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Abstract Gas migration mechanisms control the release of gas from seafloor sediments. We study
underlying phenomena using transparent sediments subjected to controlled effective stress; this
experimental approach allows high‐resolution real‐time monitoring of gas migration through cohesionless
granular materials under 3‐D boundary conditions. Observed migration patterns depend on the effective
stress at the time of injection and the stress history. Gas migration transitions from pore invasive to grain
displacive when the capillary pressure for air entry ΔPAE is greater than the effective stress σ′. This study
focuses on grain‐displacive gas migration. The morphology of grain‐displacive gas bodies changes with
depth as the sediment stiffness G increases and the effect of surface tension γ vanishes: spheroidal gas
bubbles form in the near‐surface, faceted cavities further down, and eventually open‐mode fractures develop
at depth. The gas injection pressure is proportional to the effective stress in grain‐displacive migration.
Preloading and overconsolidation cause the rotation of principal stresses and gas‐driven openings align with
the new minimum principal stress direction. Cyclic loading promotes the upward migration of gas‐filled
openings, and there is mechanical memory of previous gas pathways in sediments.

1. Introduction

There is widespreadmethane release from submerged and surface sediments into the atmosphere. Persistent
methane bubble curtains rise above various seafloor locations worldwide, including the West Spitsbergen
continental margin (Westbrook et al., 2009), the northern U.S. Atlantic margin (Skarke et al., 2014), the
sea of Marmara (Tary et al., 2012), the Gulf of Mexico (Wang et al., 2016), and the Håkon Mosby Mud
Volcano (Sauter et al., 2006). Similarly, methane is released from sediments in lakes and swamps
(Scandella et al., 2011). The released methane is biogenic when it originates from shallow organic matter
accumulations, or thermogenic when produced at depth.

Gas migration mechanisms in soft sediments control gas release events (Dupre et al., 2015; Scandella et al.,
2017), determine the formation of craters and pockmarks (Andreassen et al., 2017; de Prunele et al., 2017;
Riboulot et al., 2016), and constrain the potential gas recovery strategies from methane hydrate accumula-
tions in shallow marine sediments (Fauria & Rempel, 2011; Jang, 2014; Moridis et al., 2011). Gas migration
pathways are also relevant to other degassing processes such as subsurface CO2 leakage (Bang et al., 2013;
Cevatoglu et al., 2015; Lewicki et al., 2007) and gas‐driven volcanic eruptions (Suckale et al., 2016).

We can anticipate two end‐members for gas transport in sediments as a function of the air entry pressure
ΔPAE relative to the effective stress σ′ (Clayton & Hay, 1994; Clennell et al., 2000; Dai et al., 2012;
Holtzman et al., 2012; Shin & Santamarina, 2010): either gas invades from pore‐to‐pore and creates viscous
and capillary fingers (expected in coarse‐grained sediments at depth) or gas displaces the sediment grains
and creates preferential pathways (expected in shallow, fine‐grained sediments). This study focuses on
grain‐displacive gas migration in sediments.

A limited number of studies have directly observed grain‐displacive gas migration processes in sediments.
While theoretical solutions often assume spherical gas inclusions in shallow sediments (Pietruszczak &
Pande, 1996; Sills &Wheeler, 1992; Wheeler, 1988, 1990), experimental studies have shown other forms such
as oblate spheroids, fingers, and fractures (Johnson et al., 2002; Sandnes et al., 2011). Most of these experi-
ments used thin quasi‐2‐D Hele‐Shaw cells (Campbell et al., 2017; Chevalier et al., 2009; Eriksen et al.,
2015; Huang et al., 2012; Oppenheimer et al., 2015; Saintyves et al., 2013; Sandnes et al., 2011; Varas
et al., 2015). Some tests involved transparent gels (Boudreau et al., 2005; Johnson et al., 2002). Others
observed gas inclusions using X‐ray CT scans (Abegg & Anderson, 1997; Anderson et al., 1998; Barry
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et al., 2010). These approaches have limitations related to CT scan time relative to process time, frictional
boundaries and altered state of stress in Hele‐Shaw cells, fundamental material differences between the
elastic and cohesive gels versus the inherently granular nature of sediments, that is, effective stress‐
dependent frictional strength τ, stiffness G, and dilatancy ψ (Santamarina et al., 2001).

