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a b s t r a c t

Hydrate-bearing sediments are a potential source of energy. Depressurization is the preferred production
method in mechanically stable and highly permeable sandy reservoirs. The goal of this study is to
develop closed-form analytical solutions for multi-well depressurization strategies and to explore the
synergistic interactions among wells. The key variables are the aquitard and sediment permeabilities, the
reservoir layer and aquitard thicknesses, and water pressures in the far-field, at phase transformation and
at the wells. These variables combine to define two governing dimensionless ratios (for permeability and
fluid pressure), and a characteristic length scale lsed. Proposed solutions show that synergistic multi-well
strategies dissociate a larger hydrate volume than an equal number of individual wells working inde-
pendently. The optimal distance between wells increases: (1) with the length scale lsed, (2) for tighter
aquitards, (3) for lower well pressure and when the original water pressure of the reservoir is close to the
dissociation pressure, and (4) when both the aquitard and the reservoir are thick. Implications extend to
both vertical and horizontal wells. The proposed closed-form solutions expedite design and economic
analyses and allow the fast comparison of potential production scenarios.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Methane hydrate is stable at relatively high pressure and low
temperature. Seabed sediments host 95% of the hydrate mass; the
rest is found in lakebed sediments and beneath the permafrost.
Hydrate formation is pore-filling in coarse-grained sediments,
while hydrate growth displaces the sediment grains to form nod-
ules and lenses in fine-grained sediments [1].

The amount of methane gas trapped in hydrates could reach
1800 GtC (1.8x1018 g of carbon [2]; e see also [3]). Hence, hydrate-
bearing sediments are a potential source of energy. Suggested
methods for gas production fall within three categories: depres-
surization, thermal stimulation, and chemo-active methods. The
choice of production strategy depends on the reservoir character-
istics, including the hydrate pore habit, effective stress, fines con-
tent, sediment permeability and compressibility. Depressurization
is preferred in the case of pore-filling hydrate in high permeability
sediments such as clean coarse sands. On the other hand, thermal
stimulation is preferred in fine-grained sediments because of their
du.sa, mterza@gmail.com
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low permeability, high gas entry pressure, and high compressibility
[4,5]; during thermal stimulation, the hydrate volume expands 2 to
4 times as dissociation takes place across the phase boundary, and
creates gas-driven ‘fractures’ that facilitate gas recovery [6e8].
However, thermal stimulation is energy demanding [9].

Chemo-active methods alter atomic interactions and free the
methane molecule trapped in the clathrate structure. Chemical
inhibitors shift the phase boundary in the P-T space to cause
dissociation under the in-situ P-T conditions. A particularly attrac-
tive chemo-active technique is CO2eCH4 replacement, whereby the
injected CO2 replaces and releases the CH4 as a guest molecule
[10e12]. Replacement induces minimal stress changes and strains,
however, this method requires pervious formations such as clean
sands.

Field production pilot tests have been undertaken by the USA,
Canada, Japan, and China. The test at the Mallik site in the Mack-
enzie Delta involved thermal stimulation and depressurization
(Canada in 2002 and 2007/2008; [13,14]). The field production test
by CO2eCH4 replacement in Ignik Sikumi trapped ~50% of the
injected CO2 in the formation (north slope, Alaska in 2011; [15]).
Tests in the permafrost area of the Qilian Mountains combined
depressurization and heating (China in 2011 and 2016; [16,17]).
Japan conducted the first offshore test in the Nankai Trough in 2013
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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followed by two production well tests in 2017; the successful tests
lasted from 1-to-3 weeks [18,19]. The latest offshore production
tests took place in the Shenhu Area of the South China Sea and
involved controlled gas-liquid depressurization and enhanced
screening strategies (offshore China e vertical well in 2017 and
horizontal well in 2019/2020; [20,21]). Sand production issues have
challenged field tests; while emphasis has been placed on screens,
the interaction between vertical wells and the formationmay cause
tensile failure above the production zone and/or buckling collapse
of screens within the production horizon [22].

