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Abstract

Two-dimensional (2D) experimental models are often used to study wave propagation problems. The advantages of using 2D experimental
models, as opposed to 3D models, is the reduction of both extraneous reflections and mathematical complexity. Further, many structural
elements conform to this geometry. The following study examines Rayleigh wave motion in thin Plexiglas sheets. Source–receiver time
domain measurements were made at different locations on the Plexiglas sheet. The time–distance space was 2D-Fourier transformed into the
frequency–wavenumber space to facilitate the analysis of wave modes propagating in the Plexiglas sheet. Experimental results showed that
fundamental symmetric (S0) and antisymmetric (A0) Lamb waves propagated through the plate. Along the thickness of the plate, a non-
dispersive Rayleigh wave was generated. Lamb waves were found to interfere with the Rayleigh wave. The assumption of generalized plane
stress is preserved if higher mode Lamb waves have low energy content.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Wave-based techniques play a central role in non-
destructive characterization of existing infrastructure.
Transmission measurements provide average information
about the body. Further, transmission measurements with
various illumination angles can be tomographically inverted
to infer the spatial distribution of material parameters within
the body, such as slowness or attenuation. However, the
spatial coverage and the wavefront directionality renders
tomographic imaging ineffective near the surface of the
structural element [1]. Yet, damage tends to initiate and to
concentrate at the surface. For the study of surface imper-
fections and slots, Rayleigh waves that form and propagate
along boundaries, are better suited than body waves.

The study reported herein was designed to develop the
appropriate test procedures, signal processing algorithms
and interpretation criteria needed for the characterization,
with Rayleigh waves, of steel and concrete structural
elements, such as beams, columns and slabs. Specifically,
the effects of two-dimensional (2D) boundary conditions on
the applicability, accuracy and limitations, of representing

three-dimensional (3D) Rayleigh wave based studies, are
explored.

This paper starts with a brief introduction to the relevant
theoretical aspects of wave propagation in plates. Test
procedures employed for time domain measurements and
signal processing techniques used to analyze the acquired
data are described. Finally, a description of the observed
plate mode vibrations is given and discussed with respect
to the generation of a non-dispersive Rayleigh wave.

2. Theory

Wave propagation studies in 2D models often involve
plates held in the upright position (Fig. 1). An impact
applied to the edge of the plate generates compression,
shear and Rayleigh waves that propagate along the plate
edge. To ensure minimal out-of-plane motion, the wave-
length of the propagating oscillations should be much larger
than the plate thickness [2,3].

Oliver et al. [2] used the concept of generalized plane stress
to simulate 3D motion in a 2D model. By maintaining a thin
plate in the upright position and assuming the wavelengths
propagating through the plate were long compared to the
plate thickness (ratio of 1/10), the compression wave could
be considered non-dispersive. Laboratory experimentation
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by Parham and Sutton [4] verified the long wavelength
assumption by illustrating the dispersive nature of the
compression wave as the plate thickness was altered.
However, as shown in the following equations, the compres-
sion wave velocity in a plate is slower than in an infinite
body
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where the velocity is a function of density, given byr ,
Young’s modulus,E and Poisson’s ratio,n . As will be
discussed in a later section, the compression wave is a
fundamental symmetric Lamb wave that exhibits minimal
dispersion at low frequencies.

The vertical shear wave velocity, polarized within the
plane of the plate, remains unchanged between the 3D and
the 2D cases. The propagation of a non-dispersive compres-
sion wave and a shear wave allows for the generation of a
non-dispersive Rayleigh wave along the edge of the plate.
The Rayleigh wave velocity (VR) can be calculated by using
the 2D compression wave velocity in the Rayleigh wave
equation,
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whereVp is the compression wave velocity calculated using
Eq. (1b), andVs is the shear wave velocity. For Plexiglas, the
compressional body wave velocity is 2700 m/s and the shear
wave velocity is 1370 m/s. When using the generalized
plane stress approximation [5], the 2D compression wave
velocity becomes 2360 m/s. By solving Eq. (2), the calcu-
lated Rayleigh wave velocity becomes 1280 m/s.

Another important feature of wave propagation in 2D
models is the propagation of a fundamental antisymmetric
Lamb wave (A0) through the 2D model [2]. The Lamb wave
motion in plates is described by the Rayleigh–Lamb
frequency equation. The interaction of compression and
shear waves at two parallel, traction free, boundaries was
used to develop a general frequency equation for plates, first
derived by Rayleigh [6] and by Lamb [7]
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b is half the plate thickness,k is the wavenumber,v is the
circular frequency,Vp andVs are the compression and shear
wave velocities, respectively. Symmetric and antisymmetric
components are obtained by changing the exponent to1 1
or 2 1 respectively.

