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ABSTRACT

This study examines the use of Rayleigh waves for the detection and sizing of surface-breaking

cracks in concrete members. First, finite element simulations are performed to define the conditions for

Rayleigh wave propagation in members with rectangular cross-section followed by an experimental

study with a concrete beam. Time histories recorded at different locations are 2D Fourier transformed

into the frequency-wavenumber domain to enhance interpretation and data analysis. Rayleigh waves

form at depths less than half the beam depth. With the introduction of a slot, Rayleigh waves are not

observed behind the slot, except for the shortest slot depth, and the slot depth cannot be estimated in

the frequency-wavenumber domain. Autospectrum calculations reveal strong Rayleigh wave

reflections in front of the slot and by can be used to estimate slot depth when the wavelength is

less than half the beam depth.

Introduction

Cracks in concrete and reinforced concrete structural

elements reveal adverse effects of applied mechanical loads,

thermal loads, shrinkage and environmental deterioration

due to corrosion, freeze-thaw and fire. In many reinforced

concrete structures, the extent and location of cracking is not

easy to detect (e.g., underground pipes, tunnel linings, pave-

ments, nuclear vessels, often also buildings and bridges).

Yet, these structures must conform to adequate limits on

crack depth and distribution in order to satisfy strength and

serviceability criteria.

There are various stress-wave methods for crack and

defect detection in concrete members (e.g., ACI, 1998; Lin
and Su, 1996; Sansalone and Carino, 1991; Popovics et al.,
2000). The ultrasonic through-transmission test is the easiest

technique to perform, where measured compression wave

velocities are used to identify anomalous regions. Echo

methods are also common and use reflected compression

waves to measure thickness or to identify flaws (Sansalone

and Carino, 1989; Sansalone, 1997; Sansalone and Streett,

1997). The spectral analysis of surface waves (SASW) uses

the dispersive properties of Rayleigh waves to identify

layering, such as near-surface soils and pavements (Nazarian

et al., 1983; Tokimatsu, 1995). The SASWhas also been used

for flaw detection in concrete elements (Kalinski et al., 1994).
Defect detection in concrete members using acoustic

NDT methods is non-trivial. Multiple reflections, mode

conversion at interfaces, diffraction healing, and the inherent

low-pass filtering effects of concrete render transmission/

echo signals that are often difficult to analyze. Furthermore,

the information density is lowest near the surface, where the

presence of cracks is most prevalent (including tomographic

studies). On the other hand, Rayleigh waves propagate along

the surface of an object with a penetration depth of

approximately onewavelength.Other advantages ofRayleigh

waves for fracture detection in concrete include high energy

content and lower attenuation than the body waves radiated

from a surface source. However, ‘pure’ Rayleigh waves

developwhen half-space conditions prevail (Rayleigh, 1887),

but concrete members have finite dimensions. Furthermore,

isolating a Rayleigh wave can be difficult if free boundaries

are nearby (Kalinski et al., 1994; Douglas and Eller, 1986).

The purpose of this study is to develop adequate

measurement, signal processing and analysis procedures for

detection and sizing of surface-breaking cracks in concrete

members, based on Rayleigh waves and receiver arrays. The

receiver array (as opposed to just a pair of receivers placed

in front of and behind the crack) measurements were used in

this study for the following reasons:

1) Array data facilitates signal interpretation, detection of

multiple modes and reflections.

2) Using just two receivers would require the previous

knowledge of the location of the crack.

3) A Multi-sensor system simulates continuous measure-

ments in field applications such as pavements, tunnel

linings beams and lends itself to automation.

This work is an extension of the tests and signal

processing, described by Zerwer et al. (2002), to detect the

size and location of cracks in plexiglas plates simulating

slices of beam-type elements. This work also builds on the
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ideas presented in the literature concerning Rayleigh wave

screening in soils (R.K. Srivastava and N.S.V. Kameswar-

arao, 2002; Kattis et al., 1999; Woods, 1968). In this paper,

testing and analysis is done on concrete beams. To begin,

a finite element study is done to determine the theoretical

limits of Rayleigh wave propagation in a concrete member

with a square cross-section. Afterwards, the presented

experiments are designed to examine the energy content in

a Rayleigh wavefront and to determine the location and

depth of a slot in a concrete member.