Most of the current efforts and studies have involved depres-
surization. The low pressure field extends away from thewell along
conductive layers between aquitards. The maximum distance from
the production well to the dissociation front depends on relative
permeabilities (aquitard vs. reservoir), and the extent of depres-
surization relative to the dissociation pressure and the fluid pres-
sure in the far-field. Simple analyses show that single independent
wells cannot economically produce methane from known reser-
voirs at current oil prices [23,24].

Well-deployment strategies can significantly improve the
affected volume. For example, single horizontal wells extend the
dissociated volume linearly with the well length. Alternatively, we
can consider multiple vertical wells for depressurization [24,25],
thermal stimulation [26e28], and combined thermal-
depressurization methods [29e31]. Unfortunately, studies con-
ducted with complex multiphysics numerical simulators hide the
interaction among the multiple variables involved and their rela-
tive importance, and there is no analytical solution available in the
literature for multi-well scenarios.

The goal of this study is to develop closed-form analytical so-
lutions for multi-well depressurization strategies and to explore
synergistic interactions among wells. These solutions will allow us
to optimize well configurations for specific reservoir characteristics
and assess the reservoir volume engaged during depressurization.

2. Single and multi-well solutions

The analytical solutions developed herein apply at steady-state
depressurization conditions when the dissociation boundary rea-
ches the asymptotic size, ceases to expand and hydrate stops
dissociating. At this moment, all produced water either leaks in
through the aquitard layers or seeps in from the far field, and the
pressure field reflects the distinct hydraulic conductivities in the
hydrate-free sediment and the remaining hydrate bearing sedi-
ment. This asymptotic steady-state analysis does not capture the
evolution of dissociation, but places emphasis on ultimate pro-
ducible volumes.

For clarity and completeness, we present first the single-well
production problem, addressed by the authors in a previous
study [23]. Then, we extend the analysis to the multi-well problem
to identify synergistic interactions between producing wells.

2.1. Single well production: vertical and horizontal solutions

Consider a single well in a leaky methane hydrate reservoir of
thickness H bound between two aquitards layers of thickness b
(Fig. 1). The dissociation front grows away from the well until the
pressure field reaches steady-state conditions. At this point, only
water flows into the well, and the pressure field exhibits a two-
stage trend between the far field pressure ufar, the pressure at the
phase boundary u* and the pressure at the well uw (Fig. 1) The
dissociation boundary terminal radius r* for a single vertical well
results from mass conservation and equilibrium (Fig. 1-a [23]);
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where the characteristic lengths lsed and lhbs are functions of the
reservoir geometry (H and b), the permeability of the sediment
with hydrates khbs and after dissociation ksed, and the permeability
of the aquitards k’
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The modified Bessel functions in Eq. (1a), (1b) and (1e) are Io()
first kind and order zero, I1() first kind and first order, Ko() second
kind and order zero, and K1 () second kind and first order. Ased and
Bsed parameters are:
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Similarly, the terminal distance x* for a single horizontal well
drilled at mid height along the hydrate bearing layer is (Fig. 1-b):
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2.2. Multi-well analytical solutions

Multiple neighboring wells interact with each other. Therefore,
there must be an optimal inter well distance for a given reservoir
and production conditions so that every point inside the depres-
surized zone is at or below the dissociation pressure u*. Let’s
analyze the cases of vertical and horizontal wells.

2.2.1. Multiple vertical wells
Consider an infinite number of vertical wells at a distance S from

each other in a quincunx configuration (Fig. 2-a). Pumping lowers
the pressure in all wells to uw (at t ¼ 0). Let’s approximate the
hexagonal geometry with a circle of diameter S. There is a pressure
hump between wells; therefore, there is zero gradient and no flow
across the imaginary boundary between wells at a distance ~ S/2.