The Rayleigh–Lamb frequency equation incorporates the
Rayleigh wave, the Lamb wave, and the classical plate flex-
ural motion [8–10]. Propagating Lamb wave modes present
in a plate are dependent on the compression and shear wave
velocities, and the frequency/wavelength content of the
wave. In general, for thin plates, fundamental symmetric
(S0) and antisymmetric (A0) Lamb modes are present.
Higher mode symmetric and antisymmetric Lamb waves
are formed at increasing frequencies. Further, as an exten-
sion of the Rayleigh–Lamb frequency equation, reflections
of Lamb waves from surfaces with mixed boundary condi-
tions can create an infinite number of harmonics associated
with each of the propagating Lamb modes [11].

In summary, three propagation modes are sought: S0

which corresponds to the propagation of compression
waves, the A0 mode and the Rayleigh wave. Given the
proximity to side and bottom boundaries, multiple reflec-
tions should be expected.

3. Test procedure

A sheet of Plexiglas with dimensions of 1220× 300 ×
6 mm3 was held in the upright position as shown in Fig. 1.
The source was a 4.76 mm (3/16 in.) diameter steel bearing,
dropped through a glass tube from a height of 50 mm, onto
the edge of the Plexiglas sheet. The vertical acceleration
history at different points on the edge of the plate was
measured with an accelerometer coupled onto the plate
edge with beeswax. Time domain traces were recorded
with an oscilloscope and transferred to a computer for
analysis. Another accelerometer mounted 3 mm behind
the source was used as a trigger.

The source was placed 200 mm (8 in.) from the plate edge
as shown in Fig. 1. The accelerometer was moved to
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Fig. 1. Schematic diagram of experimental configuration.



different positions along the top-edge, top-side, and bottom-
edge of the plate as shown in Fig. 2(a). Positions were
spaced at 12.7 mm (1/2 in.) intervals for a total length of
508 mm (20 in.) giving 41 traces for all tests. A separate set
of measurements was made along the middle side of the
plate. In this test, the impact was applied to the side of a
flatlying plate supported on foam, as shown in Fig. 2(b).

4. Signal processing

Two-dimensional frequency analysis was used to calcu-
late the dispersion curves measured on the Plexiglas sheet.
A matrix T was assembled with the time series data. Each
column in the matrix corresponds to a measurement. There-
fore theT ij element is theith value for thejth measurement.
The ordering of the measurements inT reflects the spatial
arrangement in the field, i.e. neighboring columns corre-
spond to neighboring measurements [12,13]. Each time
domain signal, downloaded from the oscilloscope, had
1000 data points with a sampling frequency of 1 MHz.
The entire time domain trace was used without windowing
any reflections. The time domain signals were zero-tail
packed to 2000 points and the spatial domain was zero-
tail packed to 201 points. Therefore, the size of matrixT
is 2000× 201. To reduce frequency and wavenumber leak-
age, a Hamming window was applied across the spatial and

temporal directions of the matrix. The matrixT was 2D
Fourier transformed to determine spatial and temporal
frequencies. The magnitude of each complex element in
the transformed matrixF was calculated. The data were
presented as a contour plot of amplitude in the frequency–
wavenumber space. Vibrational modes in the contour plot
are identified as a sequence of peaks. The phase velocity of
the different vibrational modes can be calculated by divid-
ing the frequency by the wavenumber of the corresponding
peak [9]
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Note that only the frequency–wavenumber location of
peaks are needed for phase velocity calculations.

5. Source characteristics

Several initial measurements were completed to deter-
mine the frequency range that renders high coherence; this
ensures linear behavior and proper signal to noise ratio.
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Fig. 2. Time domain measurements were made with the plate in an upright and flatlying position.



Coherence is computed as
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where the bar denotes average of multiple similarly
measured signals andp indicates the complex conju-
gate. The cross spectral densities areGyx and Gxy and
the auto spectral densities areGxx and Gyy. Perfect
coherence between two receivers is obtained when
g 2 � 1.

The steel bearing was dropped onto the edge of the
Plexiglas plate at a distance of 152 mm from the center-
line of the sheet. Two sets of 20 measurements were
made with the receiving accelerometer mounted at
50 mm on either side of the centerline. Coherence
calculations were made between the two sets of receiver
measurements.

Results are shown in Fig. 3. The main energy band was
between 2 and 30 kHz. High coherence values were
computed in this band (g 2 ù 1). Reduced coherence values
were found at low frequencies, suggesting the inability of
the source to produce long wavelengths.
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Fig. 3. Power spectrum density and coherence function of the source.
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Fig. 4. Dispersion of Rayleigh wave on the top-edge of the plate (setup in Fig. 2a).
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Fig. 5. Fundamental Lamb modes measured along the middle side of the plate (setup in Fig. 2b). The S0 wave is not clearly visible due to reflections of the A0

wave.
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Fig. 6. Measurement of the Rayleigh wave and A0 mode along the top-side of the plate.



