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Haines instabilities are sudden jumps of the fluid interface accompanied by fluid redistribution and a transient
pressure response. Haines jumps affect global displacement patterns in porous media, promote fingered invasion,
increase fluid trapping, and contribute to hysteretic saturation. Detailed analyses and experimental results show
that jumps take place when the pressure-volume response is multivalued across the pore throat, during either
advancing or receding tests. This situation emerges in “soft systems” such as liquids with entrapped gas bubbles,
compliant substrates, and when multiple menisci interact across the porous networks. Elastic deformations and
capillarity combine to form the dimensionless elastocapillary number Nec for a given pore geometry and fluid
mixture: a system with elastocapillary number Nec < 1 is prone to Haines instabilities. Therefore, Haines jumps
are more likely to occur not only in soft porous systems, but also when the network topology is characterized by
pronounced pore constrictions, and the fluids form small contact angles and generate high interfacial tension.
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I. INTRODUCTION

Capillarity determines immiscible flow in porous media
[1]. Haines instabilities describe sudden jumps of the fluid
interface accompanied by fluid redistribution and a transient
pressure response [2] [Figs. 1(a) and 1(b)]. Haines jumps are
ubiquitous in porous media. They cause unstable local dis-
placement, increase fluid discontinuity, and promote fingered
invasion [3,4]. As a result, Haines instabilities affect global
displacement patterns, increase fluid trapping, and contribute
to hysteretic saturation in porous media [5–7].

Early studies used descriptive terms such as “unstable
point” and “unstable interface” without a specified criterion
for Haines jumps [2,3]. A local thermodynamic analysis sug-
gests that an interface configuration is stable when dJ/dVw <

0, where the meniscus curvature J is defined by the principal
radii J = 1/r1 + 1/r2, and Vw is the volume of the wetting
phase [8–12]. However, this criterion contradicts experimen-
tal observations of liquid penetration into periodically con-
stricted capillaries [13,14] and experiments conducted with
careful volume-controlled displacement [15]. Furthermore,
recent studies also show that a Haines jump at one meniscus
affects capillary conditions at nearby interconnected menisci
[16,17], and flow complexity is aggravated by the presence of
surfactants and/or contaminants [15,18].

This paper presents a detailed analytical and experimental
study of pore scale mechanisms that underlie Haines jumps in
porous media. We consider pure fluids without surfactants or
contaminants. Our goals are to understand causal links and to
identify governing parameters in view of the potential control
and manipulation of this instability.

II. CONCEPTUAL FRAMEWORK

Consider the displacement of a wetting liquid (e.g., wa-
ter) by a nonwetting fluid (e.g., air or oil) across a pore
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constriction, and ignore the effects of viscosity and gravity as
both the capillary number and Bond number are small (note:
in this study, the characteristic length for the capillary number
is the pore scale and the effect of viscosity is secondary—see
[19,20] for more discussion). The pressure difference �P(x)
between the wetting and the non-wetting fluids is a function
of the surface tension γ , the contact angle θ , and the pore
geometry [15]:

�P(x) = Pw − Pn = −4γ cos[θ − α(x)]

d (x)
, (1)

where α(x) is the local angle between the pore wall surface
and the flow direction, and d(x) is the pore diameter at position
x [Fig. 2(a)]. For convenience, let us compute the wetting
fluid volume from the reference meniscus at position x = 0
(the center of the constriction) and assume a constant fluid
pressure in the non-wetting phase Pn = P0; then �P(x) is
the differential pressure in the wetting liquid relative to P0

(negative value of the capillary pressure).
Figure 2(b) shows the computed pressure-volume signa-

ture �P-Vpore for the sinusoidal pore (length L, opening
diameter HH ′ = 2r1, and constriction diameter AA′ = 2r2).
The pressure decreases as the meniscus moves towards the
constriction, reaches a minimum near the pore throat, and then
increases as the meniscus moves away from the constriction.
Note that there is a one-to-one correspondence between pres-
sure �P and volume Vpore.

The single pore analyzed above is part of a porous network.
In natural or engineered porous systems, the pore liquid may
not be incompressible and may have entrapped gas bubbles,
the solid matrix may not be perfectly rigid, and there are
nearby interconnected menisci. These conditions create a
“soft system” and pressure changes in the pore liquid cause
an elastic volumetric change Vel in the associated system
[Fig. 2(c)].