Rayleigh Wave Propagation in a Beam

Dispersion curves can be analytically computed by

obtaining the general solution of the wave equation within the

appropriate boundary conditions. Eigenvalue solutions of the

frequency equation are used to calculate dispersion curves

and define mode shapes for the various propagation modes.

Examples of well-known analytical frequency equations are

the Rayleigh-Lamb frequency equations for plates and the

Pochhammer-Chree frequency equation for rods (Lamb,

1917; Chree, 1889). However, an analytical frequency

equation does not exist for a member with rectangular

cross-section and four stress-free boundaries. Therefore, in

this study, a finite element model is used to calculate

dispersion curves and mode shapes for a concrete uncracked

beam. The results of these analyses are needed to determine

how Rayleigh waves are formed in the tested beams and thus

to allow for better interpretation of the experimental results.

Finite Element Formulation

The finite element model used in this study follows

the formulation presented by Aalami (1973). This model

allows for the generation of dispersion curves for a prismatic

bar of arbitrary cross-section. The main assumptions in this

model follow:

a) The geometry of the cross-section remains constant

along the length.

b) The material of the bar is homogeneous, linearly elastic

and isotropic (this is an acceptable assumption consid-

ering small deformation analysis of an uncracked beam

performed herein).

c) The wave motion is in steady-state and purely elastic.

d) There is no attenuation within the medium.

The formulation used by Aalami (1973) models wave

motion in a three-dimensional bar of arbitrary cross-section

as a two-dimensional problem where only the cross-section

requires discretization. The cross-section of the concrete

member is divided into linear triangular elements in the x-y

plane and steady-state wave motion is assumed along the

length of the bar in the z direction, as shown in Fig. 1.

Stresses and strains within the volume of each element are

calculated using the Rayleigh-Ritz energy method (Zienkie-

wicz, 1971). The derived equation of motion for an

assemblage of elements is represented by:

G½K� rf g þ q½M� €rf g ¼ 0 ð1Þ

where G is the shear modulus, [K] is the global stiffness

matrix, [M] is the global mass matrix, q is the density and

frg are the nodal displacements. Assuming simple harmonic

motion, the nodal displacements can be written as:

rf g ¼ r0f geixtþ/ ð2Þ

where fr0g are the amplitudes of the nodal values, x is the

circular frequency and / is the phase shift. Substituting

Eq. 2 into 1 reduces the steady-state wave propagation prob-

lem to an eigenvalue problem:

ð½K� � �2½M�Þ r0f g ¼ 0 ð3Þ

where � is the normalized frequency given by:

�2 ¼ x2q
G

¼ x2

V2
S

ð4Þ

where VS is the shear wave velocity. The dispersion curve is

calculated by assuming a frequency and calculating the

eigenvalues, which in this case are the corresponding

wavelengths.

A finite element program was written following this

formulation and used to generate the theoretical results

presented in this paper. The parameters needed to per-

form the finite element calculations are the compression

wave velocity (Vp ¼ 4,762 m/s), the shear wave velocity

Figure 1. The beam cross-section is discretized into
128 linear triangular elements.
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(Vs ¼ 2,820 m/s) and the density (q ¼ 2,400 kg/m3). The

concrete beam dimensions are 1,2203 152.43 152.4 mm3

where only the beam cross-section is discretized (Zerwer,

1999). These values were chosen to match those of the real

concrete beam used in the laboratory tests.

The size of the element should be smaller than one

tenth the shortest propagating wavelength (Lin and Sans-

alone, 1992). A study of the convergence rate shows that

100 elements are sufficient to obtain high accuracy for the

fundamental modes (Aalami, 1973). In the following model

the square beam is discretized into 128 triangular elements,

with an average length of 12.5 mm. This choice of element

size corresponds to the shortest wavelength of k¼ 0.125 m

and translates into a maximum wavenumber of k ¼ 8 m�1

(k ¼ 1/k). However, accuracy within 4% of the true values

are obtained for the fundamental modes up to a wavenumber

of k ¼ 20 m�1, corresponding to k ¼ 0.05 m. The error

increases for higher modes, where the frequencies and

wavenumbers are larger (i.e., shorter wavelengths).