Fig. 1. Single well production. Water-pressure distribution due to depressurization in a hydrate bearing sediment layer bounded by top and bottom aquitards. The producible
volume extends to radial distance r*. Variables involved: geometry (producible thickness H, aquitards thickness b, well radius rw and either the radius r* or width x* of the produced
zone), pressures (far field ufar, at phase transformation u* and at the well uw), and permeabilities (hydrate-free sediment ksed, hydrate bearing sediment khbs and aquitard layers k’).
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The axisymmetric pressure field ur around a vertical well in a leaky
aquifer with a no-flow boundary at r ¼ S/2 is (details in Supple-
mentary Material):

ur ¼ufar þ A Io
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where the characteristic length lsed is defined in Eq. (1b). The
following boundary conditions apply: (1) the pressure is ur ¼ uw at
the well wall r ¼ rw, (2) the maximum pressure at the boundary
r¼ S/2 is equal to the dissociation pressure ur ¼ u*, and (3) the flow
rate at the boundary r ¼ S/2 is the leak-in from the top and bottom
aquitards only, q ¼ qleak. Then, Equation (3) predicts the following
pressure distribution:
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2.2.2. Multiple horizontal wells
This case involves parallel wells drilled along the center of the

hydrate-bearing layer, separated at a distance S from each other.
Let’s assume that the length of the well in the reservoir is much
longer than the hydrate layer thickness L [ H (Fig. 2-b). Once
again, the pressure field has a hump between wells and there is no
horizontal flow across the plane between wells at a distance x ¼ S/
2. Then, the pressure distribution for horizontal wells in a leaky
3

aquifer along the transverse well direction x is (details in Supple-
mentary Material):
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where the characteristic length lsed is defined in Eq. (1b). We solve
the pressure field for boundary conditions analogous to the vertical
wells: ux ¼ uw at x ¼ rw, ux ¼ u* at x ¼ S/2, and q ¼ qleak at x ¼ S/2.
Then, the pressure distribution becomes:
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Fig. 3 compares the pressure fields for single vertical and hori-
zontal wells (Eqs. (1) and (2)) and well groups (Eqs. (4) and (6)) for
the same reservoir and well pressure uw. The optimal inter well
separation Sopt is the maximum distance for complete dissociation
of all hydrate between wells. Results highlight the synergistic
interaction between wells in multi-well solutions.
2.3. Superposition: other multi-well configurations - optimal
separation

The superposition method facilitates the analysis of optimal



Fig. 2. Multi-well solutions. (a) Vertical wells in quincunx distribution forming equilateral triangles of side S. (b) Parallel horizontal wells distribution. (c) Vertical wells in circular
distribution.
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separation Sopt for more complex well configurations and variable
depressurization strategies. In this approach, the pressure draw-
down ufar-ur at a given location is the sum of drawdowns contrib-
uted by all wells [32,33]. Let’s use this method to obtain optimal
separations for various configurations.
2.3.1. Vertical wells in quincunx configuration
Assume that all hydrate dissociates betweenwells. The pressure

field around a single vertical well in a leaky aquifer without hydrate
4

is obtained from Eq. (3) for boundary conditions: (1) ur¼ ufar at r/
∞, and (2) ur ¼ uw at r ¼ rw:

ur ¼ufar þ
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By considering immediate neighbors only, we obtain a first-
order, lower-bound estimate of the optimal separation Sopt be-
tween wells in a quincunx configuration for equal uw in all wells



Fig. 3. Pressure distribution. (a) Vertical wells. (b) Horizontal wells. Solutions shown in blue for individual wells (equations in Ref. [23]) and in green for multi-well systems (Eqs. (4)
and (6)). Parameters: ufar ¼ 10 MPa, uw ¼ 6 MPa, u* ¼ 7 MPa, ksed/k0 ¼ 103, and khbs/k0 ¼ 102.
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(Note: the triple point “A” in Fig. 3-a is at distance r ¼ Sopt/√3):
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where we assume that ur ¼ u* at the triple point. We can
approximate Eq. (8) by:
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where the dimensionless pressure ratio U is