The actual system response �P-Vsys during liquid invasion
combines the invaded pore volume Vpore with the system’s
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FIG. 1. Haines jumps during drying in porous media. (a) Interfa-
cial configuration. (b) Transient capillary pressure response.

elastic volumetric change Vel:

Vsys = Vpore − Vel. (2)

The resultant �P-Vsys curve [Fig. 2(d)] can be multivalued
across the pore throat and a jump will take place during
either advancing or receding tests. Let us compute the system
pressure-volume relationship for the three soft pore models
sketched in Fig. 3.

A. Mechanism 1: Soft liquid–entrapped gas bubble

Gas bubbles entrapped in the liquid expand or shrink in
response to pressure changes [Fig. 3(b)]. Assume the gas
bubble volume is V0 when the meniscus is at the reference
position x = 0. As the meniscus moves to position x, the
bubble volume changes in response to the pressure change in

FIG. 2. Conceptual framework: Haines jumps are consequences
of elastic and capillary interactions. (a) A sinusoidal pore constric-
tion. (b) Pressure-volume signature �P-Vpore in a single rigid pore,
where �P = Pw − Pn, as defined in Eq. (1). (c) System compliance
response �P-Vel. (d) Combined pressure-volume signature �P-Vsys.
The multivalued response shows Haines jumps at turning points
M, N.

the pore liquid (assumptions: ideal gas law, disregards surface
tension as a first approximation):

Vel(x) =
[

P0 + �P(0)

P0 + �P(x)
− 1

]
V0. (3)

Then, the injected liquid volume Vsys that is required to ad-
vance the interface to position x is Vsys = Vpore − Vel [Eq. (2)].

Figures 3(a) and 3(b) show the pressure-volume response
when a wetting liquid recedes across a sinusoidal pore con-
striction (L = 4 mm, r1 = 0.5 mm, and r2 = 0.2 mm). Figure
3(a) shows the �P-Vsys relationship for the case without a gas
bubble (V0 = 0); this trend is also the �P-Vpore relationship
for the stiff system Vel = 0. The dashed line in Fig. 3(b) shows
the elastic response �P-Vel for the case of a small gas bubble
(V0 = 0.1 ml). The combined system �P-Vsys curve becomes
multivalued (solid blue line). Therefore, the meniscus jumps
from point M to a new equilibrium position M′ in the upper
branch during the receding test [the inset in Fig. 3(b) enlarges
the �P-Vsys response around point M]. A similar analysis
explains drop formation instabilities as well [21].

B. Mechanism 2: Deformable solid matrix

The solid matrix is not perfectly rigid in natural formations
(e.g., poroelasticity) or laboratory systems [e.g., deformable
plastic tubes and polydimethylsiloxane (PDMS) micromod-
els]. Therefore, the pore volume changes in response to the
evolving capillary pressure. Let us assume that the volumetric
response of the solid matrix has an elastic stiffness k (Pa/m3);
then the pore volume reduction Vel when the meniscus moves
to position x is

Vel = −[�P(x) − �P(0)]

k
. (4)

For example, an elastic tube of length Ltube, inner diameter a,
outer diameter b, and shear modulus G has an elastic stiffness
k equal to [22] (assume Poisson ratio ν = 0.5)

k = G

(
1

a2
− 1

b2

)
1

πLtube
. (5)

Figure 3(c) shows the pressure-volume response for the
same sinusoidal pore model in Fig. 3(a) but connected to a
0.2-m-long soft tube (model parameters in figure caption).
As the meniscus moves towards the pore constriction, the
pressure �P(x) decreases and the soft tube shrinks. After
the pore constriction, the pressure increases and the soft tube
expands (dashed blue line). The combined pressure-volume
relationship �P-Vsys (solid blue line) resembles the entrapped
gas bubble case and exhibits a multivalued response. Once
again, the meniscus jumps suddenly to a new position as the
interface recedes and pressure shifts from the lower to the
upper branch. Clearly, changes in pore volume will be more
pronounced in more compliant matrices, e.g., soils versus
rocks.