Calculated Wave Propagation Modes

The first ten theoretical (from finite element analysis)

propagation modes for an uncracked concrete beam are

shown in Fig. 2. The dispersion curve for each flexural mode

represents two independent modes that are symmetric in the

x and y directions. The theoretically calculated modes shown

in Fig. 2 will later be compared to the results from the

experimental measurements. However, not all the modes

shown in Fig. 2 can be observed in experimental results

because: a) some of them are not excited by the source used

in the testing, b) only vertical accelerations are measured,

therefore there is a higher sensitivity to flexural modes rather

than to longitudinal or torsional modes, and c) the position of

the receiver array with respect to a particular mode shape can

dictate whether a mode is observed or not (i.e., nodal lines).
Figure 3 shows the calculated dispersion curves for

the first flexural and longitudinal modes. These curves

approach the Rayleigh wave velocity as the wavenumber

increases, that is, flexural and longitudinal propagation

modes turn into Rayleigh wave propagation. Mode shapes

for the fundamental flexural and longitudinal modes are

Figure 2. Dispersion curves for the first ten propagat-
ing modes in a concrete beam with a square cross-
section, calculated from the finite element model.

Figure 3. Rayleigh wave formation in a concrete beam.
Mode shapes calculated using finite element model.
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superposed at wavenumbers equivalent to various beam

depths (shown in Fig. 3, boxes 1 to 5). Total values of

displacements are plotted in boxes 1 to 5 in Fig. 3. This

study shows that Rayleigh wave motion begins when the

wavenumber approaches k¼13 (Fig. 3, box 4) and it is fully

formed when k . 18 (Fig. 3, box 5). It should be noted that

for the beam analysed in this study (cross section of 152.43

152.4 mm), k ¼ 13 gives k ¼ 1/k ¼ 0.077 m which is

approximately half of the beam depth. Also k¼18 gives k¼
0.055 m which is approximately equal to 1/3 of the beam

depth. The slope of the frequency-wavenumber dispersion

curve of the Rayleigh wave portion provides a phase

velocity of 2,580 m/s, which correlates with the theoretical

Rayleigh phase velocity in a homogeneous half space. These

results are then used to interpret the experimental results

from the beam testing.

Experimental Measurements

Rayleigh wave measurements are conducted on con-

crete members with square cross section (beam, 152.4 mm3

152.4 mm) of the same dimensions as that used in the finite

element simulations. The concrete is of normal density,

prepared with a maximum aggregate size of 10 mm, and

a compressive strength 30 MPa. Wave propagation in the

concrete beam is measured using an array of 41 receivers

spaced 12.7 mm apart. The source is a 4.76 mm (3/160)

diameter steel bearing dropped from a height of 50 mm (20)

guided by a glass tube of slightly larger diameter. Two

accelerometers are connected to corresponding charge

amplifiers and an oscilloscope. One accelerometer is used

as a trigger mounted slightly behind the source and the other

accelerometer records the time histories. The accelerometers

are mounted and coupled onto the surface of the beam with

beeswax (Fig. 4). The resonant frequency of the accel-

erometers is 61 kHz. Repeated bounces of the ball bearing

are prevented from entering the time histories by limiting

the sample length obtained from the oscilliscope. The time

histories are not stacked.

Three sets of measurements are discussed:

� In the initial measurements the receiver array is moved to

different locations on the beam with a constant source

location (Fig. 4a). The purpose of these measurements

is to verify the presence of the Rayleigh wave mode and

to define other propagation modes resulting from the im-

pact source.

� In the Series I measurements a slot is cut into the beam

(Fig. 4b) and the receiver array is placed behind the slot.

� The Series II array measurements are made with the

source and receiver positions reversed, so the array

crosses the slot (Fig. 4c).

Combined information from Rayleigh wave disper-

sion (Series I) and energy density (Series II) are used to

calculate the slot location and depth. All of the receiver

measurements (except for one) are made along the centerline

of the beam to avoid measurement of end mode resonances

generated by the coupled reflections of the fundamental

modes (Hudson, 1943; Oliver, 1957; McNiven, 1961).