6. Observations

In all of the following frequency–wavenumber contour
plots experimental peaks are identified by the solid circles.
Theoretically calculated phase velocities are shown as a
dashed line:

Top-edge.The contour plot of the 2D Fourier transform
of signals measured on the top surface of the Plexiglas sheet
are shown in Fig. 4. The phase velocity calculated from the
main trend line of the peaks is 1276 m/s, which compares
well with the Rayleigh wave velocity of 1280 m/s deter-
mined from theoretical calculations. The main energy
band of the Rayleigh wave is consistent with the frequency
range where high coherence is expected from the source.

The high velocity peaks measured at low frequency and
wavenumber correspond to the compression (S0) wave. The
S0 mode is weak, having only one peak at a low wavenum-
ber.

Middle side. The results for measurements made along
the middle side of the plate (Fig. 2(b)) are shown in Fig. 5.
The A0 mode, as well as reflections of the A0 mode from the

sides of the plate, are clearly visible. Similar to Fig. 4, the
fundamental symmetric mode is weak, but appears to cover
a wider frequency–wavenumber range.

Top-side. Dispersion measurements obtained along the
top lateral side of the plate, while applying the source along
the top-edge (Fig. 2(a)), are shown in Fig. 6. Both the
Rayleigh wave and the A0 wave are visible. The low energy
of the Rayleigh wave dispersion curve, between 12–18 kHz,
corresponds to the high energy components of the A0 mode.
Conversely, high energy components of the Rayleigh wave
corresponds to low energy in the A0 mode.

Bottom-edge.A final set of measurements were made on
the bottom-edge of the sheet while applying the source
along the top-edge (Fig. 2(a)). A weak Rayleigh wave
mode was found propagating along the bottom-edge of the
sheet. Additional higher velocity modes were also observed.
A distinct dispersion relation was not evident.

7. Discussion and closing remarks

Measured phase velocities were compared to theoreti-
cally predicted phase velocities to identify the different
propagating modes. As shown in Figs. 4 and 6, the Rayleigh
wave velocity calculated using Eq. (2) (dashed lined)
compares well with the measured peaks. Close agreement
was likewise obtained between the measured (peaks) and
calculated (dashed line) fundamental Lamb wave phase
velocities also shown in Figs. 5 and 6. Theoretical phase
velocities for the S0 and A0 modes were calculated using Eq.
(3). The phase velocity calculated for the S0 wave agrees
well with the velocity calculated for the compression wave
using Eq. (2). As shown in Figs. 5 and 6, the phase velocity
for the S0 wave shows no dispersion at low frequencies (long
wavelengths). Calculations using Eq. (3) illustrates that the
S0 dispersion curve remains flat up to higher frequencies as
the wavelength becomes shorter, which is in accordance
with the results obtained by Parham and Sutton [4].

The measured velocities for the different modes permit
computing the travel times for the different wavefronts.
Consider the case when the receiver is 200 mm away from
the source along the top-edge (Fig. 7(a)). The measured time
domain signal is shown in Fig. 7(b). Arrows indicate the
times computed for the different arrivals.

An important consideration is the effect of the A0 wave on
the Rayleigh wave propagating along the top-edge of the
Plexiglas plate. As shown in Fig. 6, the Rayleigh wave and
the antisymmetric Lamb wave are observed. Within the
frequency ranges of these measurements (0–30 kHz), the
velocity of the A0 wave increases to the point where it is
superposed onto the motion of the Rayleigh wave. The
result is that the initial portion of the time domain trace
for the Rayleigh wave can be compared to the three dimen-
sional motion of a Rayleigh wave, however, the final portion
will be a combination of a Rayleigh and an A0 wave (Fig.
7(b)). Results in Fig. 4 indicate that the A0 wave does not
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Fig. 7. Typical time domain traces measured on the plate.



appear to affect the main energy band of the Rayleigh wave
measured along the top-edge specimens.

The presented results have implications for the imple-
mentation of numerical models and forward simulations.
A plate can be represented with either generalized plane
stress or plane strain conditions. Generalized plane stress
conditions exist in the plane parallel to the two main dimen-
sions of the plate (Fig. 2(a)). Plane strain conditions prevail
through the plate thickness, in the direction of the two main
dimensions of the plate, away from the edges (Fig. 2(b),
short wavelengths).

From a wave propagation perspective, the generalized
plane stress model implies that only the fundamental
Lamb modes are present through the thickness of the
plate. As was discussed by Kane and Mindlin [14], coupling
between higher Lamb modes cannot be incorporated into the
generalized plane stress condition. From the measurements
made on the Plexiglas plate, higher mode Lamb waves were
not observed, however, reflections of the A0 mode were
measured. The presence of the A0 mode and associated
reflections, did not appear to affect the Rayleigh wave.
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