U¼ufar � uw
ufar � u*

(9b)

2.3.2. Vertical wells around a circle
The drawdown at the center of the circle is n-times the contri-

bution of each of the n wells, and it must reach the dissociation
pressure u*. If we assume all wells work at the same operational
pressure uw, the optimal radius Ropt for the circular array (Fig. 2-c) is
obtained from:
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And, a first-order estimate of Ropt is:
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2.3.3. Horizontal wells in parallel configuration
The pressure field for a horizontal well embedded in a leaky

aquifer without hydrates is computed from Eq. (5) given boundary
conditions: (1) ur ¼ ufar at x / ∞ and (2) ur ¼ uw at x ¼ rw (details
5

in Supplementary Material):
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The drawdown in the middle point between two horizontal
wells is due to the two neighboring wells only. Then, assuming that
the drawdown reaches the phase transformation pressure ufar e

ux ¼ ufar e u* at the middle point between the twowells x¼ Sopt/2,
the optimal separation Sopt for equal depressurization uw at the
wells is:
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3. Results and discussion

The analytical solution for the vertical and horizontal single well
problems show the interplay between permeabilities, fluid pres-
sures and reservoir geometry. The predicted individual maximum
size of the dissociation front agrees well with numerical results
reported in the literature [23]. This section presents results for the
multi-well configurations. In the absence of published solutions,
we verified the global close form solution (Eqs. (4) and (6)) using
the independent analysis based on the superposition method.
Salient results are discussed next.
3.1. Governing parameters

A multi-well strategy dissociates a larger hydrate volume than
an equal number of individual wells working independently
(Fig. 3). Equations (9), (11) and (13) highlight the most important
variables and their interplay in determining the optimal distance
between wells in a multi-well solution. The key variables are the
permeabilities of the sediment after hydrate dissociation ksed and of
the aquitard layers k’, the reservoir and aquitard thicknesses H and
b, and water pressures in the far-field ufar, at phase transformation



Fig. 4. Synergism in multi-well systems. Optimal distance Sopt compared to produced zone in single well solutions r* or x*. (a) Vertical wells in quincunx distribution. (b) Horizontal
wells. For this example, ufar�uw

ufar�u* ¼ 1:6. We use the superposition method to determine the ratio Sopt/2r* and Sopt/2x*; the solution for the quincunx distribution, considers 12
neighboring wells.
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u* and at the wells uw. These variables combine to form two gov-
erning dimensionless ratios and a length scale:

K ¼ ksed
k’

(14)

U¼ufar � uw
ufar � u*

(15)
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The optimal distance Sopt between wells increases: (1) with the
length scale lsed, (2) for tighter aquitards, i.e. low k0 , (3) for lower
well pressure uw, (4) when the original water pressure of the
Fig. 5. Multi-well strategies: Producible volume normalized by the total length of all wells
Field specific dimensional variables: rw ¼ 0.1 m, H ¼ 5 m, b ¼ 1 m.

6

reservoir ufar is close to the dissociation pressure u*, and (5) when
both the aquitard and the reservoir are thick, that is, large H$b.

Fig. 4 shows the benefits of multi-well solutions for vertical
quincunx distribution and horizontal parallel configurations. There
is synergetic interaction between wells when the optimal well
separation Sopt exceeds the distance affected by a single vertical
well Sopt> 2r* (Fig. 4-a) or a single horizontal well Sopt > 2x* (Fig. 4-
b). Poor aquitards, khbs/k’/ 1, allow high transverse fluid influx and
the pressure drop has a minimal effect on the hydrate layer; then
the multi-well solution tends to be similar to multiple single wells,
Sopt/(2,r*)/1 and Sopt/(2,x*)/1.