Initial Measurements

Four array measurements are made at different

locations on the concrete beam as shown in Fig. 4a. The

first two array locations are the same with the source moved

101.6 and 304.8 mm away from the intended slot location.

The third and fourth measurements are recorded along the

top and middle side of the beam respectively. For the last

two array measurements the source is located 101.6 mm

from the proposed slot locations.

Measurements Opposite the Slot (Series I)

In this set of measurements a diamond saw is used to

cut a slot into the concrete beam (4 mm width). The source

is placed 101.6 mm in front of the slot and the receiver array

is located on the opposite side of the slot with the first

Figure 4. Source and receiver locations for array mea-
surements. (a) Initial tests, (b) Series I, measurements
behind the slot and (c) Series II, measurements strad-
dling the slot.
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receiver measurement 25.4 mm behind the slot. The test

configuration is shown in Fig. 4b. Array measurements are

repeated as the slot is progressively deepened at 12.7 mm

(1/20) intervals up to a depth of 101.6 mm (40).

Measurements Straddling the Slot (Series II)

For this configuration 20 receiver measurements are

made in front of the slot and 21 receiver measurements are

located behind the slot. The source is situated 101.6 mm in

front of the first receiver measurement. Measurements are

repeated as the slot depth is increased by 12.7 mm (1/20)

increments up to a depth of 101.6 mm (40). The experi-

mental configuration is shown in Fig. 4c.

Signal Processing

Signal processing used for the analysis of experimen-

tal results is presented below.

Coherence

Coherence is computed to determine the frequency

range where reliable results can be obtained. The coherence

between two time series, x(t) and y(t), is calculated as:

c2ðxÞ ¼
GyxG

*

yx

GxxGyy

ð5Þ

where the bar denotes the average of multiple similarly

measured signals and * indicates the complex conjugate.

The autospectral densities are Gxx and Gyy and the cross

spectral densities are Gyx and Gxy. Perfect coherence is c
2¼

1 but values above 0.9 are considered to indicate high signal

to noise ratio, adequate frequency resolution and linear

system response (Santamarina and Fratta, 1998).

The source is activated at a distance of 152 mm (60)

from the middle of the beam. Two sets of twenty mea-

surements are made with the receiving accelerometer

mounted 50 mm (20) on either side of the centerline. Co-

herence calculations are made between two sets of acceler-

ometer measurements. The average results of 20 individual

spectra and coherancies are shown in Fig. 5.

The main energy band for concrete is between 10 and

50 kHz as shown in Fig. 5. Reduced coherence values at

lower and higher frequencies suggest the inability of the

source to produce either longer or shorter wavelengths and

the increase in signal-to-noise ratio.

Spectral Whitening

Spectral whitening balances the amplitudes of the

various spectral components, so that low amplitude spectral

components are enhanced, whereas high amplitude spectral

components are reduced. This provides a uniform distribu-

tion of the energy density and facilitates the interpretation of

the frequency-wavenumber spectrum. The stretched auto-

matic amplitude adjustment method implemented in this

study involves three main steps (Coruh, 1985). The first step

is a stretching operation, where the measured signal x(t) is

convolved with the stretching function s(t):

yðtÞ ¼ xðtÞ * sðtÞ ð7Þ

The stretching signal s(t) used to separate the different

spectral components is:

sðtÞ ¼ sin 2pfstþ
pðfe � fsÞ

Ts

t2
� �

ð6Þ

where fs and fe are the starting and ending frequencies of the

stretching function and Ts is the length of the stretching

function. The values of fs and fe define the range of

sinusoids that are represented in the stretching signal.