The purpose of this study is to investigate gas migration mechanisms in soft fine‐grained sediments under
3‐D field conditions. Open‐mode discontinuities in cohesionless granular media are inherently grain displa-
cive and fundamentally different from tensile fractures in elastic cohesive materials where linear elastic frac-
ture mechanics applies (Shin & Santamarina, 2011b). Therefore, we use a transparent granular material and
subject the medium to various effective stress levels to simulate gas migration in sediment columns at differ-
ent depths. While we emphasize the cohesionless nature of the sediments (i.e., frictional), we use the term
“fracture” to describe open‐mode discontinuities for simplicity.

2. Materials and Methods
2.1. Transparent Soil

Transparent soils consist of solid clear grains mixed with a liquid of the same refractive index (Iskander,
2010). Due to their high transparency and granular nature, transparent soils support the study of complex
engineering problems such as multiphase flow, pile penetration, failure of shallow foundations, and tunnel-
ing (Gill & Lehane, 2001; Iskander, 2010; Liu & Iskander, 2010). Transparent porous media coupled with
planar laser‐induced fluorescence and digital image correlation can provide 3‐D information on fluid inva-
sion topology (Dalbe & Juanes, 2018; Krummel et al., 2013).

The transparent soil used in this study consists of fumed silica mixed with an oil blend (similar to Gill &
Lehane, 2001). Fine fumed silica particles (diameter ~30 nm, density = 2.2 g/cm3, from Sigma‐Aldrich) form
porous micron‐sized aggregates. The oil blend that matches the refractive index of fumed silica is a 1:1
mixture of two commercially available baby oils (from Mom to Mom and Johnson's®). The oil blend has a
viscosity of 20 mPa·s, and its density is 0.825 g/ml. The preparation procedure involves three steps: (1)
mix 3 g of fumed silica for every 40 ml of blended oil to form a mobile slurry, (2) vacuum the slurry for a
few hours to remove all air bubbles so that the slurry becomes transparent, and (3) consolidate the slurry
to the desired effective stress.

Table 1 summarizes the geotechnical properties of the transparent soil. The nanosize grains define its high
specific surface Ss = 200 m2/g. However, the micron‐sized interaggregate pores determine its air entry pres-
sure ΔPAE ≈ 200 kPa. The measured shear wave velocity versus stress parameters (α, β, see supporting

Table 1
Transparent Soil: Geotechnical Properties

Property Value Note

Particle size/aggregate size ~30 nm/~1 μm From SEM image of fumed silica powder
Specific surface Ss 200 m2/g Methylene blue methoda

Liquid limit LL 393% From fall cone test
Hydraulic conductivity k 2.2 × 10−7 cm/s At σ' = 44 kPa, from consolidation tests
Coefficient of consolidation cv ~1.3 × 10−3 cm2/s From consolidation tests
Compression index Cc

b ~3.3
Void ratio e1kPa 23.3
Small‐strain shear stiffness 0.3 MPa At σ' = 44 kPa, from shear wave velocity
Velocity‐stressc α factorb 3.34 m/s From shear wave velocity
Velocity‐stress β factorb 0.543
Friction angle ϕ 30°d Angle of repose
Coefficient of friction μ 0.4 Shear against Plexiglas substrate

Note. SEM = scanning electron microscope.
aSantamarina et al., 2002. bProperties are determined using an odometer cell instrumented with bender elements for
concurrent shear wave velocity measurements (Lee & Santamarina, 2005). Measured parameters are consistent with
fine‐grained soils (Cha et al., 2014). c

Vs ¼ α
σ′

o

1kPa

� �β

:

dGill and Lehane (2001) measured ϕ= 31° in triaxial tests.
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information Text S1 for details), consolidation parameters (Cc, e1kPa, and cv), friction angle ϕ, and the liquid
limit LL confirm that this transparent granular medium is a true analogue for fine‐grained clayey sediments.