C. Mechanism 3: Interacting menisci

Interconnected menisci interact with each other through
the fluid pressure, and reach the same Laplacian curvature
under equilibrium conditions. The pressure decreases as the
invading meniscus crosses the widest pore throat, and all
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FIG. 3. Pore scale mechanisms for Haines jumps. (a) A sinusoidal pore (L = 4 mm, r1 = 0.5 mm, and r2 = 0.2 mm) with no gas bubbles,
rigid matrix, and no interconnected menisci. (b) Mechanism 1: entrapped gas bubble. Case parameters: gas volume V0 = 0.1 ml, atmospheric
pressure P0 = 101 kPa. (c) Mechanism 2: deformable solid matrix. Case parameters: G = 1.7 MPa, tube length Ltube = 0.2 m. (d) Mechanism
3: interacting menisci. Case parameters: capillary opening radius r1 = 0.5 mm, radius of wider pore constriction r2 = 0.2 mm, radius of
narrower pore constriction r3 = 0.18 mm, pore constriction length L = 4 mm. All cases: surface tension γ = 0.072 N/m and contact angle
θ = 0◦. Solid blue line: �P-Vsys curve, dashed line: �P-Vel curve.

other menisci relax moving back and away from their pore
constrictions. Every pore i has its own �P-Vpore relationship:

V i
pore = f i(�P). (6)

In this case, the “elastic” volumetric change Vel associated to
the largest pore m is the sum of the volume changes at all
other interconnected pore constrictions for the same pressure
change:

Vel = −
∑
i �=m

V i
pore. (7)

Let us consider three interconnected pores where one
pore throat (r = 0.20 mm) is slightly larger than the other
two [r = 0.18 mm, Fig. 3(d)]. For clarity, both the matrix
and the liquid are assumed infinitely rigid. The combined
�P-Vsys curve is multivalued and the meniscus jumps to a
new position with a corresponding jump in pressure (note:
the �P-Vsys response shifts to the right as the number of
interconnected pores n increases). Clearly, interactions be-
tween interconnected menisci produce an equivalent soft
system similar to an entrapped gas bubble and a compliant
matrix.
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FIG. 4. Comparison between experimental measurements (red dots and blue triangles) in capillary tubes and model predictions (solid
lines). (a) Haines jumps during advancing (red) and receding (blue) tests caused by interactions between menisci and entrapped gas bubbles.
Model parameters: surface tension γ = 0.024 N/m (ethanol-air), contact angle θ = 22◦, atmospheric pressure P0 = 101 kPa, volume of the
entrapped gas bubble V0 = 1.48 ml (inferred), capillary radius r1 = 0.48 mm, pore constriction radius r2 = 0.16 mm, pore constriction length
L = 3.6 mm. (b) Haines jumps caused by interactions between menisci and the plastic tubing. Model parameters: surface tension γ = 0.072
N/m (water-air), contact angle θ = 27◦, elastic modulus of Tygon tube G = 2 MPa, short tube length Ltube = 16.0 cm (blue), long tube length
Ltube = 34.4 cm (red), capillary radius r1 = 0.48 mm, pore constriction radius r2 = 0.16 mm, pore constriction length L = 3.6 mm.

III. EXPERIMENTAL STUDY

The complementary experimental study reported next ex-
plores Haines jumps by recording the fluid pressure and
the interface position during immiscible displacement tests
in pore models. We analyze experimental results within the
theoretical framework described above.

A. Experimental setup

We test two pore systems: a capillary tube with a pore con-
striction and a microfluidic chip with interconnected pores.

Capillary tube. The borosilicate glass capillary tube (2r1 =
0.97 mm) has a constriction to simulate a sinusoidal pore
throat (2r2 = 0.32 mm, L = 3.6 mm).

Microfluidic chip. The polydimethylsiloxane (PDMS) mi-
crofluidic chip is fabricated using standard soft lithography
[23]. The microfluidic chip has three connected pores with
the same opening width w = 0.5 mm. One of the pore throats
is slightly larger than the other two [i.e., w1 = 0.12 mm,
w2 = w3 = 0.1 mm, Fig. 3(c)]. All channels are 0.1 mm deep.

