulic stimulation: Injection pressure vs. time. Rock mass with a
single fractures set. Conditions: fluid injection rate q =0.02m>/min/m. Far field
stresses oy and o}, shown for reference. Parameters: Table 1b.

pressure, i.e., zero excess fluid pressure. The residual aperture changes
are minimal because the currently implemented fracture model does
not capture hysteretic aperture behavior.
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5. Conclusions

Hydro-mechanical coupled processes are common in a wide range of
field conditions that involve rock masses. Fractures in the rock mass
play a decisive role on the hydraulic and mechanical properties of the
rock mass. However, inherent numerical (as well as experimental)
challenges hinder comprehensive analyses in most cases.

The choice of numerical model must take into consideration the
engineering length scale of interest relative to the fracture spacing. The
implicit joint-continuum model developed in this manuscript is ap-
plicable for fracture separations that are significantly smaller than the
problem size. Hierarchical fracture systems can be modeled as a com-
bination of explicit large fractures embedded in an implicit joint-con-
tinuum that represents the rock matrix. The implicit joint-continuum
framework facilitates model extensions to study coupled thermo-hydro-
chemo-mechanical phenomena in fractured rock masses.

The stiffness and permeability tensors combine the effects of frac-
tures and the intact rock as a linear summation of compliances and the
additive contribution of fluid transport, respectively. The effective
stress based formulation couples the hydraulic and the mechanical re-
sponses within a finite element formulation. The numerical im-
plementation of the coupled hydro-mechanical model is validated
against analytical solutions obtained for single and two-fracture sets
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under tractable boundary conditions.

Numerical results highlight the prevalent role of fracture sets and

their orientation on the evolution of the rock mass during drilling and
hydraulic stimulation. In a fractured rock mass, hydraulic fracturing is
the opening of preferentially oriented fracture sets. Fractures that are
misaligned with the principal stress directions will favor hydro-
shearing. Positive hydro-mechanical feedback between aperture,
transmissivity, fluid pressure and effective stress can result in fluid flow
localization.
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