2.2. Experimental Devices and Procedure

The transparent test cell has a square cross section to facilitate recording the gas migration processes without
geometric distortion (Plexiglas cell of square cross section, width a = 50.8 mm, wall thickness 3.2 mm). The
test cell and reaction frame allow for vertical loading, time‐dependent consolidation, fluid drainage, and gas
injection (Figure 1a). A pneumatic cylinder pushes a permeable porous disk to apply the vertical load while a
linear variable displacement transducer (Trans‐Tek Inc.) monitors the vertical displacement. The excess pore
fluid can drain from both the top and bottom plates; double drainage shortens the drainage path to half the
specimen height, and consolidation becomes 4 times faster than for single drainage. The stainless steel needle
used for gas injection (cylindrical tube, ID= 0.83mm,OD= 1.27mm) is fixed at the center of the bottomplate
and connects to a pressure transducer (Omega PX209) and a syringe pump (Braintree Scientific Inc, BS‐8000).
There are two cameras (Sony α5000) mounted normal to each other and two LED panels provide background
illumination. The two orthogonal views allow the 3‐D characterization of the gas migration process.

We pour the transparent slurry into the cell and consolidate it to the desired effective stress level. A metal
wire inserted inside the needle prevents particle entry and clogging during the consolidation process.
After consolidation, we remove the metal wire and connect the needle to the syringe pump (Figure 1b).
The syringe pump injects gas at a low constant rate (2 ml/hr). We record the pressure signature and gather
still images 6 times per minute.

2.3. Boundary Effects

Cell dimensions minimize boundary effects while maintaining high‐quality see‐through conditions. The cell
width a = 50.8 mm is limited by transparency; for this width, we anticipate negligible transverse boundary
effects for gas bubbles that are smaller than 10 mm (Yu, 2013). On the other hand, we keep a good distance
between the injection point and the top boundary to observe gas migration; wall friction accumulates with
depth and causes a lower vertical effective stress at the injection point compared to the stress applied at the

Figure 1. Experimental setup. (a) Frame, cell, and monitoring system—side view and cross section. (b) Details of the gas
injection needle. LVDT = linear variable displacement transducer.
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top surface (Janssen effect—Sperl, 2006). We selected the specimen height‐to‐width ratio as a compromise
between these competing effects. The expected decrease in vertical effective stress is ~20% at a sediment
depth z = 0.5a and ~34% at z = a if wall friction is fully mobilized (Briscoe & Rough, 1998). Supporting
information Text S2 associated to this paper provides a detailed discussion on wall friction.

3. Results
3.1. Gas Migration Patterns and Pressure Signatures

We consolidate transparent soil specimens to vertical effective stress levels between σ'v = 0.15 kPa and
σ'v = 44 kPa (at the top surface, z = 0). These conditions correspond to effective stresses in shallow marine
sediment columns that range from less than 10 cm to more than 10 m high estimated using published sedi-
ment density data (Hamilton, 1976). The core of the study comprises 21 separate experiments. Figure 2
shows typical results at σ'v = 0.15, 3.8, and 24 kPa.

Gas migrates as bubbles at σ'v= 0.15 kPa. Bubbles are nonspherical, and sequential bubbles interact andmay
merge as they migrate upwards. The pressure signature shows pressurization until the gas bubble starts
forming; the sudden pressure drop during bubble inflation ends as the bubble is released (see other examples
in Fainerman et al., 2004). Sequential formation‐release events lead to the recorded sawtooth pressure signal
in Figure 2a.