The analysis of interwell synergism in Fig. 4 involves the
permeability of the hydrate-bearing sediment khbs because it af-
fects the single well performance (r* and x*), yet khbs disappears in
multi-well systems when all the hydrate mass dissociates between
in the reservoir. Dimensionless parameters used in calculations: shown on the figure.
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wells (Eqs. (4) and (6)). Then the counterintuitive impact of
K ¼ ksed/k’ in Fig. 4 becomes clear: the size of the dissociation front
r* or x* in single wells is sensitive to khbs while the separation Sopt
in a multi-well strategy is not.

The sediment and aquitard hydraulic permeabilities ksed and k0

correspond to the end of dissociation and must take into account
sediment compaction due to changes in effective stress, and rela-
tive permeability due to partial water saturation.

3.2. Field strategy

The single-well production strategy is uneconomical given to-
day’s technology and energy prices. Fig. 5 shows the benefits of
multi-well strategies. The analysis assumes an effective well radius
rw ¼ 0.1 m, a H ¼ 5 m thick hydrate bearing layer bounded by two
b ¼ 1 m thick aquitards with a permeability ratios ksed/k’ ¼ 103,
khbs/k’ ¼ 102 and a pressure ratio U ¼ 1.6. The vertical axis shows
the producible reservoir volume normalized by the total length of
wells in the reservoir.

Results for vertical wells show that the producible volume using
optimal muli-well strategies can be several times higher than for
the same number of wells working independently. Vertical wells in
quincunx pattern are most effective. For the case analyzed in Fig. 5,
10 vertical wells in optimal quincunx configuration can produce a
volume 3.5 times higher than 10 wells working independently; this
configuration is applicable to accumulations with large areal dis-
tribution such as abyssal plains. The circular pattern of vertical
wells is less efficient as they are involved in screening in-layer flow
from the far field. This distribution might be suited for localized
accumulations seen in mounds.

The synergism among parallel horizontal wells extends up to
the first three wells: the two laterals screen far field flow and allow
for a wider separation between internal wells. Most importantly,
gas production from horizontal wells grows linearly with the well
length within the reservoir L. Furthermore, horizontal wells avoid
the costs associated with multiple raisers and seafloor manifolds,
and are less sensitive to negative skin friction and well buckling
within the production layer allowing for simpler well completions.
Horizontal wells will benefit from elongated hydrate fields, as in
continental slopes.

Multi-well hybrid solutions may include horizontal wells to
delimit fields to be depressurized by vertical wells operating at
different pressures. Such hybrid strategies can be easily analyzed
using the superposition method described above.

4. Conclusions

Single-well gas production strategies from hydrate-bearing
sediments are uneconomical. We developed closed-form analyt-
ical solutions for multi-well systems to analyze the benefits of
synergetic interaction between wells.

Analytical solutions identify the governing variables: the per-
meabilities of the hydrate-free sediment and aquitard ksed and k’,
the reservoir and aquitard thicknesses H and b, and the fluid
pressures in the far field, at dissociation and at the well ufar, u* and
uw. Their interplay is captured in dimensionless ratios K for
permeability and U for fluid pressure, and the length scale lsed. The
optimal separation between wells increases for thicker reservoirs
bound by tighter aquitards, and when the initial reservoir pressure
is similar to the dissociation pressure.

Optimal multi-well systems can dissociate a larger hydrate
volume than an equal number of independent wells. The syner-
gistic interaction among neighboring wells can significantly
augment gas recovery and reduce production costs.
7

The two external wells in a set of parallel horizontal wells screen
far-field flow and allow for higher separation among the internal
wells in the set, thus, synergism extends up to the first three wells.
The main advantage of horizontal wells is the linear increase in
production volume with the well length within the reservoir L,
reduce hardware costs, and simpler well completion.

Closed-form solutions can expedite the design and economic
analyses and allow fast comparison of potential production
scenarios.
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