Figure 5. Power spectral density and coherence mea-
surements using a 4.762 mm steel bearing.
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In the second step, the amplitudes of the chosen

frequencies are balanced by convolving the stretched signal

y(t) with a gain function g(t):

y9ðtÞ ¼ yðtÞ * gðtÞ ð8Þ

given that

gðtÞ ¼ L
Xs¼tþL

2

s¼t�L
2

jyðsÞj
,

where y9(t) is the gain-adjusted signal and L is the window

width used to calculate the amplitude factor. Finally, the

third step is compressing back the signal by cross-

correlating y9(t) with the stretching signal conjugate s*(t):

zðtÞ ¼ y9ðtÞ * s * ðtÞ ð9Þ

The series z(t) is the whitened signal (Coruh, 1985). In this

study, each receiver measurement is stretched to 16,384 data

points using a window width L ¼ 20. Selecting a smaller

value for L improves the balance of energy density between

the spectral components, but significantly increases the

computation time. To improve amplitude resolution the

stretching function is applied at 10 kHz intervals up to

a frequency of 60 kHz. The time history is then

reconstructed by superposing the whitened signals for the

six frequency intervals. The amplitude spectrum shown in

Fig. 6 illustrates the effect of signal whitening. Averaging

over short window lengths removes random noise and

enhances the coherent signal.

Frequency-Wavenumber Analysis

The array of 41 whitened signals are assembled in

a matrix. The two-dimensional Fourier transform is

computed, converting time-position measurements into the

frequency-wavenumber domain (Peardon, 1986; Alleyne

and Cawley, 1991). The magnitude of the complex co-

efficients is calculated from the Fourier transformed matrix.

Contouring the magnitude values produces a plot with

a series of peaks that can be used to calculate dispersion

curves for the measured propagating modes (Zerwer et al.,
2000; Zerwer et al., 2002). The phase velocity for the

different propagating modes can be computed from the

frequency-wavenumber domain using:

Vphase ¼
k
T
¼ f

k
ð10Þ

given that

k ¼ 1

k
and x ¼ 1

T

The time domain signals contain 1,000 data points, ‘‘zero

tail padded’’ to 2,000 points, with a sampling frequency of

1 MHz. The spatial domain is ‘‘zero tail padded’’ to 201

points. To reduce frequency and wavenumber leakage, a

Hamming window is applied across the spatial and temporal

directions of the matrix. Frequency-wavenumber analysis is

performed on measurements where the source and receiver

are on opposite sides of the slot.

An example of a frequency-wavenumber plot is

shown in Fig. 8a. Overlaid are solid lines representing the

flexural modes (from FE analysis), dashed lines for

longitudinal modes (FE analysis) and solid dots define

peaks (experimental). In addition, the dispersion plots are

split into two halves. Positive wavenumbers represent

energy moving from left to right through the array, whereas

negative wavenumbers define energy propagating in a re-

verse direction across the array.

Autospectrum Measurements

The autospectral density of a signal provides the

energy content within specified frequency intervals. The

Figure 6. Effect of spectral whitening on the amplitude
spectrum. Originally recorded and whitened signals
are shown.
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autospectrum of each signal is calculated as follows

(Santamarina and Fratta, 1998):

jGxxj ¼ Re½ZðxÞ�f g2þ Im½ZðxÞ�f g2 ð11Þ

given that Gxx is the autospectral density, Z(x) is the

discrete Fourier transform of the compressed signal z(t).

Autospectrum calculations are performed on measurements

where the slot bisects the receiver array (test series II).

Experimental Results

Experimental results are presented in a frequency-

wavenumber space and in terms of autospectra. In the

frequency-wavenumber space, the experimental results are

shown in the form of isometric lines with dots representing

peaks of the Rayleigh waves, and theoretical results are

shown as continuous lines representing dispersion curves

(equivalent to Fig. 2). In case of the perfect agreement

between finite element and test results, the dots should align

themselves along the theoretical dispersion curves.

Results from Initial Measurements—Beam Without a Slot

(i) Top Edge measurements—An example of the time

domain traces measured at different locations (as in Fig. 4a),

on the top surface of the beam without a slot are shown in

Fig. 7. Dispersion measurements are shown in Figs. 8a and

b. Figure 8a shows measurements done with the source

distance of 101.6 mm away from the slot (in this case

intended slot, since these measurement are made on an

uncracked concrete beam) and Fig. 8b with the distance of

304.5 mm from the slot. Both measurements show a clear

Rayleigh wave for wavelengths shorter than half the beam

depth, corresponding to a wavenumber of k¼ 13.1 m�1 and

a frequency of 33 kHz. The shortest wavelength Rayleigh

wave is 43 mm (k¼23 1/m) at 60 kHz. The measured peaks

of the Rayleigh wave compare well with results calculated

from the finite element model (phase velocity of 2,580 m/s).