At an intermediate consolidation stress of σ'v = 3.8 kPa, the growing gas inclusion starts as a 3‐D cavity and
transitions into a thin fracture later on. The initial cavity deviates from the smooth spheroidal bubbles in
slurries and exhibits a faceted geometry; this indicates that the role of the surface tension vanishes as a
shape‐controlling parameter (Figure 2b, A). The gas cavity grows as a succession of expansion events. The
gas pressure drops suddenly when the cavity forms and enlarges. Gradually, the cavity develops corners
and edges (Figure 2b, B); local fractures initiate at these sharp locations and eventually grow to form a single
thin fracture (Figure 2b, C).

Figure 2. Typical displacive gas migration patterns at different applied vertical effective stresses: (a) σ′ = 0.15 kPa;
(b) σ′ = 3.8 kPa; and (c) σ′ = 24 kPa. Plots on the right show gas pressure (red line) and gas inclusion volume (blue line)
signatures.
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At higher effective stress levels (e.g., σ'v= 24 kPa, Figure 2c), gas invades the transparent soil by creating frac-
tures from the onset, and there is no early cavity expansion stage. The injection pressure reaches a plateau
that is characterized by small pressurization‐drop cycles, that is, sawtooth shape as well. Each pressure drop
signifies a step growth in the fracture volume.

The fracture plane becomes thinner as the effective stress increases (e.g., σ'v = 44 kPa; Figure 3). The gas
pressure increases continuously during fracture growth. The pressure buildup causes fast fracture develop-
ment. This trend suggests that the injected gas volume is larger than the created fracture opening volume.

Boyle's law for ideal gas allows us to calculate the volume of the gas inclusion Vgi as it develops in the trans-
parent soil specimen:

P⋅ V sys−V inj þ V gi
� � ¼ C (1)

where P is the gas pressure, Vsys is the initial volume of gas in the injection system, and Vinj is the injected gas
volume.We estimate the constant C from P‐Vinj values before a gas inclusion forms. Figure 2 shows the com-
puted gas inclusion volumes for cases (a) and (c). The sudden volume jumps are consistent with concurrent
visual observations.

3.2. Stress History

Two additional experiments explore gas injection into “overconsolidated” specimens, that is, specimens pre-
loaded to high vertical effective stress σ'vm and then unloaded to a lower stress level σ'v. The goal is to cause
principal stress rotation so that the vertical stress becomes the minimum principal stress σ'3: σ'3 = σ'v. The
overconsolidation ratio OCR = σ'vm/σ'v and the vertical effective stress at injection σ'v define experimental
conditions. The residual horizontal effective stress after unloading can be estimated as σ'h = (1‐sinϕ)
OCRsinϕ·σ'v (Mayne & Kulhawy, 1982). The friction angle of the transparent soil is ϕ = 30°, then sinϕ = 0.5
and principal stress rotation σ'h > σ'v is anticipated when OCR > 4.

We run a test using a short overconsolidated specimen with an estimated OCR = 10 at the injection point.
The sediment experiences principal stress rotation at the injection point, and gas invasion nucleates a
horizontally oriented thin fracture. The fracture propagates horizontally and eventually tilts as it feels the
cell walls (Figure S2 in the supporting information).

The test run with a tall specimen has an estimated overconsolidation ratio OCR = 1.5 at the injection point
and OCR > 10 close to the top plate. As a result, the fracture initiates and propagates vertically and tilts at

Figure 3. Stress history and sequential injection‐degassing events. The specimen was preconsolidated to 44 kPa and then
unloaded to 1.4 kPa before gas injection. There is principal stress rotation in the upper part where the upward propagating
fracture changes direction. The sediment “heals” after the first degassing event but leaks continuously after the third
event. Successive gas leak pathways follow the same trajectory.
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mid height when it “feels” the principal stress rotation, that is, the horizontal effective stress becomes larger
than the vertical effective stress (Figure 3).