Complementary devices. The experimental setup is similar
to the setup in [15]. We use a syringe pump (Braintree
Scientific Inc., BS-8000) to control the flow rate while we
advance or recede the fluid interface across the pore model.
The pressure transducer (Omega, PX40-50BHG5V, ±6.7 kPa)
mounted next to the inlet measures the pressure change. We
observe and record the interface configuration using an optical
microscope (Zeiss, Stemi 2000-CS).

Setup. The capillary tube connects to the syringe pump
through a short, stiff polyurethane tube (L = 3 cm; G = 56
MPa, computed from the durometer based on [24]) to mini-
mize the matrix compliance and to study the effect of trapped
gas bubbles. Then we replace the polyurethane tube by a
soft Tygon tube (G = 2 MPa) of varying lengths to simulate

a deformable porous matrix. The microfluidic chip connects
to the syringe pump using stiff 1/16-in. ID Teflon tubing.
De-ionized water (Milli-Q) and ethanol (VWR) are used as
wetting liquids.

B. Results

Entrapped gas bubble. Figure 4(a) shows the pressure
signature during a receding test (red dots) and an advancing
test (blue triangles) conducted with ethanol and air, at an
imposed injection rate of q = 80 μl/h (note: this flow rate
would cause an average pore velocity of 3 × 10−3 cm/s in
rigid pores of the same geometry). A gas bubble is introduced
next to the pressure transducer. The analytical model (solid
line) accurately predicts the position and amplitude of the
Haines jump in both receding and advancing tests. Note that
jumps happen at different positions during receding and ad-
vancing tests, resulting in distinct pressure-volume responses
(see comprehensive dataset in [15]).

Deformable solid matrix. Figure 4(b) shows the position
of the meniscus as a function of time in receding tests with a
water-air system at an injection rate of q = 100 μl/h. Data
correspond to two system compliances controlled by the
length of the Tygon tube (Ltube = 16 cm in the short tube
experiment and Ltube = 34.4 cm in the long tube experiment).
Changes of the tube length produce different displacement
results. Model predictions match experimental measurements.

Interacting menisci. Figure 5 displays the movement of
ethanol-air menisci as ethanol is withdrawn across the pore
throats in the PDMS microfluidic chip. All menisci move
backwards at the beginning [Fig. 5(b)]. Then menisci stop
receding across narrower pore constrictions [Fig. 5(c)]. One
meniscus jumps across the largest pore throat, and the inter-
connected menisci relax and move back away from their pore
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FIG. 5. Haines jumps caused by interacting menisci in a microfluidic chip.

constrictions [Fig. 5(d)]. These observations agree well with
the mechanism of interacting menisci described above.

IV. DISCUSSION

Analyses and experimental results presented above demon-
strate that elastic and capillary interactions in porous media
can result in Haines instabilities. In particular, we expect a
Haines jump when the system response �P-Vsys is multival-
ued in capillary pressure �P for a specify displaced volume
Vsys. A similar unstable response emerges in elastocapillary
coalescence studies [25,26]. We can define a dimensionless
elastocapillary number in terms of the system stiffness k
(Pa/m3) and capillarity for a given pore geometry (note:
approximation for a sinusoidal pore with a small face angle
α—Fig. 2(a)—and linear elastic stiffness):

Nec = k

2γ cos (θ − α)

πr4

sin α
. (8)

A system with elastocapillary number Nec < 1 is prone to
Haines instabilities. The experimentally verified model and
the proposed elastocapillary number allow us to predict the
effects of different factors on the occurrence of Haines jumps.

A. Effect of pore geometry

The pressure change across a pore constriction increases
as the radius of the pore constriction r2 decreases relative
to the pore size r1. This magnifies the soft-system response,
and increases the tendency to Haines jump. Figure 6(a) shows
pressure-volume �P-Vsys response curves for pore models
with r2/r1 = 0.2, 0.3, and 0.4 (fixed r1 = 0.5 mm) and
trapped gas volume V0 = 0.05 ml. Haines jumps happen when
pressure signatures are multivalued as in the r2/r1 = 0.2 and
0.3 cases; conversely, there is no instability in the r2/r1 = 0.4
case.

The meniscus may jump through more than one pore throat
following a Haines instability. For example, the meniscus in
Fig. 6(b) jumps at the pore throat 1, drains pore 2 immedi-
ately, and settles at the pore throat 3 (V0 = 0.3 ml; all other
parameters are the same as in Fig. 6(a)]. This implies that a
jump can drain the fluid in large pores and disturb internal
fluid connectivity.