The fundamental longitudinal mode appears considerably

weaker than the fundamental flexural mode.

The direct Rayleigh wave (traveling from left to right)

becomes less coherent as the source distance increases. The

Rayleigh wave is easily identified at the 101.6 mm source

distance (Fig. 8a) becoming less distinct at the 304.8 mm

distance, as shown in Fig. 8b. Therefore, in the tests with the

slot a source distance of 101.6 mm was used. For the

reflected Rayleigh waves (traveling right to left), stronger

wave energy is recorded for the 304.8 mm source distance

than for the 101.6 mm source distance.

Higher vibration modes (modes greater than the fun-

damental mode) are also recorded in these measurements.

Cutoff frequencies are observed at 12.5, 17, 25, 31, 34, and

45 kHz. At low wavenumbers, peaks correspond relatively

well to higher mode flexural waves. The higher mode

vibrations are easily visible at the 101.6 mm source distance,

but are less distinctive for the 304.8 mm source distance.

(ii) Side Measurement—Top Array—The Rayleigh

wave shown in Fig. 8c is clearly identified, but weaker than

in previous measurements. A reflected Rayleigh wave is not

observed in these measurements. A few higher flexural

modes are also observed.

(iii) Side Measurement—Middle Array—The disper-

sion measurement made along the middle side of the

concrete beam is shown in Fig. 8d. A Rayleigh wave is not

measured at this location (a very weak Rayleigh wave is

identified for higher frequencies). Peaks do not correspond

well with higher flexural or longitudinal modes.

Results From Series I—Beam with a Slot

The results of this test series are presented in the

frequency-wavenumber space (Figs. 9a–d). The Rayleigh

wave shown in the 2D spectrum in Fig. 9a has lower energy

for the initial slot depth of 12.7 mm than in a beam without

Figure 7. Time domain traces for accelerometers in
locations ‘‘1 + 3i’’ with i = 0 to 13. Measurements on the
top surface of the beam, no slot.
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a slot (Fig. 8a). The wavenumber bandwidth of the Rayleigh

wave is now between 12.5 and 18 m�1. Increasing the slot

depth to 25.4 mm (Fig. 9b) causes the Rayleigh wave to

disappear. Frequency-wavenumber calculations from deeper

slots shown in Fig. 9c ( 50.8 mm) and 8d (76.2 mm) have

few peaks and low energy related to Rayleigh waves

propagating past the slot. The Rayleigh wave reflected from

the end of the beam is weakly observed in these mea-

surements. These measurement establish the presence of

the slot in a beam due to the disappearance of the Rayleigh

wave and lower energy corresponding to the peaks in

the frequency wavenumber plots (lighter shading indicates

less energy).

In addition to the Rayleigh wave, other vibrational

modes are observed. A strong direct and reflected first

flexural mode (FFM) is detected at wavenumbers less than

5 m�1 (Fig. 9). Higher modes are visible with cutoff

frequencies at 12.5, 17, 25, 31, 34 and 45 kHz. These modes

Figure 8. Frequency-wavenumber results from initial measurements without a slot. (a) Source distance of 101.6 mm,
(b) Source distance of 304.8 mm, (c) Measurement along top-side (101.6 mm distance), (d) Measurement along middle-
side (101.6 mm distance).
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become weaker with increasing slot depth. With the

exception of the first flexural mode, higher modes reflected

from the end of the beam cannot be accurately identified.

Results From Series II—Beam with a Slot

The results of test series II are presented in terms of

auto-spectra. The auto-spectrum for all signals are arranged

in space and plotted as shown Fig. 10a for measurements

without a slot. In this case relating spectral energy to the

Rayleigh wave or other propagating modes cannot be

accurately accomplished because several modes may

contribute to the energy measured at a particular frequency.