3.3. Degassing and Fracture Healing

Gas releases into the water column or the atmosphere once it reaches the sediment surface. Gas release
events are intermittent or continuous depending on (1) the gas injection rate which determines the gas
repressurization time and (2) the sediment properties and stress conditions that determine the fracture
healing time. There is a sudden drop in gas pressure when the pressurized gas in fractures leaks out; then,
the gas pressure starts to build up again until another degassing event occurs. Sediments “heal” and the
fracture gradually closes after each gas release event. Healing diminishes with successive degassing events;
eventually, the degassing pathway may remain open and gas would leak continuously at a relatively con-
stant pressure (Figure 3). Experiments at low effective stresses exhibit wide openings that require long heal-
ing times, thus gas continues degassing and there is low gas pressure buildup (short repressurization time).

3.4. Cyclic Loading (Unloading and Reloading)

Several tests include vertical stress cycles after gas injection to examine the effects of cyclic loading on gas
migration. These tests resemble fluid pressure oscillations associated with tides (see wave‐seabed interac-
tions in Jeng, 2003). Figure 4 shows an example of a specimen with an initial Y‐shaped gas fracture after
gas injection stopped. The gas expands during vertical unloading from 14 kPa to 0, the fracture advances
upward, reaches the top porous disk, and leaks gas into the atmosphere. During vertical reloading, the gas
inclusion partially closes and the leak pathway temporarily shuts off. Eventually, it reopens again during
the following unloading cycle. Other similar cases tested as part of this study show the gradual upwards
migration of gas inclusions during cyclic loading (see similar observations in Wheeler, 1990).

3.5. Memory Effect

Gas migration follows similar pathways during successive injections; this suggests that there is
mechanical memory of previous events in sediments. Images in Figure 2a show that individual bubbles

Figure 4. Pressure fluctuations promote the upwards migration of gas‐filled openings. Y‐shaped gas fracture (note:
unloading from 14 kPa).
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move along the same trajectory created by the leading bubble at low effective stress. Similarly, there is
memory in the fracture formation regime, as demonstrated in Figure 5: the gas‐filled fracture
(σ'v = 4 kPa) gradually closes as gas diffuses into the medium during the following 4 days. The second gas
injection at the same vertical effective stress follows a migration pattern very similar to the opening
created during the first injection. The similarities are not only in overall geometry, but also in the fine
details; for example, both have the same broken‐curved geometry next to the needle (front view), and vein
patterns (side view). Memory remains in the sediment even when successive gas injections are separated
by long inactive periods.

Mechanical memory reflects grain‐scale displacements during the first injection: the subsequent relaxation
during deflation causes local changes in horizontal effective stress (lower σ') and local void ratio (higher e).
Similar mechanisms for sediment memory were observed in contracting cavities in soils (Cheng et al., 2007;
Yu & Rowe, 1999) and in the evolution of horizontal effective stress and void ratio during mineral dissolu-
tion (Cha & Santamarina, 2014; Shin et al., 2008). Local sediment fabric changes and entrapped gas micro-
pockets may contribute to the memory effect.

4. Analysis and Discussion
4.1. Gas Migration Patterns in Fine‐Grained Sediments

Transparent soil specimens allow us to observe gas migration in granular media in real time and with high
resolution. Our results reveal that gas migration patterns in fine‐grained sediments depend on the effective
stress at the time of injection and the stress history, as they determine all the sediment mechanical
properties, in particular its stiffness. Figure 6 summarizes the evolving morphology of gas inclusions as a
function of vertical effective stress σ'v and sediment shear stiffness G. (Note that shear stiffness is calculated
from the measured shear wave velocity VS and sediment density ρ: G = ρVs

2.) We used image analysis to
measure the inclusion area S from the two orthogonal directions (theorem for orthogonal projections of a
plane), and the injection P‐V data to compute the gas inclusion volume Vgi (equation (1)). Then, the average
thickness of the gas inclusion is th = Vgi/S.