B. Effect of surface tension and contact angle

A lower surface tension creates smaller changes in pressure
�P [Eq. (1)] and lessens the elastic volumetric response
Vel. Indeed, we observe Haines jumps when air displaces
water (γair-water = 0.072 N/m), but jumps do not happen
when air displaces alcohol in the same capillary (γair-alcohol =
0.024 N/m).

The contact angle plays a more profound role, as it affects
both the amplitude and the shape of the �P-Vpore response
[15,27]. When the contact angle is nonzero, the maximum
meniscus curvature occurs after the meniscus passes the refer-
ence position at the constriction. Furthermore, the capillary
pressure may be highest before the meniscus reaches the
constriction. Figure 6(c) shows the effect of the contact angle
on the �P-Vsys response for a liquid with entrapped air (V0 =
0.1 ml). Haines jumps occur for θ = 0◦, 30°, and 60°, but
there is no instability for θ = 90◦. The position of the jump
and the pressure signature change with the contact angle and
are distinct in advancing and receding tests.

Lastly, two instabilities may take place in a single pore
across a pore throat if the system is soft enough. The case
of a large gas bubble is plotted in Fig. 6(d): The two in-
stabilities correspond to two sudden pressure changes in the
pressure-time signature in an advancing test. Once again, this
prediction is consistent with experimental observations (see
[15]).

C. Implications

The above analyses and experimental results show that the
number of interconnected pores n, pore constriction geometry
r2/r1, and contact angle θ play a crucial role in predicting the
occurrence of Haines jumps in porous media. High displace-
ment efficiency can be achieved with intermediate wetting
conditions when Haines jumps are minimized (see examples
in [7,28]). While we are not able to effectively modify the pore
geometry in natural porous media, we can alter wettability and
the mechanical properties of interfaces with the addition of
surfactants or nanoparticles.

Capillary effects can be significant in laboratory microflu-
idic systems due to the small pore sizes. Moreover, peripheral
components can be very soft (e.g., entrapped gas, highly
elastic PDMS and tubes). Therefore, laboratory studies with
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FIG. 6. Factors affecting Haines jumps. (a) Pressure-volume curves for different pore throat size to pore opening ratios r2/r1. Case
parameters: gas volume V0 = 0.05 ml, surface tension γ = 0.072 N/m, contact angle θ = 0◦, atmospheric pressure P0 = 101 kPa, capillary
opening radius r1 = 0.5 mm, pore constriction length L = 4 mm. (b) The meniscus jumps through more than one pore throat following a
Haines instability in a series of pores. Radius of pore constriction 1 r2 = 0.1 mm, radius of pore constriction 2 r2 = 0.2 mm, radius of pore
constriction 3 r2 = 0.15 mm. (c) Pressure-volume curves at different contact angles. (d) The pressure-volume curve for a system with a
large gas bubble shows the occurrence of the secondary instability. Case parameters: surface tension γ = 0.072 N/m, contact angle θ = 60◦,
atmospheric pressure P0 = 101 kPa, capillary opening radius r1 = 0.5 mm, pore constriction radius r2 = 0.2 mm, pore constriction length
L = 4 mm.

microfluidics should carefully consider the effects of “soft-
system instabilities” on the observed flow behavior.

V. CONCLUSIONS

This study hypothesized and verified that Haines jumps
take place in soft systems and involve a sudden change in
pressure and fluid redistribution. We analyzed and tested three
soft systems: entrapped gas bubble, compliant solid matrix,
and interconnecting menisci. Equivalent conditions exist in
both laboratory experiments and natural systems.

Haines jumps are more likely to occur in porous systems
with pronounced pore constriction ratio r2/r1, small contact
angles, and higher interfacial tension.

Matrix compliance, saturation, and pore geometry are
predefined in natural systems. Still, Haines jumps can be
controlled by changing the contact angle and/or interfacial
properties (e.g., with the use of surfactants or nanoparticles).
Laboratory microfluidic studies should consider the effects of
entrapped gas bubbles and peripheral components compliance
in the analysis of multiphase displacement test data.
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