Nevertheless, the auto-spectrum calculations can identify

disturbances in propagation energy. As shown in Fig. 10b

(slot depth 63.5 mm) and 9c (slot depth 76.2 mm,

approximately half the beam depth) the slot blocks

propagating wave energy, becoming more pronounced as

the slot depth increases. The slot generates a reflected

Rayleigh wave, which is recorded on receivers to the left of

the slot location. The slot depth can be back-calculated

using the Rayleigh wave velocity and the frequency cutoff

generated by the slot. For example, for the cutoff frequency

in Fig. 10b of approximately f¼ 41.5 kHz and the Rayleigh

wave velocity of c ¼ 2,580 m/s, the corresponding wave-

length of k ¼ c/f ¼ 0.062 m ¼ 62 mm. The slot depth in

this case was 63.5 mm. The half slab depth (76.2 mm)

corresponds to a frequency of approximately 34 kHz and

was calculated from f¼ c/k¼ 2,580/0.0762¼ 33,858 Hz.

Figure 9. Frequency-wavenumber results from measurements with a slot. (a) 12.7 mm slot depth, (b) 25.4 mm slot
depth, (c) 50.8 mm slot depth, (d) 76.2 mm slot depth.
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Thus, these measurements provide information on the

slot depth. However, this approach is only valid for slot depths

less than half the beam depth because deeper slots hinder the

development of a Rayleigh wave and the results become

unclear (Fig. 10d, slot depth larger than half the beam depth).

Discussion and Conclusions

The study presented in the paper shows that by

combining information from Rayleigh wave dispersion and

energy dissipation it is possible to determine the location

and depth of surface-breaking cracks in concrete beams.

The finite element analysis of wave propagation in an

uncracked concrete beam shows that flexural and longitu-

dinal propagation modes turn into Rayleigh wave propaga-

tion as the wavelength becomes shorter. The Rayleigh wave

does not form at depths greater than half the beam depth

because the phase velocities of the fundamental modes

diverge at longer wavelengths and energy is spent in flexural

modes. An important aspect of Rayleigh wave formation,

not specifically discussed, is the effect of beam geometry.

Figure 10. Autospectrum calculations for each receiver measurement. (a) No slot, (b) 63.5 mm slot, (c) 76.2 mm slot,
(d) 88.9 mm slot.
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This study examines a beam with a square cross-section, as

a result the fundamental flexural modes in the x and y

directions are identical (i.e., all flexural modes have two

identical eigenvalues). If the cross-sectional geometry is

rectangular then two different Rayleigh waves can poten-

tially exist in a beam.

Measurements made on a concrete beam without

a slot demonstrate that the fundamental flexural and

longitudinal modes are excited and a Rayleigh wave is

formed at higher frequencies. The measured phase velocities

of these modes as well as the appearance of the Rayleigh are

confirmed by the theoretical results obtained from the finite

element analysis. Additional measurements made on the

side of the beam at different depths (top and middle)

illustrate that a Rayleigh wave does not exist below half the

beam depth. Higher vibration modes are also observed.

Introduction of a slot causes the transmitted Rayleigh

wave energy to decrease. The frequency-wavenumber plots

show that a Rayleigh wave exists behind a 12.7 mm slot,

but disappears behind the 25.4 mm slot. The maximum

wavelength, calculated by phase velocity (2,580 m/s)

divided by the minimum frequency of pure Rayleigh waves

are noticed (approximately 33 kHz), is in the order of

7.5 mm. Thus we can conclude that slots which are much

deeper than a dominant Rayleigh wavelength provide an ef-

fective screening. However, there are a number of reasons

why a Rayleigh wave does not reform behind the slot. First,

the source provides more energy in a flexural direction

rather than a longitudinal orientation. Second, the Poisson’s

ratio of concrete is approximately 0.21, further reducing

longitudinal mode energy. Third, not enough energy passes

the slot to reform the longitudinal mode. Conversely, the

reflected Rayleigh wave energy increases.

Autospectrum calculations demonstrate the slot effec-

tively blocks the Rayleigh wave allowing an estimation of

slot depth. Although a cutoff frequency is observed for all

slot depths, backcalculated slot depths compare well to the

real slot depth up to half the beam depth. This last result

indicates that energy attenuation due to presence of cracks

should be evaluated in future work on signal processing.
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