Results in Figure 6 show that gas inclusions flatten and the thickness‐to‐width ratio th/W decreases as the
sediment stiffness G increases with effective stress. Results from this study on grain‐displacive gas migration
and previously published results on gas invasion (Dai et al., 2012; Holtzman et al., 2012; Sandnes et al., 2011;
Shin & Santamarina, 2010) allow us to conclude that gas migration patterns evolve from grain displacive at
low effective stress and stiffness (bubbles, tubes, faceted cavities, and open‐mode fractures) to pore invasive
when the sediment is stiff at high effective stress:

1. The dimensionless ratio Πbubble = GR/γ captures the balance between sediment stiffness G and surface
tension γ as morphology‐control parameters, where R is the bubble radius. The change in gas inclusion
geometry from a smooth spheroidal at low Πbubble to a faceted cavity marks the transition from surface
tension γ‐controlled to sediment stiffness G‐controlled bubble growth.

Figure 5. Memory effect. (a) Open‐mode gas‐filled fracture after the first injection. (b) Gas diffusion and fracture healing 4
days after the first injection. (c) Gas‐filled fracture after the second injection.
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2. Analyses and results show preferential planar openings or “fractures”
rather than cavity expansion when Πbubble increases and the sediment
becomes stiffer. Themeasured thickness‐to‐width ratio th/W are inver-
sely related to the sediment stiffness G, (th/W) ∝ G−1, as anticipated
from theory of elasticity.

3. The sediment stiffness at high effective stress prevents grain displa-
cement and the gas‐liquid interface invades pores. The transition
from grain displacement to pore invasion is captured in the dimen-
sionless ratio between grain‐scale capillary forces and effective
stress‐dependent skeletal forces: Πinv = 10γ/(σ'dgrain) where dgrain
is the particle size. In terms of the air entry pressure ΔPAE, this
dimensionless ratio is Πinv = ΔPAE/σ' (see Shin & Santamarina,
2011b). Pore invasion takes place at σ' ≈ 200 kPa in the tested trans-
parent soil.

Our results contrast with observations in quasi‐2‐D Hele‐Shaw cells and
with transparent gels. Experiments in Hele‐Shaw cells cannot control
effective stress and the frequently observed fractal patterns are deter-
mined by side friction under the quasi‐2‐D boundary conditions
(Campbell et al., 2017; Oppenheimer et al., 2015; Sandnes et al., 2011;
Varas et al., 2015). On the other hand, effective stress‐dependent gas
migration patterns are not observed in experiments with transparent gela-
tins because of their cohesive nature (Boudreau et al., 2005; Johnson
et al., 2002).

4.2. Fracture Growth Process

At the grain scale, the air‐liquid interface invades the sediment at large pores or defects and pushes grains
aside (Figure 7a). Grain‐displacive gas migration increases the sediment pore size and decreases contact
forces between grains ahead of the fracture tip (Santamarina, 2003; Shin & Santamarina, 2011a, 2011b;
Zhang et al., 2013). These grain‐scale mechanisms create the positive feedback that sustains further
fracture growth.

The interface between the invading gas body and the transparent soil is faceted and irregular: in agreement
with visual observations, open‐mode discontinuities do not grow as a single front but rather by successive
opening events (grain displacive, see Figure 7b for front view, and Figures 7c and 7d for side view). The front
advances along the plane perpendicular to the minimum effective stress, as it is clearly demonstrated in tests
with overconsolidated sediments where the fracture tilts in response to the principal stress
rotation (Figure 3).

Figure 7. Grain‐displacive gas migration. (a) Grain‐scale forces. (b) Instantaneous fracture fronts at different stages of
injection (front view). (c and d) Irregular and discontinuous fracture front (side views).

Figure 6. Gas migration patterns in sediments as a function of effective
stress and sediment stiffness. The average fracture thickness‐to‐width ratio
th/W is a linear function of sediment compliance G−1.
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4.3. Gas Injection Pressure

The critical injection pressure at fracture opening affects the analysis of
multiple engineering tasks such as drilling (Keulen, 2001), hydraulic con-
ductivity measurements (Bjerrum et al., 1972), in situ remediation for low‐
permeability soils (Alfaro & Wong, 2001), and grouting (Marchi et al.,
2013). Most analytical solutions consider tensile strength and assume lin-
ear elastic fracture mechanics, in contrast to the cohesionless, granular
nature of soft sediments. Instead, we adopt a frictional Mohr‐Coulomb cri-
tical state formulation (Schofield & Wroth, 1968; Wood, 1990). Injection
pressures for cavity expansion and fracture propagation follow.

The internal pressure for a spherical cavity expansion Pcavity must work
against themean effective stress σ'o, the pore fluid pressure uo, and the soil
resistance (Cao et al., 2001; Carter et al., 1986; Yu, 2013):

Pcavity ¼ 4su
3

1þ ln
G
su

� �� �
þ σ′

o þ uo (2)

where G is the shear stiffness of the soil and su is the undrained shear strength (Cao et al., 2001;
Mayne, 2001):

su ¼ 1
2
σ′v sinϕ OCRð ÞΛ (3)

The exponent is Λ = 0.8 to 0.9. Note that this model disregards surface tension around bubbles.

On the other hand, an open‐mode gas‐driven fracture propagates perpendicular to the minimum principal
stress direction, and the injection pressure Pfracture tends to the minimum principal stress σ'3 as the fracture
size increases:

Pfracture ¼ σ′3 þ uo (4)

Figure 8 compares the gas injection pressures for cavity expansion and fracture propagation as a function of
the vertical effective stress at the injection point. Circles indicate observed cavity expansions and squares
correspond to observed fractures. Experimental observations support model predictions. Overall, open‐
mode fracture propagation prevails, except at low effective stresses where gas invades as cavity‐type bubbles
in the low Πbubble regime.

5. Conclusions

We visualized gas migration patterns in fine‐grained sediments using transparent soil specimens subjected
to various effective stress levels in 3‐D vessels. The transparent soil is a proper analogue of fine‐grained
sediments: it is granular, porous, and frictional and has effective stress‐dependent stiffness and strength.
Image analysis and gas injection pressure measurements provide quantitative information for mechanistic
analyses. The main conclusions follow:

1. Gas migration patterns reflect a competition between grain‐scale capillary forces and effective stress‐
dependent skeletal forces. Gas migration is grain displacive at low effective stress and high air entry
pressure so that Πinv = ΔPAE/σ' ≫ 1 and becomes pore invasive when Πinv = ΔPAE/σ' ≪ 1.

2. In the grain‐displacive regime, the morphology of the invading gas body varies with the effective stress: it
starts with spheroidal gas bubbles at very shallow depth (low Πbubble), evolves into faceted cavities, and
eventually becomes open‐mode fractures as the effective stress increases with depth (high Πbubble). The
fracture plane thickness is inversely proportional to the sediment shear stiffness.

3. Open‐mode fractures grow perpendicular to the minimum principal effective stress σ'3. Therefore,
fractures are vertical in normal consolidated sediments and rotate with the principal effective stresses
in overconsolidated sediments. The gas injection pressure is proportional to σ'3.

Figure 8. Gas injection pressure vs. vertical effective stress for cavity expan-
sion and open‐mode fractures. Data: Red squares identify observed frac-
tures; blue circles correspond to cavity expansion (peak pressure). Models:
The solid red line is for fracture propagation (equation (4), k0 = 0.7), and the
dashed blue line shows the cavity expansion pressure (equation (2)).
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4. The gas body can migrate upward along the sediment column. Besides the buoyancy drive, pressure fluc-
tuations promote upward migration of gas‐filled openings.

5. Displacive gas pathways may close during inactive injection periods. However, they can reopen with a
similar morphology and at a lower pressure when gas injection continues. The mechanical memory of
displacive pathways in sediments is associated to local changes in effective stress and void ratio.
Memory remains even when gas flow ceases for prolonged periods.
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